Extended Abstract

Motivation

Large language models (LLMs) are typically fine-tuned on large task-specific datasets. However, such datasets often contain
noisy or redundant samples that not only slow down training but may also degrade downstream performance. While data
selection methods have proven effective for large-scale pretraining, they remain impractical for fine-tuning due to their
computational cost and poor alignment with task-specific semantics. In this work, we address the challenge of efficient data
selection for fine-tuning by leveraging reinforcement learning (RL) to identify high-quality training subsets that improve
model generalization while significantly reducing training cost.

Method

We formulate the data selection task as a MDP over cluster subsets derived from the training data. States correspond to
partial subsets of clusters, actions correspond to adding a new cluster, and the episode ends when the size of the partial
subset reaches a fraction ¢ of the total number of clusters |C/|. Rewards are defined via proxy-model-based signals, such as
improvement in validation accuracy or reduction in training or validation loss. We evaluate several policies for navigating
this state space, including DQN, PPO, and reward model-based search strategies CLIMB and its variants.

Implementation

We cluster the training data using KMeans or stratified KMeans over sentence embeddings and encode states using binary
masks or mean-variance of sub-sampled representative points. Reward functions are derived from smaller proxy models
(MobileLLM-125M or 600M) trained on sampled data points from each state. We implement DQN with a 5-layer MLP
and PPO with actor-critic MLPs. CLIMB and CLIMB-Diffusion use reward model with random and diffusion-guided
sampling over binary cluster selection masks respectively. All target model evaluations are conducted using MobileLLM-
1.5B on held-out test dataset.

Results

We evaluate our methods on four classification tasks: ANLI, Emotion, MetaHate, and MMLU. Our RL-guided data
selection strategies consistently outperform random and heuristic baselines. Notably, we find that training on a 5% subset
selected by our methods can match or exceed full-dataset training:

MetaHate: CLIMB achieves 94.01%, outperforming full-data (83.20%) by +11.0 points.

Emotion: CLIMB reaches 68.40%, exceeding full-data performance (68.10%) by +0.30 points.

ANLI: DON achieves 57.60%, a gain of +3.4 points over baseline selection, but below the full-data performance (64.76%).
MMLU: PPO + RND reaches 45.68 %, just 2.3 points below full-data (49.38%).

Discussion

Our results reveal that RL-based agents not only outperform random sampling and heuristics (e.g., top-loss, bandits), but
also beat reward-approximation-based random search, indicating effective learning of informative subset policies. CLIMB
variants are especially effective for noisy tasks like MetaHate. PPO performs best on MMLU and shows strong performance
even with minimal warm-start. DQN is competitive across domains. Surprisingly, in some tasks, our policies outperform full
training, suggesting that datasets may introduce harmful noise or redundancy that our policies learn to avoid.

Conclusion

This work presents a RL-based framework for data selection during fine-tuning. Our methods are effective against full
training and baselines on all datasets. However, the best method varies across datasets and performance is highly susceptible
to minor changes. These results show that by intelligently selecting the most informative training examples, we can reduce
computational costs, energy consumption and carbon footprint while maintaining or enhancing model performance.
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Abstract

While data selection methods have proven valu-
able for large-scale language model pre-training,
they remain computationally prohibitive for fine-
tuning scenarios with smaller-scale datasets,
which may also be plagued with noise and data
redundancies. In this work, we introduce a princi-
pled reinforcement learning framework that ef-
ficiently identifies high-quality, non-redundant
training samples for LLM fine-tuning. Our
approaches combine clustering and semantic
embedding-based state representations with ef-
ficient proxy model-based rewards and RL-based
training approaches such as Deep Q-Networks
and Proximal Policy Optimization to optimize for
training subsets that maximize performance while
minimizing computational costs. Experiments on
text classification tasks demonstrate that training
on data subsets selected by our approaches (as
small as 5% of the original dataset) can achieve
comparable or superior performance to training
on the full dataset. Notably, we surpass full-data
performance by upto 11% points in downstream
task accuracy across datasets, with small compu-
tational overhead. These findings highlight the
inefficiencies of existing large-scale data selection
methods in small-data regimes and pave the way
for scalable, task-specific fine-tuning strategies.

1. Introduction

Large Language Models (LLMs) are commonly adapted
to specific tasks through fine-tuning, where model param-
eters are further trained on task-specific data. However,
real-world datasets present two significant challenges: they
often contain substantial noise that can lead to overfitting,
and they include redundant data points where training on
just one representative example would achieve the same
performance as training on the entire group. Strategic data
selection methods can address both issues by filtering out
low-quality data and eliminating redundancies, improving
model performance while reducing training time and costs.

However, existing data selection methods have primarily
been designed for large-scale pretraining with terabyte-

scale datasets. These approaches typically use compu-
tationally expensive techniques like gradient-based influ-
ence scoring (Xia et al., 2024) or domain-level optimiza-
tion (Xie et al., 2024), which become impractical for smaller
datasets. For instance, Xia et al., 2024 takes over two days
to compute gradient stores for a medium-sized dataset of
around 160,000 examples. Furthermore, these pretraining-
oriented methods often perform poorly when applied to
fine-tuning tasks, as they tend to focus on surface-level
features rather than semantic content relevant to specific
downstream tasks (Gu et al., 2024).

Reinforcement Learning (RL) represents an underexplored
yet promising approach for data selection. RL can learn
adaptive selection strategies tailored to specific models and
tasks through weak supervision, enabling the estimation
of data importance based on non-differentiable, complex
reward functions such as the downstream performance of
proxy models. Therefore, in this work, we focus on de-
veloping RL-guided approaches for training data selection,
specifically for fine-tuning LLMs on medium-scale datasets
ranging from 100,000 to 1 million data points.

We begin by clustering the training dataset, with the pow-
erset of these clusters forming the state space of a Markov
Decision Process (MDP). Actions involve adding new clus-
ters to the current state, and rewards are defined based on
validation accuracies and losses of smaller proxy models
trained on data from the clusters in the resulting state. We
explore various state encoding schemes and subsampling
methods to efficiently compute rewards, and develop a fam-
ily of RL-guided approaches based on Deep Q-Networks,
Proximal Policy Optimization, Linear Bandits, and Reward
Approximation for data subset optimization, given the MDP
and reward function.

Experiments across four text classification datasets demon-
strate that our RL-guided approaches consistently outper-
form heuristic-based data selection methods by up to 8.3
percentage points in downstream task accuracy for the same
data selection fractions. Notably, for the MetaHate dataset,
training on a 5% data subset selected by our RL-guided
approach surpasses full-dataset training performance by 11
percentage points. Our findings indicate that different RL-
guided approaches excel with different datasets and proxy
models, and we also perform ablation studies on design con-
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siderations for the DQN, PPO, reward model based methods.
By varying data selection fractions, we show that RL-guided
approaches achieve a good balance between downstream
performance and training efficiency, demonstrating substan-
tial potential for RL-guided methods for data subset selec-
tion in LLM fine-tuning.

2. Related Work

2.1. Statistical Foundations of Data Selection

Signficant recent research focuses on establishing a rigor-
ous statistical framework for data selection. Under this
paradigm, the goal is to identify a subset of the training
data that preserves (or even improves) generalization by re-
ducing noise and redundancy. In Kolossov et al., 2023, the
authors develop a statistical theory for subsampling under
weak supervision across a variety of model classes. Their
analysis provides conditions under which substantial data
reduction is achievable without sacrificing—and sometimes
even enhancing—generalization performance. This line of
thinking has been extended to frame data selection as an
information-theoretic problem (Deb et al., 2025), selecting
examples that maximize the information gain, measured
by the determinant of the Fisher information matrix. In
addition, the DSDM framework (Engstrom et al., 2024) in-
troduces a model-aware approach which analyse individual
data points’ influence on specific target samples, provid-
ing granular insights into data utility to guide the selection
process. Similarly, Influence Distillation (Nikdan et al.,
2025) formulates influence using second-order information
and uses a landmark-based approximation to make selec-
tion tractable. Recent work by Gu et al., 2024 reformulates
data selection as an optimal control problem solvable via
Pontryagin’s Maximum Principle.

2.2. Data Selection for Language Models

In the context of large language models (LLMs), data se-
lection plays a critical role given the enormous and ever-
growing training datasets (Albalak et al., 2024). One influ-
ential approach is the LESS framework (Xia et al., 2024),
which estimates the influence of individual samples by con-
structing gradient stores and quantifying their contributions
to model convergence. However, as noted previously (Yin
& Rush, 2025; Liu et al., 2025), the high computational cost
of such gradient-based methods can make them suboptimal
in practice; cheaper methods may yield better overall perfor-
mance when both selection and training costs are considered.
Complementary to LESS, methods such as DSIR (Xie et al.,
2023) utilize importance resampling to select examples that
are statistically most beneficial for pre-training. Recent
advances also include techniques such as DoReMi (Xie
et al., 2024) which optimize data mixtures to accelerate
language model pretraining. Other strategies include data

pruning (Marion et al., 2023) and deduplication methods
like D4 (Tirumala et al., 2023) and SemDeDup (Abbas et al.,
2023) that aim to improve training efficiency and reduce
redundancy. More recently, CLiMB (Diao et al., 2025) iter-
atively samples random data mixtures, evaluates them, and
trains a predictor that guides subsequent mixture selection.
Another class of methods are based on adaptive curricula,
Progressive Data Dropout (S et al., 2025) gradually skips
an increasing fraction of training subset each epoch. Its util-
ity in LLM fine-tuning remains an open question because
language models typically observe each token once or only
a few times. For VLM finetuning, PROGRESS (Chandhok
et al., 2025) dynamically ranks training data clusters by the
model’s learning progress and selects those with the greatest
headroom of improvement.

2.3. Reinforcement Learning for Feature Selection

A long line of work exists for RL-based techniques for op-
timal feature subset. Early work framed feature selection
as a one-player game (Gaudel & Sebag, 2010), where an
RL agent explores the powerset of features using methods
such as a variant of Upper Confidence Trees (Kocsis &
Szepesvari, 2006). Although originally devised for select-
ing features, these RL-based approaches provide natural
baselines for more general data subset selection problems.
The formulation of data selection as a sequential decision-
making process allows the agent to iteratively refine the
subset based on feedback from model performance.

3. Methodology

We formulate the data selection task as a reinforcement
learning (RL) problem. Formally, given training dataset of
size | D|, we aim to select the data subset of size 6| D| (where
0 is the selection fraction) that maximizes downstream per-
formance when used to train a farget model.

3.1. MDP Setup: States and Actions

Given a training set D, we cluster it into C' clusters of data
points based on their semantic embeddings via K-means
clustering. (Kmeans) To induce label information in the
clusters, we also try a variant where we enforce a cluster to
have data points corresponding to only one label (henceforth
called Stratified—-Kmeans).

The state space S = P(C) is then the set of all possible
subsets of C. At any step we maintain the state s; C C
which denotes the set of clusters selected in the current
episode so far as candidates for the target model’s training
dataset; an episode is terminated when the selected subset
reaches size |sg| = 0|C|. The action space A consists of
selecting a new cluster a; € C'\ s; and adding it to the
current set of clusters to get the new state s;11 = s¢ U
{a:}, see Figure 1. While this formulation allows for the
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Figure 1. MDP induced by a dataset

removal of clusters during the episode as well, we only
focus on additions in this work. For a given state s;, we
explore different ways of computing a state encoding ¢(s;).
The simplest encoding, denoted by Binary-Mask, is |C|-
length binary vector with ¢;(s;) = 1 < C; € s;. In
another case (Mean-Std), we use:

d(st) = [u(se), 0% (s1)],

where 4i(+) and o?(-) are the mean and variance of the
cluster-centroid embeddings in the currently selected set.
Another variant (Concat) involves concatenating embed-
dings of representative samples from each cluster. We ex-
plore two approaches for selecting these representative sam-
ples — choosing them at random from the cluster (Random)
or choosing the furthest points from the cluster centroid
(Furthest), capturing the spread of the cluster.

3.2. Reward Approximation

We test three reward functions computed using a proxy
model, which is a smaller model than the farget model,
usually from the same model family. Let Val-Acc(-) be
the validation accuracy of the proxy model and £(Dy|Dy)
be the loss value for dataset Dy, after training on Dy. (for
clearness, We omit Dy if it is same as Dy,)

Accuracy-based Reward (R,.): This reward function
computes the improvement in validation accuracy when
adding a new cluster to the selected data, thus capturing its
impact on the downstream performance of the proxy model:

Race(st,at) = Val-Acc(sy U {a;}) — Val-Acc(sy). (1)

Although effective, measuring changes in validation accu-
racy entails retraining the proxy model from scratch after
each action for a substantial number of training steps and
performing evaluation, which is extremely expensive.

Training Loss-based Reward (R{*%"):  This reward func-
tion makes two assumptions — training losses on the same
batches of data are correlated for the farget and proxy model,

and training loss for a model is negatively correlated with
downstream performance. Then, the reward function mea-
sures changes in the proxy model’s training loss when the
new cluster is added to the current state:

f(x)=5 — 2 In(22x) 2)
Rloss(5t7 at) = f(‘c(g(st) U f({at}))
= J(L(E(s0)))- 3)

where In(+) is the natural logarithm, and a subsampling
function £(-) is used to select a fixed number of data points
(set as a hyperparameter) from each cluster to estimate the
training loss from the proxy model at the end of multiple
epochs of training. The logarithmic transformation f(-)
serves a dual purpose: it establishes a baseline of f(£(0)) =
0 while also magnifying subtle loss variations in the low-
loss regime of training on larger subsets of data. R, iS
much faster than R,., taking 2 seconds and 90 seconds
to compute, respectively, for a state containing 4 clusters,
which makes training more efficient.

Validation loss-based Reward (R}2\): This reward func-
tion is similar to R}):", except for using validation-set loss
instead of training loss. Formally,

Rig(st:ar) = f(L(var(Doar)|€(se) UE{ar}))
- f(ﬁ(fval(Dval)‘g(st)))' “4)

where the subsampling function &,4;(-) is used to select a
fixed number of data points (set as a hyperparameter) from
the validation set, keeping the label proportion constant.
f serves a similar purpose to that in Rjes. While Rlv(fs's is

slower than R{FaM) (5 seconds v/s 2 seconds), it is much

better correlated with downstream performance.

Random Network Distillation (RND): For each of the
reward approximations described above, Random Network
Distillation (Burda et al., 2018) can be added to improve
exploration of the policy. RND is implemented using a 4-
layer MLP with MSE loss between the target and predictor
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network as intrinsic reward. The state and rewards are
normalized using a running average to stabilize the intrinsic
rewards.

3.3. Policies

We implement three different types of RL-based approaches
for the data cluster selection task: (1) a Deep Q-Network-
based (DQN) (Mnih et al., 2013) based policy, (2) a Prox-
imal Policy Optimization (PPO) (Schulman et al., 2017)
based policy, (3) Reward Model Based approaches (Diao
et al., 2025; Sutton, 1991). All approaches build on the
state/action definitions and reward functions provided ear-
lier, but differ in how they learn the policy and approximate
the value function.

DQN: At each state s;, we compute an embedding ¢(s;)
using one of the state encoding methods. We then feed ¢(s:)
into a function approximator fy(-), either an MLP or a small
Transformer, which outputs an |.A|—dimensional vector
where each component represents the estimated Q-value
(or “goodness”) of taking action a € A in the current state
s¢. We then mask out actions corresponding to the clusters
already in s; and choose the action with the highest Q-value
via e-greedy sampling. The network parameters 6 are then
optimized through experience replay updates.

PPO: We adopt a variant of PPO that supports the mask-
ing of invalid actions (Huang & Ontaii6n, 2022). Both the
actor and critic networks are 3-layer MLPs; for each state
s¢, the actor outputs a probability distribution over avail-
able cluster actions, while the critic estimates the value of
s¢. We investigate two variants of PPO as well. We first
try training PPO from Scratch, initializing the actor and
critic randomly. Next, we try to give PPO a Warm Start.
We pre-train the critic using a regression task on rewards for
“single-cluster” states. Specifically, for each cluster ¢; € A,
we compute the average reward obtained when taking action
c; on the state containing the empty set to reach state s;.
We then regress the critic network on the (sg,c;,S;,7;) tuples,
where sg = ) and r; corresponds to the average reward
for each single-cluster addition. This setup encourages the
critic to produce, for the start state, outputs that rank clusters
in proportion to their individual expected returns.

3.4. Reward Model Based Strategies

These strategies approximate the true reward function in
order to accelerate policy learning by generating additional,
“synthetic” rollouts. Concretely, we train a proxy reward
model 74 (s, a) on true reward signals (s, a) and then use
74 to label transitions sampled under the current policy, and
mix these synthetic transitions with real ones when updating
the agent. Real rollouts are given higher weight. Based on
the agent, we have two strategies: DynaDQN and CLIMB.

DynaDQN: The proxy reward 7y is implemented as an
ensemble of four independently initialized, 5-layer MLPs.
Each ensemble member is trained on real transitions using
mean-squared error (MSE) loss with ¢y regularization. MLP
variant of DQN is used as the policy. At each environment
step, we sample a batch of 32 state—action pairs, compute
their proxy rewards by averaging the ensemble outputs, and
then only insert those synthetic transitions into the replay
buffer if the ensemble-standard deviation falls below a fixed
threshold op,4x. Synthetic transitions are retained for at
most four episodes, and during learning, they are weighted
by an importance factor of 0.5 relative to real transitions.

CLIMB: Drawing inspiration from (Diao et al., 2025), we
implemented CLIMB for discrete states. For this strategy,
the reward function r(s) is the absolute value instead of the
increment from the previous state. The proxy reward model
74(s) is a single 3-layer MLP trained with MSE loss. In
each iteration, we uniformly sample M previously unseen
states, rank them by their estimated reward 7, then query
the environment for the true reward of the top- K states and
use these K new labels to update 7. After T" epochs, we
re-evaluate all seen states under 7, and select the highest-
scoring one as the final best state.

To improve the exploration in CLIMB, en-
sembling (CLIMB-ensemble) and diffusion
(CLIMB-diffusion) are used. In CLIMB-ensemble,
we implemented an ensemble of reward models, shifting
from a purely exploitation-driven strategy to one that
incorporates UCB-based exploration rewards. For selecting
the top K states, we used the standard deviation in the
forward pass of the ensemble networks as our exploration
term.

1 & 1<
UCB(s) = & > #i(s)+8- = > (#i(s) = u(s))? (3)
=1 =1

where 7; is the i*" reward network out of total F and 3 is a
hyperparameter to tune the exploration. Higher values of 3
encourages the algorithm to learn the actual reward for the
masks where it has more uncertainty.

CLIMB-diffusion: Instead of randomly sampling in
2M states we sample through a reverse-diffusion process.
Specifically, we introduce a Denoising Diffusion Proba-
bilistic Model (DDPM) (Austin et al., 2023; Dhariwal &
Nichol, 2021) to learn the distribution of high-reward states
encountered so far. The reverse-diffusion process runs for 7
timesteps. At each timestep ¢, the score for a noisy state s;
is guided by the gradient of the proxy reward model 74(s)
and modified as follows:

score(sy) = SCOregiftusion (St, ) + 77 - Vsifg(sy)  (6)
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where v is a guidance scale hyperparameter that balances
between the learned distribution and reward maximization.
After computing (6) we add Gumbel noise and project to
the top indices to get a binary mask with the correct number
of clusters selected.

3.5. Linear Bandits Formulation

We also explore an alternative linear bandit approach, where
each cluster is treated as a separate ”arm” in a multi-armed
bandit framework. Although the reward for selecting a
cluster is inherently noisy — due to subsampling before
computing the proxy loss and the corresponding variances
during reward function computation — we can approximate
an upper-confidence bound (UCB) or adopt an e—greedy
strategy to identify the most promising arms. We design
a policy 7 parameterized by a 2-layer MLP that, given an
action encoding which is the same as the feature encoding
of a single cluster state, outputs a predicted “value” for that
arm. The MLP thus extrapolates across similar clusters,
enabling far more efficient learning than a tabular bandit
strategy, which would assign a separate value to each cluster
without sharing information. We use the MLP to estimate
both a mean reward and its uncertainty; for the final subset
selection we pick the top-k clusters/arms with the highest
upper-confidence bounds. While this method scales to a
large number of clusters allowing finer granualarity, it can
not capture the effect of the interaction of different clusters
during training.

Dataset Task Train Size | Test Size | # Labels

ANLI Natural Language 162,400 3,200 3
Inference

MetaHate Hate Speech 1,051,165 25,000 2
Detection

GooglePlay | Sentiment 98,836 5,000 5
Classification

MMLU MCQ Answering 99,842 14042 4

Table 1. Summary of text classification datasets with their respec-
tive tasks, training sizes, test sizes, and number of labels.

4. Experimental Setup
4.1. Downstream Tasks

We focus on text classification tasks training the LLM to out-
put a single-token class label in response to a text input and
a fixed prompt. We chose this task because the single-logit
losses can be compared more consistently across different
sequence lengths and models. Table 1 contains information
about the datasets used. The MetaHate and GooglePlay
datasets do not have an explicit test split, so we randomly
sample 25K and 5K samples respectively to create one.

val_accuracy
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Figure 2. Reward (Validation Accuracy) of sampled states for
Climb Diffusion on Emotion with the 600M proxy model.
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Figure 3. Reward (Train loss) vs episode for PPO on MetaHate
with the 125M proxy model.

4.2. Models

In our experiments, we utilize the MobileLLM (at Meta)
model family, that provides pre-trained language models
with the same architecture at varying scales. Specifically,
we use MobileLLM-600M and MobileLLM-125M as proxy
models to estimate the influence of training data points on
downstream performance, while MobileLLM-1.5B is used
as the target model for training and evaluation.

4.3. Baselines

For our results, we fix the data selection percentage to 5%
unless otherwise mentioned. We compare our approaches
to the following baselines:

1. Full: The target model is trained on the entire dataset
(100% of the data).

2. Random-5%: A random 5% subset is used as training
data for the target model. This serves as a natural
baseline for data efficiency.
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3. Top-5%: Using the proxy model, we compute the loss
of each data point in the training dataset. We then
select the top 5% high-loss or harder examples.

4. Bottom-5% Similarly, we select the bottom 5% exam-
ples, hypothesizing that high-loss examples may have
been noisy or mislabelled. Top-5% and Bottom-5%
check whether focusing on “hard” or “easy” points
during training yields improvements.

5. Random-Search-5% Similar to Random-5%:, but
multiple subsets are evaluated and the one with best
proxy-reward is used as the final sample.

6. LESS and DSIR: These are additional state-of-the-art
data selection methods from recent literature (Xia et al.,
2024; Xie et al., 2023). However, in our early exper-
iments, these methods performed worse than random
sampling when applied to our smaller-scale datasets,
and LESS is prohibitively expensive to run in terms of
computation, requiring two days to construct gradient
stores for ANLI. Therefore, we omit these baselines
from our reported results.

4.4. Evaluation

We report accuracy on a held-out test set for each dataset,
for a target model trained on the data subsets selected by
the different approaches. We also perform experiments
(Section 6) over varying selection percentages to capture
different trade-offs between dataset size, training time, and
model accuracy.

5. Results

Hyperparameters. BAAI/bge-small-en-v1.5 is
used to obtain semantic embeddings for the training datasets
and K-Means or stratified K-Means clustering is used to
cluster the resulting embeddings into 64 (or 128) clusters.
We use a batch size of 16 with 4 gradient accumulation steps
to train the proxy model for 2 epochs with a learning rate
of le-5. For each cluster, 64 data points are sampled for
proxy-model training.

For the DQN, we use a 5-layer MLP of size 256 to
learn the Q-function, with Mean—-Std state encodings and
Furthest subsampling. We use v = 0.99 and decaying
e starting from 1 with a decay of 0.99 per episode and a
minimum of 0.01. A replay buffer is used and steps are
sampled in batches of 32 to train the model. A learning rate
of le-4 is used to train the DQN network and the target net-
work is updated every 10 steps. The DQN is trained for 500
episodes. PPO is trained with a learning rate of 3e-4, for 500
episodes. For the linear bandits approach, we train for 1000
steps with a UCB coefficient of 2 and learning rate of 1e-4.
In DynaDQN, the reward model has a hidden dimension of

Algorithm ANLI Emotion Hate MMLU
Full 64.76 68.10 83.20 49.38
Random 54.20 58.30 72.60 40.90
Top 5% 57.40 21.90 84.00 37.34
Lowest 5% 57.10 22.60 77.80 22.96
Random Search 55.61 59.30 72.60 43.71
Top-k linear bandits ~ 52.33 50.30 83.10 45.57
DQN 57.60 65.60 69.40 4427 e
DQN + RND 35.30 63.76 70.91 44.18
DynaDQN 52.96 61.94 50.50 45.11
PPO 54.20 62.32 60.85 44.80
PPO Warm Start 56.24 60.24 87.95 44.19
PPO + RND 55.80 56.52 59.50 45.68
CLIMB 53.83 68.40 94.01 41.73
CLIMB + Diffusion  33.30 46.76 94.01 44.51
CLIMB + Ensemble - 55.54 - -

Table 2. Performance of MobileLLM-1.5B when trained on data
selected using various strategies. All strategies are discussed in
Section 3. Numbers for the baseline trained with the full training
dataset are provided in the first row, while the best numbers for
the data selection approaches are highlighted. CLiMB + Ensemble
does not finish within time.

256, and the same configuration as DQN is used for policy.
Learning rate of 5e — 4 is used with no training for first 5
episodes. CLIMB is trained with 50 iterations, sampling
128 states and selecting top 32 states finally at each step.
The hidden dimension is set to 128, and learning rate of
le-4 is used with the reward model trained for 2 epochs per
iteration.

We train the target model for 4 epochs on the selected data
subsets, with a batch size of 4 and 8 gradient accumulation
steps, and use a cosine annealing schedule for the learning
rate from le-5 to le-6 and linear warmup for the first 5%
of training steps. Checkpoints are chosen based on highest
validation accuracy for all settings to compute downstream
performance.

Discussion. We report results with MobileLLM-1.5B as
the target model in Table 2. Since ANLI has three splits,
we report macro-averaged accuracies over each of the three
splits.

Contrary to expectations, training on the full dataset results
in the best performance in only 2 out of the 4 datasets. Us-
ing a randomly selected 5% subset results in a performance
drop of approximately 10 points in all cases. The Bottom
5% baseline, which selects examples with the lowest proxy
model loss, performs poorly across the board, suggesting
that such examples are not informative for continued train-
ing for the target model. The Top 5% heuristic performs
well on ANLI and Hate, but fails on Emotion and MMLU,
indicating its limited generalizability. In contrast, reward ap-
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proximation based Random Search improves upon ran-
dom selection in all settings except Hate, where it main-
tains parity. RL-based agents consistently outperform both
random selection and heuristic baselines, including reward-
based random search, suggesting that the agents are learning
policies that capture more than just immediate reward ap-
proximation. They achieve the best performance on all 4
datasets, even exceeding training on the full dataset in two
cases (MetaHate and Emotion). On MetaHate, both CLIMB
and its variant outperform the full-data upper bound, show-
ing a striking 11-point gain. PPO also surpasses the full-data
baseline by 4.8 points. On Emotion, CLIMB slightly out-
performs the full model, and DQN comes within 3 points
of full-data performance. On ANLI, DQN performs best
among selection-based methods, improving over the random
baseline by over 3 points, however, a significant gap to the
full dataset remains, which we analyze further in Section 6.6.
Finally, on MMLU, PPO achieves the highest performance,
coming within 3 points of full-data performance.

We also present reward graphs for Climb Diffusion on Emo-
tion (Figure 2) and PPO on MetaHate (Figure 3) over the
course of training. The graphs reveal how for Climb Diffu-
sion the reward model becomes better at filtering out bad
sampled states and the sampling itself moves towards high
reward states due to the diffusion prior. PPO demonstrates
a clear upward trend in rewards throughout training, which
aligns with its strong performance on MetaHate, as shown
in Table 2.

6. Analysis
6.1. Varying Number of clusters

We evaluate Random—Search algorithm over a range
of cluster counts C' € {64, 256,1024,4096}, with results
shown in Figure 4. As C increases, we observe a consistent
improvement in the downstream performance. However,
the total runtime grows approximately quadratically in C,
since both the number of episodes and the number of proxy
sub-samples per reward evaluation increase with the cluster
count. Balancing this trade-off between solution quality and
computational cost, we fix C' = 64 and proxy subsamples
to 64.

6.2. Clustering Strategy

The Stratified-kmeans method exhibits suboptimal
performance when the number of clusters is small and the
number of class labels is large. This is primarily due to its
inability to ensure representation of all labels in the selected
subset, which leads to label imbalance. However, as the
number of clusters increases, its performance improves, as
shown in Figure 4. This improvement is attributed to the
greater flexibility in selecting samples with more diverse

of Clusters

ANLI Eval Score
by Proxy Samples per

Figure 4. Downstream performance vs number of clusters for
ANLI with Random—-Search and stratified-kmeans for
different proxy subsamples.
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Figure 5. Histogram of label ratios across clusters using K-means
in the Emotion dataset. Each color corresponds to a different label,
and the x-axis indicates the proportion of samples within a cluster
that belong to each label.

label distributions across an increased number of clusters.

In contrast, K-means tends to preserve the overall label dis-
tribution more consistently, making it more effective when
the number of clusters is limited. This distinction is illus-
trated in Figure 5, which presents the distribution of label
proportions across clusters for the Emotion dataset. The
figure demonstrates how label representation varies between
the two methods and supports the superior performance of
K-means in scenarios with fewer clusters.

6.3. Comparison for Different State Encoders

DON : We present results for DQN methods with vari-
ous state encoding methods, subsampling strategies, and
DQN models across three datasets and two proxy models in
Table 3. Our findings indicate that the Furthest subsam-
pling strategy outperforms the Random strategy in nearly
all cases, except for the 125M proxy model on Google-
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Dataset State Representation | Subsampling DQN Model gggllz/f‘ar;;o?% ;iiqu;;O?%
Mean-Std Furthest MLP 57.6 57.2
ANLI Mean-Std Random MLP 52.9 54.6
Concat Furthest Transformer 56.0 56.6
Concat Random Transformer 54.9 53.2
Mean-Std Furthest MLP 69.4 63.4
MetaHate Mean-Std Random MLP 67.0 36.0
Concat Furthest Transformer 60.9 61.6
Concat Random Transformer 67.4 66.0
Mean-Std Furthest MLP 65.6 60.6
GooglePlay Mean-Std Random MLP 65.1 62.3
Concat Furthest Transformer 61.8 594
Concat Random Transformer 63.3 64.9

Table 3. Performance of MobileLLM-1.5B when trained on data selected using various DQN variants and two different proxy models. All
strategies are discussed in Section 3. The best numbers for the data selection approaches are highlighted.

Clustering Type # clusters/subsamples  Proxy Model State encoder Race Riga Ry
Stratified Kmeans 128/32 125M BiM‘;aarnY_‘s‘f:k ‘;gzgz ?213332 ig;g‘;ﬁ

Table 4. Performance of MobileLLM-1.5B for GooglePlay dataset when trained on 1/16 data selected using CLIMB with different
state encodings and different reward functions. All strategies are discussed in Section 3. The best numbers for each configuration of

environment is highlighted.

Play and the Transformer-based DQNs on MetaHate
and GooglePlay. Notably the additional expressive power
provided by the Transformer does not generally lead to
better performance compared to the MLP-based approach,
except for the 125M proxy model on MetaHate and Google-
Play. Overall, using the 600M proxy model tends to yield
better results for DQN-based approaches across all datasets.
While there are no clear winners, using the Mean—Std state
encoding with Furthest sampling and a MLP-based DQN
results in generally strong performance across datasets.

CLIMB : We present the results for running CLIMB for
multiple configurations of environments with Furthest
subsampling in Table 4. Note that Stratified—-Kmeans
is run with 128/32 to allow for representation of all (5) labels
in chosen clusters. From the numbers, we find that R,.. with
Binary-Mask performs the best in all configurations and
600M performs better than 125M. Also, R performs
better with Mean-Std, while R2 performs better with
Binary-Mask. These results suggest that the semantic
information presented in state by Mean—Std is not mean-
ingful in case of validation set based rewards. Given the
much higher time taken by R, Rﬂf‘s's with Binary-Mask
is the most suitable choice.

6.4. Strategy Specific Comparisons

PPO Warm Start We present results for PPO with and
without the Warm Start in Table 5 for all four datasets
and two proxy models. The Warm Start is beneficial to
the performance of PPO for both ANLI and MetaHate, but
worsens performance slightly on GooglePlay and MMLU.
Notably, the Warm Start nearly doubles downstream per-
formance for MetaHate with the 125M proxy model.

RND: We evaluate the performance of the RND environ-
ment using Rlv:sls as the base reward signal with DQN-MLP
and PPO policies. The corresponding results are presented
in Table 6. It indicates that RND yields only marginal im-
provements in performance for the MetaHate task with
DON-MLP and the MMLU task with PPO, while substan-
tially degrading performance across all other task—algorithm
combinations. These results suggest that RND does not pro-
vide meaningful benefits for this MDP.

Reward Model Based Strategies: Comparing the perfor-
mance of various reward model based strategies in table
2, we find that CLIMB demonstrates consistently strong
performance, outperforming all other strategies for Google-
Play and MetaHate. In contrast, while DynaDQN slightly
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. 600M Proxy | 125M Proxy
Dataset Variant Accuracy (1) | Accuracy (1)
Scratch 54.2 53.7
ANLL ) gorm start 55.8 54.9
Scratch 60.9 459
MetaHate | w0 om start 73.1 88.0
GooglePla Scratch 62.3 61.7
Y | Warm start 55.8 60.2
Scratch 44.8 _
MMLU Warm Start 44.19 -

Table 5. Performance of MobileLLM-1.5B when trained on data

68 ANLI (Selection Fraction)

selected using PPO with and without warm starts and two different
proxy models. The best numbers are highlighted.

Dataset Variant AccEr?:ch " Acclll)l};(c)y )
e T
MetaHate o 7609.;‘1 8':;79'.955
GooglePlay (Emotion) | vt~ -©38 6635.'766 ggiﬁ‘z‘
IR sl

Table 6. Performance of MobileLLM-1.5B when trained on data
selected using PPO and DQN with and without RND exploration
reward. The best numbers are highlighted.

surpasses DQN on MMLU, it underperforms significantly
on ANLI, GooglePlay, and MetaHate. This suggests that
the synthetic rollouts generated by reward model are not
helpful, possibly due to inaccurate reward model leading to
noisy rewards. Similarly, diffusion yields markedly lower
performance on ANLI and GooglePlay, with only marginal
improvements observed on MMLU. Ensembling is imprac-
tical for this MDP requiring over five times the training time
compared to full dataset training.

6.5. Varying Selection Fractions

To obtain a better estimate of the trade-offs between training
time and performance improvements, we vary the selec-
tion fraction in [55, &, 4] and present results for two DQN
configurations with the 125M proxy model: (1) DQN with
Mean-Std state encodings, Furthest subsampling, and
an MLP (DQN (F)), and (2) DQN with Concat state en-
codings, Furthest subsampling, and a Transformer
(DQN-T (F)) in Figure 6. For comparison, we also include
results for the Random and Full baselines. The reported
wall-clock times account for the combined duration of train-
ing the DQN and subsequently training the target model on
the selected data subsets, while the wall-clock times for the
random baseline include only the target model’s training
time.

Our results show that with a 3% selection fraction, the DQN-

based approaches do not outperform the random baseline

and take longer to run. However, for selection fractions %

66
o(1)
64
62
2
Zo0 A
§ & ®(1/8)
< 1/16
.A((I/IG))
56
6)
.(%12(,1 ® Random
> A(1/32) = DQN (F)
4 DQN-T (F)
52 m(1/32)
50
Q a x © % KN R

Wall-clock Time (hours)

Figure 6. Downstream Performance vs Training Times for the Ran-
dom and Full baselines, along with two DQN-based approaches.
The selection fraction for each data point is enclosed in brackets.

and %, the DQN-based approaches outperform the random
baseline, with an additional hour of training time. Although
training on the full dataset yields the best performance,
it requires more than twice the time needed for the DQN-
based approaches with a % selection fraction. Notably, while
Transformer-based DQNs take slightly longer to train,
they outperform MLP-based DQNs for the % selection frac-
tion. Overall, we conclude that DQN-based approaches
provide a favorable balance between downstream perfor-
mance and training time.

6.6. Qualitative Analysis of Clusters

Reward signal diversity We visualize the diversity and
reward spread of explored states across four datasets in Ta-
ble 8. Emotion and MetaHate (b, d) exhibit high reward
variance, correlating with the strong performance of RL
agents on these tasks. In contrast, MMLU (c) shows mod-
erate variance, and ANLI (a) has the lowest reward vari-
ability—corresponding to the largest performance gap with
full-data training. These trends suggest that reward signal
diversity may be predictive of success.

Label distribution analysis: To better understand the
characteristics of the data subsets selected by our approaches
across different datasets, we compare the label distribu-
tion in the original dataset with the subset selected using
Binary-Mask state encodings and Furthest subsam-
pling with the 600M proxy model, as shown in Figure 7.
We use CLIMB for MetaHate since it performs substantially
better and DQN-MLP for the rest.

For the ANLI dataset, we observe a partial rebalancing be-
tween the entailment and neutral labels following subset
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Figure 7. Label distribution of data subsets selected by the DQN against the full training dataset for all three datasets.
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Figure 8. UMAP projections of explored cluster-selection masks during CLIMB-Diffusion sampling, colored by validation accuracy.

selection; however, the contradiction label remains notably
underrepresented. A similar trend is seen in MMLU, where
minor rebalancing occurs, but the overall label distribu-
tion remains largely unchanged. In the case of GooglePlay,
the DQN-selected subset disproportionately oversamples
label 1, reducing representation of the less frequent labels
2, 3, and 4. Since the selected subset outperforms the ran-
dom baseline (which is expected to have the same label
distribution as the full dataset) for these datasets, we hy-
pothesize that the target model’s performance may already
be strong for the underrepresented labels, leading to their
under-sampling during DQN-based selection. A comparable
pattern is observed in the MetaHate dataset using CLIMB,
where oversampling leads to significant increase in perfor-
mance. Notably, the algorithm predominantly only selects
examples labeled as ”"Not Hate Speech.” We attribute this
behavior to the highly skewed validation set, in which over
90% of the instances are labeled as "Not Hate Speech,”

10

thereby biasing the selection strategy.

7. Discussion

Limitations: The effectiveness of our approach depends
critically on the ability of proxy models and the reward
signal to accurately reflect the target model’s response to
selected training data. Our ablation studies further highlight
the sensitivity of performance to hyperparameters, including
type of state encoding, RL policy configuration and quality
of validation set. This sensitivity necessitates careful tuning
for the specific dataset-at-hand, which may not always be
feasible in practical or resource-constrained environments.
Additionally, the method’s advantage is most pronounced
in datasets with sufficient diversity and label balance; per-
formance gains are diminished for highly homogeneous or
low-variance datasets, as observed in the ANLI experiments.



Data Selection for Language Model Finetuning via Reinforcement Learning

Broader Impacts and Ethical Considerations: By intel-
ligently selecting the most informative training examples,
we can reduce computational costs, energy consumption,
and carbon footprint while maintaining or enhancing model
performance. In practice, our method democratize access
to high-performance models and allows organization with
limited compute to annotate a much smaller high-quality
validation set to subsample a high-quality training set from
raw data. However, automated data selection also introduces
risks since it may propagate existing biases in the training
set, potentially exacerbating fairness and equity concerns.
Thus, it is critical that such systems be complemented by ro-
bust evaluation and interpretability tools, as well as ongoing
audits for bias and representation.

Reflection: Through extensive experimentation, we found
that RL methods not only outperform simple heuristics but,
in some cases, even surpass full-data training by filtering out
noisy or redundant examples. Nonetheless, negative results
from several reward model variants (e.g., Random Network
Distillation or diffusion-based sampling) emphasize that
success is not uniform and depends on careful alignment
between RL strategies, reward signals, and dataset charac-
teristics. Given the high computational cost of experiments
and number of hyper-parameters, proper tuning has been a
major challenge, restricting the number of runs we could
perform. Since there is not much literature on data selection
for fine-tuning, we were severely limited on benchmarks and
datasets to evaluate our methods and it took us substantial
time to finalize our experiments.

8. Conclusion

This work demonstrates that data selection can be effectively
formulated as a reinforcement learning problem, resulting
in significant finetuning efficiency gains. Our experiments
across ANLI, MetaHate, GooglePlay, and MMLU datasets
show that models trained on fractions as small as 5% of
the original data can achieve comparable or better perfor-
mance than full dataset training while reducing wall-clock
time from 10-12 hours to approximately 4 hours. Notably,
we outperform full dataset training by 11.0 points on Hate
and 0.3 points on Emotion. Different RL methods exhibit
varying effectiveness across datasets. DQN and CLIMB
variants performed consistently well, while PPO excelled
with the MetaHate and MMLU datasets. Notably, our ap-
proach sometimes outperformed full dataset training, partic-
ularly with MetaHate, indicating effective filtering of noisy
examples. The proxy model validation loss-based reward
function proved to be both an effective and computationally
efficient reward signal for guiding selection. These find-
ings show promising directions for efficient LLM training
in resource-constrained environments.
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Future work could explore combining our RL methods with
other efficiency techniques and investigating generalization
to larger models and more diverse datasets. Our framework
relies on discrete, binary selection of cluster subsets, extend-
ing the action space to continuous mixtures would enable
more expressive and fine-grained selection policies. Task
specific reward approximation remains an open problem.
While we found proxy model-based validation loss to be
a generally effective reward signal, different datasets and
tasks may benefit from alternative reward formulations. A
principled approach to selecting or learning the most suit-
able reward approximator per task could lead to more robust
generalization across domains. Our current formulation is
agnostic to fairness or distributional concerns, we can ex-
tend our framework by penalizing states that disproportion-
ately exclude minority class clusters. The reward landscape
over the state space is relatively smooth, small perturbations
in the selected clusters often lead to small changes in re-
ward. We can exploit this structure via algorithmic stability
techniques (Hardt et al., 2016), which quantify how simi-
lar model outputs are when trained on neighboring datasets.
Stability aware exploration may lead to more efficient search
policies and tighter performance guarantees.

9. Contributions

This project is a continuation of Animesh and Harshit’s
CS234 Project which Rohan subsequently joined. The
project involved substantial contributions from all authors
building on top of previous work. Harshit worked on im-
plementing MMLU, RND, MDP + random search, and per-
forming analysis over different configurations and selected
subsets. Animesh worked on implementing reward based
models (DynaDQN, Climb and Climb Diffusion) and Neu-
ral Bandits, validation loss reward approximation, and new
clustering methods. Rohan worked on adding uncertainity
quanitifcation to existing methods such as CLimb Ensem-
ble, he also identified binary mask state encoding. All three
authors ran experiments and contributed writing portions of
the report.

Changes from Proposal: Our hypothesis remains the
same as proposal and we validate it using various meth-
ods. However, we did not end up experimenting with single
player game formulations (Gaudel & Sebag, 2010) as we
planned. Also, we tried various reward model based strate-
gies like CLIMB that turned out to give good performance.
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