Extended Abstract

Motivation Traditional reward engineering is time-intensive and often fails to capture complex
human preferences. Vision-Language Models (VLMs) offer a promising alternative by evaluating
visual states against natural language objectives, potentially allowing more effective and efficient
reward design. However, VLMs have known vulnerabilities, including perspective sensitivity and
spatial reasoning limitations. This raises concerns about reward hacking that have not been previously
addressed, where agents exploit VLMs to achieve high rewards without genuine task completion.
Here we establish three primary research objectives: (1) build and compare Vision Language Model
Reward Model (VLM-RM) architectures of varying designs to assess their performance and imple-
mentation challenges; (2) systematically examine VLM-RM vulnerability to spatial-based reward
hacking,and (3) propose and evaluate potential mitigation strategies to address identified reward
hacking vulnerabilities.

Methods & Implementation We implemented and compared two VLM-based reward model
(VLM-RM) architectures: (1) embedding-based models using CLIP that compute cosine similarity
between text embeddings and visual embeddings, enhanced with goal-baseline regularization to
focus on task-relevant features, and (2) autoregressive models (Qwen-VL 32B, Gemma-3 27B) that
generate numerical rewards directly from state images. To implement our VLM-RMs, we designed
a custom Gymnasium wrapper that replaced traditional rewards with VLM-generated signals from
querying a locally-hosted VLM at each step. Due to the latency of querying VLMs, we sped up
training by parallelizing environments and maximizing reward generation throughput. We trained
agents using VLM-RMs on CartPole, Minigrid, Taxi, and FetchReach-v4 (our primary environment
for reward hacking investigation), using A2C, PPO, and DDPG+HER algorithms as baselines and
running experiments on 4x NVIDIA RTX A6000 GPUs with data parallelism. To investigate reward
hacking vulnerabilities, we conducted a two-phase analysis: examining reward consistency across
camera angles and types of movement (lateral vs depth movement) without training, followed by full
RL training with correlation analysis between VLM and ground truth rewards.

Results Autoregressive VLMs consistently outperformed CLIP-based approaches, with Qwen-VL
achieving superior performance on CartPole and Gemma-3 reaching 93% success on Taxi. Few-shot
prompting also significantly improved autoregressive VLM-RMs performance. By contrast, CLIP
failed completely in environments requiring subtle state differentiation (Minigrid, Taxi), achieving
0% success rates. Most critically, our reward hacking investigation revealed systematic exploitation
in the FetchReach-v4 robotic environment: agents learned to position themselves within the camera’s
viewing corridor (80% of final positions clustered along camera’s front axis). This demonstrates that
the agents learned to optimize for 2D visual similarity rather than genuine 3D task completion. The
simple mitigation strategy of using randomized camera angles during training successfully forced
agents to develop more correct policy and prevented most of this for of reward hacking; however, this
mitigation is specific to this environment and likely won’t work in many cases.

Discussion While VLM-RMs, particularly autoregressive VLM-RMs, can successfully replace
traditional reward functions in some controlled settings, they suffer from fundamental spatial rea-
soning vulnerabilities that are easily exploitable by RL agents. The reward hacking we observed
was not a subtle edge case but a robust, systematic failure mode where agents learned to "game" the
visual system rather than complete tasks, posing significant safety concerns for real-world adaptation.
Computational overhead and general reward consistency are also practical deployment challenges.

Conclusion Our work makes three key contributions to the VLM-RM literature. First, we provide
the first systematic comparison of embedding-based versus autoregressive VLM reward architectures,
demonstrating that autoregressive models consistently outperform CLIP-based approaches while
identifying limitations and solutions including few-shot prompting optimization. Second, we empiri-
cally demonstrate systematic reward hacking in VLM-RMs, providing concrete evidence that agents
exploit spatial reasoning limitations to achieve high rewards without genuine task completion. Third,
we successfully develop and test a simple mitigation strategy using randomized camera angles that
prevents perspective-based reward hacking. However, this strategy is not general and we believe it
is easy to construct environments where reward hacking is still viable. Our work establishes that
VLM-RM robustness represents a critical open challenge for safe real-world deployment.

Investigating Reward Hacking When Using
Vision-Language Models as Reward Models
(VLM-RMs)

Kai Fronsdal Emma Sun
Department of Computer Science Department of Computer Science
Stanford University Stanford University
kaif@stanford.edu emmagsun@stanford.edu

Zoe Quake

Department of Symbolic Systems
Stanford University
zoeq@stanford.edu

Abstract

Traditional reward engineering in reinforcement learning is time-intensive and of-
ten fails to capture complex human preferences. Vision-Language Models (VLMs)
offer a promising alternative by evaluating visual states against natural language
objectives. However, VLMs have known vulnerabilities that raise concerns about
reward hacking, where agents exploit VLM weaknesses to achieve high rewards
without genuine task completion. We investigate VLM-based reward models
(VLM-RMs) through three objectives: (1) building and comparing VLM-RM ar-
chitectures, (2) examining vulnerability to spatial-based reward hacking, and (3)
evaluating mitigation strategies. We implemented embedding-based models using
CLIP and autoregressive models (Qwen-VL, Gemma-3) across CartPole, Mini-
grid, Taxi, and FetchReach-v4 environments. Autoregressive VLMs consistently
outperformed CLIP-based approaches, with Qwen-VL excelling on CartPole and
Gemma-3 achieving 93% success on Taxi, while CLIP failed completely in envi-
ronments requiring subtle state differentiation. Most critically, our investigation
revealed systematic reward hacking in FetchReach-v4 where agents positioned
themselves along the camera’s forward axis rather than genuinely reaching targets.
However, randomizing camera position during training successfully prevented this
perspective-based exploitation, though this represents only a partial solution to
VLM-RM vulnerabilities.

1 Introduction

The challenge of reward function design—creating signals that accurately capture task objectives
without unintended side effects—has long been a central obstacle in reinforcement learning appli-
cations. Traditional learning that leverages manually engineered reward functions is typically very
time-intensive, while reinforcement learning with human feedback (RLHF) is often too expensive
to be practical (Casper et al., [2023). Additionally, capturing complex human interactions can prove
difficult for traditional RL reward functions (Christiano et al., [2023)). Vision Language Models
(VLMs) like CLIP, Qwen-VL, and Gemma-3 show promising potential for reward modeling by
directly evaluating images of states against natural language descriptions of goals, eliminating the
need for handcrafted reward functions (Agarwal et al., [2021)) (Liu et al.| 2023)). Current research

Stanford CS224R 2025 Final Report

shows that using Vision Language Model as Reward Models (VLM-RM:s) have the capacity to solve
moderately complex tasks with zero-shot capabilities (Rocamonde et al., 2024). While promising,
implementing VLM-RMs presents significant practical challenges, including latency constraints and
reward consistency. In addition, VLM-RMs are at risk of inheriting vulnerabilities from VLMs, such
as perspective sensitivity and limitations in spatial reasoning (Wybitul et al., [2024;|Campbell et al.,
2024). These challenges lead to a risk of reward hacking, a phenomenon where agents can exploit
VLM weaknesses to achieve high rewards without genuine task completion.

While the potential benefits of VLM-RMs have been explored extensively in the literature, their
potential susceptibility to reward hacking and possible mitigation strategies remains an area of
inquiry. Therefore, we propose a project with three key objectives. Our first objective is to build and
evaluate VLM-RMs with varying architectures, examining their performance and any challenges.
Our second objective is to investigate VLM-RM vulnerability to spatial-based reward hacking. Our
last objective is to propose and test potential mitigation strategies that address VLM-RM reward
hacking vulnerabilities..

2 Related Work

Vision-Language Models (VLMs) might be well-suited to replace manually engineered reward
functions in reinforcement learning. Recent research has shown that rewards can be computed through
measuring cosine similarity between visual observations and natrual language goal descriptions (Cui
et al.l 2022) (Mahmoudieh et al., 2022). Rocamonde et al.’s landmark paper, which champions
VLM-RMs as zero-shot modeling, provides one of the most current assessment of VLM-based reward
models and greatly informed our technical approach.

Rocamonde et al.| (2024)) expand on VLM-based reward models by training MuJoCo humanoids to
perform complex poses, including kneeling, doing splits, and sitting in lotus position, using only
simple text descriptions. Their approach computed rewards as cosine similarity between CLIP’s
encoding of visual states and task descriptions like "a humanoid robot kneeling," requiring no
prompt engineering or fine-tuning. The authors also employ goal-baseline regularization, which
we also leverage in our project. The results of this paper showed that five out of eight complex
humanoid behaviors were successfully learned with zero-shot modeling. However, the results also
revealed a critical scaling relationship: only the largest model tested (ViT-bigG-14, [[lharco et al.
(2021))) successfully learned the desired behaviors, while three smaller models (RN50, ViT-L-14,
ViT-H-14) achieved 0% success on the same tasks. This wasn’t gradual improvement but rather a
sharp performance threshold, suggesting VLM capacity creates binary success conditions rather than
incremental gains. The authors also found that environment realism mattered significantly—adding
realistic textures to the standard MuJoCo environment proved essential for CLIP to interpret visual
states correctly. Chan et al. (2023) independently confirmed that scaling VLM parameters improves
reward signal fidelity (Chan et al., 2023).

Several studies have identified specific limitations in VLM reward models and proposed targeted
solutions. Hung et al. (2024) addressed challenges in long-horizon tasks through VICtoR, a hierar-
chical reward model that decomposes sequential goals into manageable components (Hung et al.,
2024). Guan et al. (2024) investigated how video-language models could identify problematic agent
behaviors that standard success metrics miss (Guan et al.| 2024). Their evaluation of GPT-4V showed
69% accuracy in flagging undesirable behaviors in robot manipulation videos, but also revealed
susceptibility to hallucinations due to weak visual grounding.

Our project relates to advances in Reinforcement Learning from Al Feedback (RLAIF) (Stiennon
et al., |2020) and Constitutional Al (Bai et al., 2022), both of which aim to scale supervision by
replacing human feedback with Al-generated alternatives. VLM-based reward models represent a
parallel effort to scale reward supervision using pretrained models. However, these approaches inherit
vulnerabilities from their underlying feedback systems. VLMs remain susceptible to well-documented
weaknesses including shortcut learning, texture bias over shape recognition, typographic attacks,
limited spatial reasoning, and sequential reasoning failures. Agents trained with VLM-based rewards
may exploit these weaknesses by manipulating visual inputs rather than accomplishing intended
tasks. This phenomenon was illustrated by [Christiano et al.[(2017) through identifying significant
levels of reward hacking in OpenAlI’s robotic hand environment. In this case, the agent was able to
maximize the reward by learning to position the gripper between the target object and the camera in

a way that made it look like the gripper had successfully gripped the object without truly doing so.
These findings help motivate our project to identify reward hacking and explore potential mitigation
strategies.

3 Methods

3.1 VLM-RM Implementation Techniques

We began our investigation by implementing two distinct families of VLM-RM architectures:
embedding-based models that compute rewards by measuring similarity between text prompt em-
beddings and visual state embeddings, and autoregressive models that leverage natural language
generation capabilities to directly produce numerical reward values from visual state inputs. See

Figure[T]

Same Cartpole State Image
@ i $ Jﬁﬁﬁ ‘
CLIP Text Inp\.n: pole standing Qwen’ Gemma
l upright on cart" l
Text - [0.2, 0.8, -01, ...] "I can see a pole on a cart.
Image- [0.3,0.7,-0.2, ...] The pole { appears to be
tilted about 15 degrees
l Reward: 0.73 from vertical.
This is not quite upright but
Embedding Similarity: 0.65 close."

Figure 1: VLM-RM processes for embedding-based and autoregressive architectures

3.1.1 CLIP-Based Embedding Reward Model

Please note that the CLIP implementation, incluuding the equations listed below, are drawn from
Rocamonde et al.|(2024))

CLIP, a model that embeds both images and text into a shared representation space, provides our
foundation for embedding-based reward computation. Our initial approach computes the cosine
similarity between text prompt embeddings and visual state embeddings. At each step, the model
receives an image of the current environment state and a text description of the ultimate goal state,
then computes the reward signal as the cosine distance between these embeddings.

To address limitations in the simple cosine similarity approach, we experiment with a more sophis-
ticated "goal-baseline regularization" reward model. This method provides the model with both
a goal prompt and a baseline environment description. For example, in the Gymnasium Cartpole
environment, the goal prompt might be "a cart in the middle of the screen with an upright pole on
top," while the baseline prompt would be "a cart with a pole on it." The regularization process thus
involved three normalized embeddings:

CLIP, (goal_text)

e Goal embedding: g = m

CLIP/, (baseline_text)
CLIP, (baseline_text)]||

* Baseline embedding: b = m

CLIP; (image)

e State embedding: s = W

The “task direction” L can then be computed as the line spanning the baseline and goal embeddings.
The state embedding is then projected onto this line using a weighted combination:

projected_state = a X proj,(s) + (1 —a) X s

Finally, the regularized reward is computed as:

1 .
Reipreg(s) =1 — 3 X ||projected_state — g||*

Essentially, this approach subtracts out similar information to focus on relevant differences, removing
irrelevant information and improving reward shaping.

We also optimized our prompts through extensive prompt engineering, which included testing multi-
ple goal prompts—yvarying from simple descriptions (“vertical pole” to more detailed specifications
“a wooden pole standing perfectly vertical on a cart”), testing multiple baseline prompts, and finally
identifying the most effective combinations of the two. To assess prompt effectiveness, we imple-
mented a peak ratio matric that computes the ratio of reward at the target state to average reward
across all states. For our CLIP-based reward model, we also conducted hyperparameter tuning to
identify the best regularization constant . This evaluation ensured that our chosen prompt produced
well shaped reward curves with clear peaks and appropriate reward gradients approaching the target
state. See Figure[2]

Comparison of Diferent Prompts
0.8
jor joe oo 06

\/\

—a=0.0

02 —_—a=0.25

— =05
a=0.75

\ a=10

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 03
Pole angle (radians)

CartPole CLIP Reward Landscape
Prompt: 'vertical pole'
[\

reward (rescaled)

21

=

(a) Comparison of reward landscapes across dif- (b) Effect of regularization parameter o on the
ferent goal prompts for the CartPole environment. CLIP reward landscape for the CartPole task using
Each subplot shows the reward function as a func- the "vertical pole" prompt. Higher o values (yel-
tion of pole angle for different prompt formula- low, o = 1.0) show sharper reward peaks but more
tions, with the red dashed line indicating the target unstable behavior, while lower values provide
vertical position (0 radians). The "vertical pole" smoother gradients. The optimal o = 0.25 — 0.5
prompt (top right) demonstrates the clearest peak range balances peak sharpness with gradient stabil-
and most well-shaped reward curve. ity.

Figure 2: Prompt engineering and hyperparameter optimization for CLIP-based reward shaping in
CartPole. (a) demonstrates how different goal prompt formulations affect reward landscape quality,
while (b) shows the impact of the regularization constant o on reward curve characteristics for the
optimal "vertical pole" prompt. Inspired by similar figure from Rocamonde et al.[(2024)).

3.1.2 Autoregressive VLM Implementation

For our autoregressive VLM implementation, we employed Qwen2.5-VL 32B and Gemma-3 27B,
multimodal models. These VLMs process rendered environment state images alongside text prompts
describing the goal, using their autoregressive abilities to generate numerical rewards directly. We
again implemented two distinct reward generation strategies here: absolute and relative.

For the absolute reward generation, the VLM evaluates a single state image against the objective and
outputs a reward on a predefined scale (e.g., 0.0 — 1.0 for progress-based rewards, or —oo to 0 for
distance-based rewards). For specific prompts we used, see the appendix. The VLM then generates a
numerical reward reflecting the current state’s alignment with this specific objective. By contrast,

the relative reward method involves comparing two (possibly non-consecutive) states (previous vs.
current), with the VLM determining whether progress, neutral change, or regression occurred towards
the goal. Here we use a three-valued reward system: progress (41.0), neutral (0.0), and regression
(—1.0). A frame buffer maintains comparison history with configurable temporal offset, allowing the
system to assess progress over different time scales.

We incorporated few-shot prompting by providing 10-16 example state images with corresponding
hand-chosen reward values. See Figure [3|for examples of few-shot absolute reward prompting in
the CartPole environment. Examples consisted of single image-reward pairs for the absolute reward
method and image pairs (previous state, current state) with progress assessments for the relative
reward methods. We also used structured prompt templates that clearly defined reward scales (e.g.
0.0 to maximum reward) and objective descriptions to ensure consistent reward generation across
different evaluation contexts. See the appendix for example prompts. To evaluate the performance
of our few-shot examples or a given prompt, we generated a set of heldout environment states and
evaluate the performance qualitatively (i.e. ensuring that the generated rewards are reasonably close
to what we would expect given the few-shot examples).

Reward: 0.800 Reward: 0.300 Reward: 0.400

Reward: 0.000 Reward: 0.300 Reward: 0.000

Reward: 0.700 Reward: 0.000 Reward: 0.000

Figure 3: Few-shot prompting examples for autoregressive (Qwen-VL)-based reward generation in
the CartPole environment. Each panel shows a CartPole state with its corresponding reward value,
demonstrating how different pole angles and positions receive different rewards.

3.2 Reward Hacking Investigation Methods

After implementing and comparing our two VLM-RM approaches, we proceeded to our second
research objective: investigating reward hacking vulnerabilities in VLM-RMs. For this portion of
our project, we primarily focused on our autoregressive implementations (Qwen-VL and Gemma-3),
as they demonstrated superior performance compared to our CLIP-based approach, and we were
operating under time constraints. We also concentrated our investigation on the MuJoCo Robotics
Fetch-Reach environment, where an agent must move a robot arm’s end effector to a specified red
target (discussed below). We selected this task for two key reasons: (1) it requires significant spatial
reasoning capabilities, which we hypothesized would expose VLM vulnerabilities, and (2) it closely
resembles environments where reward hacking has been documented in RLHF systems, specifically
the OpenAl gripper example where an agent learned to position objects to appear grasped from the
camera’s perspective without actual contact (Christiano et al.,[2017). We hypothesized that, similar
to the OpenAl RLHF case, agents might exploit depth perception limitations by positioning the robot
arm either behind or in front of the red target, achieving high VLM rewards despite failing the actual
task. We tested this hypothesis using a two-phase approach, as follows:

Phase 1: Reward Function Analysis (Without Training) We first analyzed the reward function
(without training the model) to understand its inherent vulnerabilities. To do this, we tested reward
consistency for the same state across different camera angles and viewpoints, and designed tests to
separate the VLM’s ability to perceive depth changes from lateral movements. This analysis provided

insight into the internal mechanisms of VLM reward computation and potential failure models before
we spent more computational resources completing full training.

Phase 2: Ground Truth Divergence Analysis (With Training) In the second phase of our analysis,
we actually trained our VLM-RM on the Fetch Reach environment, and then conducted an analysis
where we measured the relationship between VLM-RM outputs and known optimal reward signals.
We also identified instances where agents achieved high VLM rewards while failing actual task
completion, and cataloged specific behaviors that exploited identified VLM weaknesses (aka lack of
spatial/depth perception.)

4 Experimental Setup

Our VLM-RM implementation uses a custom Gymnasium wrapper that intercepts environment
step () calls and replaces original rewards with VLM-generated rewards from locally hosted models.
The wrapper includes an image processing pipeline that converts numpy array observations to base64-
encoded JPEG images for VLM consumption, and implements reward parsing that extracts numerical
rewards from VLM text outputs for autoregressive models.

4.1 Training Environments

Our training environments consisted of CartPole-v1 (baseline validation with simple visual dynamics),
Taxi-v1 (discrete action space for autoregressive VLM comparison), Minigrid (grid-world for testing
CLIP’s dense reward capabilities), and FetchReach-v4 (primary 3D manipulation environment chosen
for similarity to OpenAl’s gripper reward hacking example). See Figure [d] We first established
baselines by successfully solving these environments using traditional algorithms before VLM inte-
gration: A2C for CartPole, PPO for the discrete environments (Minigrid and Taxi), and DDPG+HER
for FetchReach, using learning rates of 0.0005 and environment-specific network architectures. We
then implemented three VLM architectures: Qwen2.5-VL-32B, Gemma-3-27B, and CLIP ViT-H- 14,
running on 4 NVIDIA RTX A6000 GPUs. To manage the 20 — 50 slower training speed compared
to training with traditional rewards, we used 128 environments for parallel data collection and data
parallelism for the autoregressive models to maximize throughput.

4.2 Evaluation Methodology

We assessed VLM-RM performance by examining three key areas: task success rates, correlation
between VLM and ground truth rewards, and training efficiency compared to traditional reward
functions. To test for reward hacking, we measured whether the VLM was misled by visual cues by
comparing the actual distance between objects with the distance the VLM inferred from images. We
specifically compared how well the VLM could measure different coordinate axes. During the actual
VLM reward training, we tracked failure modes to identify system limitations and used task success
as our evaluation metric. All experiments included real-time logging through Weights & Biases and
video recording to analyze trained agent behavior.

5 Results

5.1 VLM Implementation and Architecture Comparison

Our implementation and comparison of VLM-RMs demonstrates that these models can successfully
complete tasks and, with appropriate modifications and prompt engineering, can even outperform
baseline reward functions. However, our results reveal significant architectural differences and practi-
cal limitations that must be addressed for effective deployment. Autoregressive-based reward models
(Qwen-VL, Gemma-3) consistently outperformed CLIP-based embedding similarity approaches
across most environments, even when comparing against the largest available CLIP model. Both
architectures struggled with substantially increased training times and latency concerns compared to
traditional reward functions.

I

(a) CartPole-v1 (b) Taxi-v1

(c) Minigrid (d) FetchReach-v4

Figure 4: Environments we used to test VLM-RMs. We chose a range of environments: continu-
ous/discrete, simple/complex, and 2D/3D.

CartPole-vl

500 - Reward Source
— VLM

—— VLM-Fewshot
—— Baseline

&
=]

Mean Episode Length
<1
=]

)
=1
=1

100 4

0 10k 20k 30k a0k S0k
Step
Figure 5: Performance on CartPole over the course of training. Using the VLM-RM outperformed

the baseline reward function (which gave a reward of 1 for every timestep alive). Giving the VLM
fewshot examples vastly improved the rewards reliability.

5.1.1 Performance by Environment

CartPole: Qwen-VL excelled, achieving task success significantly faster than baseline reward sys-
tems, with further improvement through few-shot prompting. See Figure 3] for the agent performance
over the course of training using the AR VLM-RM. This highlights the potential of VLM-RMs for
improving reward signals. CLIP with goal-baseline regularization successfully completed the task
but required approximately 3 times more training steps.

Minigrid: This environment required a red triangular agent to navigate through a 5 x 5 grid to
reach a green goal square. While easily solved using PPO with sparse baseline rewards, our CLIP
model failed completely. Our initial hypothesis was that CLIP could provide dense rewards by

evaluating proximity to the target. However, this approach failed due to the model’s seeming inability
to distinguish between subtle state differences. Although CLIP correctly identified the optimal goal
state (agent on goal square), reward heatmap analysis revealed that non-goal states received nearly
identical reward values, causing the agent to flail and exhibit random behavior during training. See
Figure[6] Despite this failure, this heatmap investigation led us to develop a pre-computation solution
for latency concerns (described below). Gemma-3 with few-shot examples achieved a 100% success
rate.

CLIP Reward Heatmap
Target: 'grid with red triangle on top of green square' | Baseline: 'grid with red triangle and green square' | a=0.5

-0.555 - 0.565 Agent Facing Left

Agent Facing Right

Agent Facing Down Agent Facing Up 0575

054 054 054 054 0. ° LT 055 056 0.54 [ENEYTISEEEPNE 055 054 054 055 0.5¢ [EEUECUEEEES 056 055 056 0.55
L 0.550 -0.570
[XERETY o. 8 055 055 055 055 055 (XL 055 054 054 054 055 [EIRE 55 056 056 056 0.54 0565

0545 §

§ §
053 (054 X 5o 055 055 os3 i LEEY 055 055 055 055 035 [l LEEERS Uk 057 os7 [REN W osco
> >
0s0 .55 055 054 0545 L 054 055 055 osas ™ 056 056 [OELN 056 0555
0540 0550
0535w 55 054 055 054 B 054 054 054 (055 oss [[056 056 056 055

0535 0 1 2 3 a4 0 1 2
X Position X Position X Position X Position

3 4 0545

Figure 6: CLIP reward heatmap for minigrid navigation task across different agent orientations. The
target prompt was "grid with red triangle on top of green square" compared to baseline "grid with red
triangle and green square". Each subplot shows reward values for a 5x5 grid with the agent facing
different directions (Right, Down, Left, Up). The outermost cells represent walls and should be
ignored. Despite CLIP correctly identifying the optimal goal state, the reward values across valid
non-goal positions show minimal variation (ranging approximately 0.53-0.58), failing to provide the
dense reward gradient necessary for effective reinforcement learning.

Taxi Environment: Similar to Minigrid, this discrete space environment showed the potential of
autoregressive models, with Gemma-3 achieving 93% success rate compared to the 100% baseline.
CLIP again failed completely, achieving 0% success rate.

5.2 Key Limitations

Our experiments confirmed that autoregressive models generally outperformed embedding similarity
approaches, while CLIP struggled with consistent reward generation for subtle state differentiation.
As anticipated, we observed significant challenges with training time and consistency—VLM-RMs
required 20 — 50X longer training times than traditional reward functions, with Fetch Reach training
taking approximately 35 hours. However, we identified several important solutions. Few-shot
prompting significantly improved performance across all model types, contrasting with the zero-
shot reward model approach championed in prior work. For discrete state spaces, we developed a
pre-computation strategy where reward heatmaps are calculated offline and stored in lookup tables,
eliminating the need for real-time VLM calls during training. While Minigrid CLIP training ultimately
failed, implementing this optimization reduced training time from over 10 hours to minutes. We
recommend this approach for other environments with limited state spaces. One potential speed up
for some continuous environments such as robotic manipulation is to only evaluate the reward with
the VLM every kth timestep and interpolate the reward in between (Although we did not get a chance
to expirement with this in practice).

5.3 Reward Hacking Investigation

5.3.1 Reward Function Analysis

As we described in our Methods section, we tested our VLM reward functions in isolation before
training RL agents in order to identify reward hacking. We examined reward consistency across
different camera angles and movement types (lateral versus depth movement). This preliminary
analysis revealed concerning trends that suggest systematic vulnerabilities, particularly in spatial
reasoning and depth perception.

When we tested Gemma-3’s reward generation across different gripper positions in the FetchReach-v4
environment, we found that camera perspective created significant biases. Figure[7]shows that the
same gripper-target relationship received dramatically different reward scores depending on the

VLM-RM Performance by Gripper Location (FetchReach-v4)

mmm Absolute Reward
0.6 Relative Reward

0.4 1

024

0.04 .

Correlation (VLM-RM vs Ground Truth Distance)

|
e
¥

T
> 2 &
WS & S
B S S
@ & @ \9:?
0 y,
<8 Q&\Q@ G

Gripper Location

Figure 7: Correlation between VLM-RM rewards and negative distance between gripper and target.
When the gripper and target both lie on a plane parallel to the screen, we see a relatively strong
correlation between the VLM-RM and negative distance. However, when the gripper and target lie on
a line coming out of the camera (i.e. in the depth direction) or are in random locations, the correlation
drops significantly.

camera angle. For gripper positions parallel to the camera viewing plane, Gemma-3 performed well.
It generated high, well-calibrated reward signals with strong correlation to ground truth distances
(r=0.6). The model’s proximity assessments closely matched the actual distances between gripper
and target. However, when we tested depth-dependent configurations—where the gripper position
was aligned with to the camera front axis—performance collapsed. The correlation between the
model’s distance estimates and ground truth dropped to near zero (r = —0.2). We also tested
random location baselines, which showed intermediate correlation (r = 0.1). This proves that the
difference between parallel and perpendicular positions is not just noise—it is a real bias. This reveals
a fundamental vulnerability: the VLM reward function cares more about alignment with one camera
angle than actual task completion. The bias is substantial—a 60% drop in correlation between the
two setups—which likely leads RL agents to learn to “game the system” by moving in ways that look
right to the camera instead of actually reaching their targets.

These preliminary analyses strongly suggested that VLM-RMs contained exploitable vulnerabilities:
camera angle bias, depth limitations, and bias towards 2D visual patterns over 3D spatial relationships
that could be systematically leveraged by RL agents during training.

Spatial reasoning limitations were further revealed by CLIP’s inability to distinguish between subtle
state differences in the minigrid and taxi environments (Figure[6)). The model failed to distinguish
between similar states, contact versus proximity, and agent direction, further demonstrating how
VLM-RMs inherit spatial reasoning vulnerabilities.

5.3.2 RL Training

Having identified potential vulnerabilities in the reward functions themselves, we proceeded to train
RL agents on the FetchReach-v4 manipulation task using Gemma-3 as a reward model. Examining
trajectories of the final policy visually confirmed that agents were indeed exploiting the depth
perception vulnerabilities we identified in our reward function analysis.

5.3.3 Systematic Camera-Axis Exploitation

We sampled 100 random target locations and evaluated our final policies. Examining the final relative
positions of the gripper and target revealed remarkable systematic clustering along the camera’s
forward viewing axis (Figure [8a and [8b). Rather than approaching the target object from various
angles as would be expected for genuine task completion, agents converged to a narrow spatial

3D Distribution of Relative Positions XY Projection of Relative Positions

= 0.025
~ 0.000 04
0o°%0 ~-0.02% 020

N 1) ~-0.058
¥ L/ ~-0078

Relative Y
Final Distance

& * ~-0.108 °3§ 0.15 v 'S
% ~-0125 ° ‘,’v’c .
' PRCR o ~-0.150 £ X) ||
° : ~-ours | 010 L P ?.: ...' 02
‘e S 030 o°
* = wm 0.05 '.. L]
. ~ -
040 o T - 01:;3* 0.1 000 oo o o1
70305025 020 T = oad®
%hve,(—o.lsio 1 S oS ~040 -035 -030 -025 -020 -0.15 -010 =-0.05
~0.05 0.00 Relative X
(a) Distribution of final relative position be- (b) Distribution of final relative positions
tween gripper and target. from top view.

Correlation Matrix Lo
0.75
relative_x -

relative_y

Correlation Coefficient

relative_z 0.39

final_distance =

(c) Correlation matrix between final relative
positions and final absolute distance. We see
a strong correlation between the x and y coor-
dinates as the camera is unable to distinguish
the two effectively.

!
S

Figure 8: Camera-Axis Exploitation. Final relative position refers to the difference in x, y, and x
coordinates between the gripper and target at the end of a trajectory. We see a clear pattern of reward
hacking where the final relative position lies on a line pointing out of the front of the camera.

corridor aligned with the camera’s line of sight. More than 80% of final positions fell within a tight
corridor extending from the camera through the target object, with a standard deviation of only 0.08
units, aligned precisely with the 45-degree camera viewing angle. This indicates that agents learned
to avoid positions that would actually require approaching the target in 3D space, and instead opted
to simply stay within the camera’s viewing window.

The strength and clarity of this reward hacking exceeded our initial expectations. While we hy-
pothesized that VLM-RMs might be vulnerable to perspective-based reward hacking, the strong
relationship suggests that these vulnerabilities are not subtle edge cases but rather easily discoverable
and consistently exploitable failure modes. Statistical analysis of the spatial relationships in these
final configurations provided quantitative evidence of this systematic reward hacking (Figure8c). The
gripper’s X and Y positions were strongly correlated (r = 0.90), meaning agents learned to coordinate
their lateral movements to stay visually aligned with the target from the camera’s viewpoint. However,
there was essentially no correlation between lateral position (X or Y) and depth position (Z), with
correlations near zero (X-Z: r = 0.39, Y-Z: r =~ —0.49).

Based on these results we hypothesized that randomly positioning the camera when rendering the
input to the VLM-RM would eliminate much of the depth bias observed above. The idea is that the
other points of view would eliminate the blind spots from only one camera angle. To implement this
we simply allocated half of our parallelized environments to use a side view and half to use a front
view of the scene. In Figure[9] we see the results of training a policy under this mitigation. We find
that the multiple camera angle mitigation effectively removes the depth bias.

10

XY Projection of Relative Positions

Correlation Matrix oo
0.09
0.15 0.75
-0.01 .. 0.06

relative_x

0.05 relative_y

Relative Y
S
.
Final Distance

1
o
Correlation Coefficient

|
s
&

-0.10
final_distance

-0.15

Y &
-0.20 & % & &
& & & I

-020 -0.15 =010 -0.05 000 005 010 015 020 & @

N
&
Relative X &

(a) Distribution of final relative positions (b) Correlation matrix between final relative
from top view. positions and final absolute distance.

Figure 9: Effect of our simple mitigation strategy. When using random camera locations as input to
the VLM-RM we see the final gripper positions lie much closer to the target than before and there is
no more obvious depth bias.

5.3.4 Task Failure Despite Reward Optimization

In addition to depth perception reward hacking, VLM reward hacking was also demonstrated by
the abject failure of our VLM-RM to solve the environment despite achieving high VLM-generated
reward scores. In fact, we observed a 7% task completion rate across all evaluation episodes (achieving
the success threshold of < 0.05 units final distance to target). However, under our simple mitigation
strategy, the completion rate reaches 41% with 95% of the trajectories ending within 0.12 units of
the target. Ultimately, our investigation revealed that VLM-RMs contain fundamental, exploitable
spatial and depth perception vulnerabilities that are leveraged by RL agents to achieve high VLM-RL
rewards but fail the ultimate task.

6 Discussion

6.1 Key Findings and Implications

Our investigation into VLM-based reward models reveals that, while VLM-RMs can successfully
replace traditional reward engineering in controlled settings, they also suffer from significant archi-
tectural limitations and reward hacking that need to be mitigated before deployment in the real world.
We offer below a few implementation and mitigation recommendations, and suggest areas for future
work.

6.2 VLM-RM Capabilities and Architectural Insights

Our comparative analysis demonstrates that VLM-RMs can indeed solve reinforcement learning
tasks, with autoregressive models (Qwen-VL, Gemma-3) consistently outperforming CLIP-based
embedding approaches. These models excelled particularly when given few-shot prompting. We
hypothesize that the few-shot examples serve as a way to ground the VLM into being consistent
across states. We also predict that future stronger models will need even less prompt engineering and
few-shot examples.

However, even these capabilities come with substantial practical constraints. The 20 — 50 X increase
in training time compared to traditional reward functions represents a significant barrier to adoption,
particularly for complex environments requiring extended training periods. Our pre-computation
strategy for discrete state spaces offers a partial solution, but the fundamental latency challenge
remains for environments with larger state spaces as well as continuous environments where real-time
VLM inference is required. As mentioned before, another potential option is to not evaluate the
VLM-RM on every time step.

11

6.3 Reward Hacking Vulnerability

Most concerning is our demonstration that VLM-RMs are systematically vulnerable to reward
hacking through spatial reasoning limitations. The exploitation we observed in FetchReach-v4 was
not a subtle edge case but a robust, easily discoverable failure mode. Agents consistently learned
to position themselves within the camera’s viewing corridor rather than genuinely completing the
task, achieving high VLM rewards while maintaining a 0% task success rate. We hypothesize that
similar vulnerabilities likely exist across other 3D manipulation tasks and potentially in other domains
as well. These reward hacking vulnerabilities have implications beyond just task performance. In
safety-critical applications, agents that learn to exploit perceptual limitations rather than genuinely
complete objectives could pose significant risks. Our findings echo concerns raised in Al safety
literature about specification gaming and Goodhart’s law—when a measure becomes a target, it
ceases to be a good measure.

6.4 Mitigation Strategies and Future Directions

Our preliminary exploration into mitigation provides one promising direction: alternating random
camera angle variation during training seems to force agents to develop a more robust spatial under-
standing and prohibit perspective-based reward hacking. This approach can represent a near-term
solution, although we strongly suggest that future research investigate other mitigation methods,
including multi-modal reward verification (combining VLM rewards with traditional metrics), adver-
sarial training approaches that explicitly penalize known exploit patterns, and ensemble methods that
combine multiple VLM perspectives or architectures. Future work could also focus on establishing
standardized benchmarks for evaluating VLM-RM robustness, focusing on known VLM limitations
such as depth perception, perspective sensitivity, and sequential reasoning capabilities.

We also acknowledge several limitations in our reward hacking investigation. First, we focused
primarily on a single environment (FetchReach-v4). While we believe these findings generalize to
other 3D manipulation tasks, empirical validation across diverse environments is needed. Second, we
conducted RL reward hacking experiments only on autoregressive models. While we believe that
CLIP would fall prey to similar reward hacking (especially as it tended to struggle even more with
spatial reasoning than the autoregressive models), this also requires validation. Additionally, time
constraints with long runtimes (>30 hours) limited our number of experimental runs. For this reason,
we also suggest that future work validate these findings.

7 Conclusion

Our investigation into Vision-Language Model Reward Models (VLM-RMs) reveals both the promise
and perils of using VLMs to replace traditional reward engineering in reinforcement learning. Through
systematic comparison of embedding-based and autoregressive VLM architectures across multiple
environments, we demonstrated that VLM-RMs can successfully solve RL tasks, with autoregressive
models consistently outperforming CLIP-based approaches when enhanced with few-shot prompting.
However, our work exposes a critical vulnerability that has been largely overlooked in prior VLM-RM
research: systematic reward hacking through exploitation of spatial reasoning limitations. In the
FetchReach-v4 environment, agents learned to position themselves along the camera’s viewing axis
rather than genuinely reaching targets, achieving high VLM rewards while completely failing the
underlying task. This reward hacking was not a subtle edge case but a robust, easily discoverable
failure mode that occurred in almost all of the trajectories, raising serious concerns about the safety
and reliability of VLM-RMs in real-world deployment.

Our findings make three key contributions: we provide the first systematic architectural comparison
between embedding-based and autoregressive VLM reward models, empirically demonstrate and
quantify systematic spatial reasoning vulnerabilities in VLM-RMs, and develop a simple mitigation
strategy using randomized camera angles that improves task completion rates from 7% to 41%. While
VLM-RMs offer a promising path toward more flexible reward specification, our work establishes
that robustness against reward hacking represents a critical unsolved challenge that extends beyond
our test environments to other 3D manipulation tasks and potentially other domains. As VLMs
become increasingly integrated into decision-making systems, understanding and mitigating their
exploitable vulnerabilities becomes essential for ensuring these systems accomplish their intended
objectives rather than gaming their evaluation metrics. Future work should focus on developing

12

standardized robustness benchmarks, exploring other mitigation approaches, and investigating how
these vulnerabilities manifest across diverse task domains before VLM-RMs can be safely deployed
in real-world applications.

8 Team Contributions

» Kai Fronsdal: Wrote autoregressive VLM reward function and initial training infrastruc-
ture. Optimized AR VLM-RM throughput and parallelization. Trained models. Explored
VLM-RM biases in FetchReach environment and analysis of final policies and mitigration
strategies.

* Emma Sun: Implemented embedding (CLIP)-based VLM reward function, including
heat-map precomputation for MiniGrid. Solved baseline environments with varying RL
algorithms, assisted with training infrastructure setup, and conducted prompt engineering
and hyperparameter tuning. Co-led milestone and final paper writing and poster design.

* Zoe Quake: Assisted with setting up different environments with VLM. Assisted with
hyperparameter tuning when testing different examples. Co-led milestone and final paper
writing and poster design. Created original figure for poster and final paper. Facilitated
group organization and communication.

13

References

Sandhini Agarwal, Haohan Gong, Christopher Jermaine Sellers, Yiwen Tewel, David Acuna,
Pei Guo Roy, Ashwin Krishnapriyan, and Joseph Hickey. 2021. Evaluating CLIP: Towards
Characterization of Broader Capabilities and Downstream Implications. arXiv preprint
arXiv:2108.02818 (2021). https://doi.org/10.48550/arXiv.2108.02818

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy
Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen,
Catherine Olsson, Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli,
Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish,
Joshua Landau, Kamal Ndousse, Kamile Lukosuite, Liane Lovitt, Michael Sellitto, Nelson
Elhage, Nicholas Schiefer, Noemi Mercado, Nova DasSarma, Robert Lasenby, Robin
Larson, Sam Ringer, Scott Johnston, Shauna Kravec, Sheer El Showk, Stanislav Fort,
Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom Henighan, Tristan Hume,
Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei, Nicholas Joseph,
Sam McCandlish, Tom Brown, and Jared Kaplan. 2022. Constitutional Al: Harmlessness
from Al Feedback. arXiv preprint arXiv:2212.08073 (2022). https://arxiv.org/
abs/2212.08073

Declan Campbell, Sunayana Rane, Tyler Giallanza, Nicold De Sabbata, Kia Ghods, Amogh
Joshi, Alexander Ku, Steven M. Frankland, Thomas L. Griffiths, Jonathan D. Cohen, and
Taylor W. Webb. 2024. Understanding the Limits of Vision Language Models Through
the Lens of the Binding Problem. arXiv preprint arXiv: 2411.00238 (2024).

Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy Scheurer,
Javier Rando, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro Freire, Tony
Wang, Samuel Marks, Charbel-Raphaél Segerie, Micah Carroll, Andi Peng, Phillip
Christoffersen, Mehul Damani, Stewart Slocum, Usman Anwar, Anand Siththaranjan,
Max Nadeau, Eric J. Michaud, Jacob Pfau, Dmitrii Krasheninnikov, Xin Chen, Lauro Lan-
gosco, Peter Hase, Erdem Biyik, Anca Dragan, David Krueger, Dorsa Sadigh, and Dylan
Hadfield-Menell. 2023. Open Problems and Fundamental Limitations of Reinforcement
Learning from Human Feedback. arXiv preprint arXiv: 2307.15217 (2023).

Harris Chan, Volodymyr Mnih, Feryal Behbahani, Michael Laskin, Luyu Wang, Fabio
Pardo, Maxime Gazeau, Himanshu Sahni, Dan Horgan, Kate Baumli, Yannick Schroecker,
Stephen Spencer, Richie Steigerwald, John Quan, Gheorghe Comanici, Sebastian Flen-
nerhag, Alexander Neitz, Lei M Zhang, Tom Schaul, Satinder Singh, Clare Lyle, Tim
Rocktischel, Jack Parker-Holder, and Kristian Holsheimer. 2023. Vision-Language Mod-
els as a Source of Rewards. In Second Agent Learning in Open-Endedness Workshop.
https://openreview.net/forum?id=XwlhVTWxxQ

P. Christiano, J. Leike, Tom B. Brown, Miljan Martic, S. Legg, and Dario Amodei. 2017.
Deep reinforcement learning from human preferences. Neural Information Processing
Systems (2017).

Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario
Amodei. 2023. Deep Reinforcement Learning from Human Preferences. arXiv preprint
arXiv:1706.03741 (2023). https://doi.org/10.48550/arXiv.1706.03741

Yuchen Cui, S. Niekum, Abhi Gupta, Vikash Kumar, and A. Rajeswaran. 2022. Can
Foundation Models Perform Zero-Shot Task Specification For Robot Manipulation?
Conference on Learning for Dynamics Control (2022). https://doi.org/10.48550/
arXiv.2204.11134

Lin Guan, Shaofei Wang, Abhay Lal, Ziyi Chen, Haoyang Lai, Zhuowen Luo, Yunsong Du,
Difei Feng, Amy Lee, Ruoxi Jia, Xingjun Ren, Xingyou Shi, Ari Holtzman, and Anish
Athalye. 2024. Task Success Is Not Enough: Investigating the Use of Video-Language
Models as Behavior Critics for Catching Undesirable Agent Behaviors. arXiv preprint
arXiv:2402.04210 (2024). https://doi.org/10.48550/arXiv.2402.04210

14

https://doi.org/10.48550/arXiv.2108.02818
https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2212.08073
https://openreview.net/forum?id=Xw1hVTWxxQ
https://doi.org/10.48550/arXiv.1706.03741
https://doi.org/10.48550/arXiv.2204.11134
https://doi.org/10.48550/arXiv.2204.11134
https://doi.org/10.48550/arXiv.2402.04210

Chih-Yao Hung, Brian Ichter, Andy Zeng, and Johnny Lee. 2024. VICtoR: Vision-Instructed
Curriculum for Robustness. arXiv preprint arXiv:2401.07055 (2024). https://doi,
org/10.48550/arXiv.2401.07055

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan
Taori, Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh
Hajishirzi, Ali Farhadi, and Ludwig Schmidt. 2021. OpenCLIP. https://doi.org/
10.5281/zenodo.5143773| If you use this software, please cite it as below..

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2023. Visual Instruction
Tuning. arXiv preprint arXiv:2304.08485 (2023). https://doi.org/10.48550/
arXiv.2304.08485

Parsa Mahmoudieh, Deepak Pathak, and Trevor Darrell. 2022. Zero-Shot Reward Specifica-
tion via Grounded Natural Language. In Proceedings of the 39th International Conference
on Machine Learning (Proceedings of Machine Learning Research, Vol. 162), Kama-
lika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan
Sabato (Eds.). PMLR, 14743-14752. https://proceedings.mlr.press/v162/
mahmoudieh22a.html

Juan Rocamonde, Jack Pearce, Bowen Wang, Edward Wilcox, Julius Wald, Oliver Hansen,
Wilson Yang, Ecem Korkmaz, Ralf Kiihn, Orestis Kallidromitis, Glyn Leech, et al. 2024.
Vision-Language Models Are Zero-Shot Reward Models for Reinforcement Learning.
arXiv preprint arXiv:2310.12921 (2024). https://doi.org/10.48550/arXiv.2310,
12921

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss,
Alec Radford, Dario Amodei, and Paul F Christiano. 2020. Learning to summa-
rize with human feedback. In Advances in Neural Information Processing Systems,
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran
Associates, Inc., 3008-3021. https://proceedings.neurips.cc/paper_files/
paper/2020/file/1£89885d556929e98d3ef9b86448f951-Paper . pdf

EvZen Wybitul, Evan Ryan Gunter, Mikhail Seleznyov, and David Lindner. 2024. ViSTa
Dataset: Do vision-language models understand sequential tasks? arXiv preprint arXiv:
2411.13211 (2024).

A Prompts
A.1 CartPole

Keep the pole balanced upright and the cart centered. Give a reward
— of 1.0 if the pole is completely vertical and centered in the
— middle. The maximum allowed angle deviation before failure (in
— either direction) is 12.5 degrees. It is also a failure if the
«— cart goes off the sides of the screen. Give a reward of 0.0 if
< we are close to a failure state (i.e close to 12.5 degrees

— rotated or not in the middle third of the screen). Interpolate
< the reward between 0.0 and 1.0 otherwise.

A.2 Pendulum

Based on the image, assess how well the pendulum is balanced on top

— of the blue circle in the center of the image. Note that the
pivot point of the pendulum is the blue circle in the center of

— the image. If the blue circle is at the top of the pendulum,

< this means the pendulum is upside down.

- A reward of 1.0 should be given if the pendulum is perfectly

<~ balanced on top of the blue circle.

- A reward of 0.0 should be given if the pendulum is hanging

— straight down.

- For states in between, interpolate the reward. For example:

15

https://doi.org/10.48550/arXiv.2401.07055
https://doi.org/10.48550/arXiv.2401.07055
https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.48550/arXiv.2304.08485
https://doi.org/10.48550/arXiv.2304.08485
https://proceedings.mlr.press/v162/mahmoudieh22a.html
https://proceedings.mlr.press/v162/mahmoudieh22a.html
https://doi.org/10.48550/arXiv.2310.12921
https://doi.org/10.48550/arXiv.2310.12921
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf

- Slightly off the blue circle should get a high reward (e.g.,
- 0.9-0.95).
- Being horizontal should get a low-to-moderate reward (e.g.,
- 0.2-0.3).

A.3 Fetch-Reach

Based on the image, assess how well the robotic arm is positioned to
— complete its reaching task. The environment shows:

- A robotic arm with an end effector (gripper)

- A target position (the red sphere)

Reward guidelines:

- The reward should be the negative distance in pixels between the
— end effector and the red target sphere

- Examples are given above for calibration purposes

- If the red sphere is not visible, it must be hidden behind the
— gripper (and thus the gripper is likely close to the target)

- Closer distances result in higher (less negative) rewards

- Perfect positioning at the target gives a reward of O

- Further distances give more negative rewards (e.g., -10 for 10
— pixels away, -50 for 50 pixels away)
- Provide the reward as an integer number (e.g., -5, -23, -41)

16

	Introduction
	Related Work
	Methods
	VLM-RM Implementation Techniques
	CLIP-Based Embedding Reward Model
	Autoregressive VLM Implementation

	Reward Hacking Investigation Methods

	Experimental Setup
	Training Environments
	Evaluation Methodology

	Results
	VLM Implementation and Architecture Comparison
	Performance by Environment

	Key Limitations
	Reward Hacking Investigation
	Reward Function Analysis
	RL Training
	Systematic Camera-Axis Exploitation
	Task Failure Despite Reward Optimization

	Discussion
	Key Findings and Implications
	VLM-RM Capabilities and Architectural Insights
	Reward Hacking Vulnerability
	Mitigation Strategies and Future Directions

	Conclusion
	Team Contributions
	Prompts
	CartPole
	Pendulum
	Fetch-Reach

