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1 Extended Abstract

We adapt AlphaZero to continuous control tasks and compare AlphaGo-style (human-initialized)
versus AlphaZero-style (from-scratch) learning for real-world driving controls. Using a realistic
driving simulator with GPT-based dynamics, we find that human-guided Monte Carlo Tree Search
achieves 23% better performance than baseline PID control, while standard MCTS fails to converge
due to exploration instability. Our results suggest human priors provide crucial safety constraints for
learning in sensitive control environments.

Motivation While AlphaZero achieved superhuman performance in games by learning from scratch,
real-world control tasks present different challenges. Human-centered environments like autonomous
driving require safety constraints and behavioral preferences that are difficult to encode in reward
functions alone. We investigate whether starting from human policies (like AlphaGo) outperforms
learning from scratch (like AlphaZero) for continuous control tasks where exploration mistakes can
cause system instability.

Method We compare three approaches on a realistic driving control task: a tuned PID controller as
our human baseline, standard AlphaZero learning from scratch, and our AlphaGo-style method with
human guidance. We use the Comma AI controls challenge, which simulates real vehicle dynamics
with a GPT-based model trained on customer data. The task requires outputting steering torque to
follow a desired trajectory while minimizing control effort. We adapt AlphaZero’s Monte Carlo Tree
Search to continuous actions using progressive widening and Gaussian action sampling.

Implementation Standard MCTS failed in the control environment due to action sensitivity in
closed-loop systems. We developed two key modifications: guided exploration that samples actions
around the PID policy using Gaussian noise, and guided rollouts that use PID for descendant nodes
while exploring alternatives only at the root. These changes provide stable value estimates while
preserving the ability to discover policy improvements. We train neural networks to distill the MCTS
search results using cross-entropy loss for the policy and mean squared error for the value function.

Results Human-guided MCTS planning achieved 23% lower cost than PID baseline, while standard
MCTS diverged with extremely high variance. After learning neural policies from MCTS exploration,
AlphaGo Control significantly outperformed standard AlphaZero across 5,000 evaluation rollouts.
Ablation studies confirmed that both guided action sampling and guided rollouts are essential for
stable learning. Without action sampling, policies learned oscillatory behavior. Without guided
rollouts, policies became overly conservative due to high-variance value estimates.

Discussion Our findings indicate that human demonstrations provide crucial constraints for safe ex-
ploration in sensitive control environments. Unlike discrete games with well-defined rules, continuous
control systems require careful balance between exploration and safety. The exploration-exploitation
dilemma is particularly challenging when deviating from stable policies leads to rapid error accu-
mulation. Human priors naturally encode this safety knowledge, enabling stable learning where
pure exploration fails. This suggests fundamental differences between game and control domains for
reinforcement learning.

Conclusion We demonstrate that AlphaGo-style human initialization outperforms AlphaZero-style
learning from scratch for real-world control tasks. Human priors provide essential safety constraints
and behavioral guidance that enable stable learning in sensitive environments. As reinforcement
learning moves from games to real-world applications, incorporating human knowledge may be
necessary for safe and efficient learning in safety-critical domains like autonomous driving and
robotics.
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Abstract

In this work, we investigate approaches comparing AlphaGo-like methods (human
initialization followed by reinforcement learning) with AlphaZero-like methods
(learning from scratch) for control tasks in human-centered environments. While
AlphaZero achieved superior performance in Go without human data, we hypothe-
size that for real-world control tasks, human policies can encode safety constraints
and behavioral priors difficult to capture in reward functions alone. We evaluate
these approaches on a realistic driving simulator, using a PID controller as our
human-level baseline. Our results show that human-guided Monte Carlo Tree
Search (MCTS) achieves 23% higher rewards than baseline PID control, while
standard MCTS fails to converge due to exploration instability. We explore two key
components for stable convergence: guided action sampling and guided rollouts.
These findings suggest that human priors may provide crucial constraints for safe
and efficient learning in real-world reinforcement learning applications.

2 Introduction

Deep reinforcement learning has achieved superhuman performance in games and robotics. In the
game of Go, AlphaZero ultimately outperformed AlphaGo by learning completely from self-play,
while AlphaGo first trained on human expert games before reinforcement learning. However, for real-
world domains like autonomous driving or industrial robotics which are inherently human-centered,
the optimal learning strategy remains largely unexplored.

Does bootstrapping from human policies outperform learning from scratch in human-centered control
environments?

We hypothesize that real-world control tasks benefit from human initialization because human policies
inherently encode safety constraints and preferred behaviors that are difficult to specify through
reward functions alone. Unlike games which have well-defined rules and rewards, real-world control
systems often operate in noisy, safety-critical environments. This leads to constraints on exploration
which can hinder learning for reinforcement learning systems.

In this work, we investigate this hypothesis by comparing AlphaGo-style methods (human-guided
approaches) with AlphaZero-style methods (from-scratch learning) on a realistic driving control task.
Specifically, we evaluate steering control using the Comma AI controls challenge, which simulates
real-world vehicle dynamics with a GPT-based model trained on customer data.
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Figure 1: Control challenge architecture.

3 Related Work

3.1 AlphaZero and AlphaGo

AlphaZero has achieved state-of-the-art, super-human performance in Chess, Shogi, and the game
of Go (Moerland et al., 2018; Schrittwieser et al., 2020; Silver et al., 2017). The key innovation of
AlphaZero is the augmentation of Monte Carlo tree search (MCTS) with a neural network generated
policy. The augmented policy can learn to generalize from self-play, and progressively bootstraps
the network from random initialization up to superhuman play, without requiring extra human input.
AlphaGo, in contrast, first learned from human expert games through supervised learning before
improving via self-play reinforcement learning.

3.2 AlphaZero for Continuous Control

Recent work has extended AlphaZero beyond discrete games. AlphaZero Continuous (A0C) adapted
the algorithm to continuous action spaces by replacing self-play with simulation and using progressive
widening for action expansion (Moerland et al., 2018). Moss et al. (2024) further generalized these
methods to partially observable environments.

In autonomous driving, Hoel et al. (2019) applied AlphaGo Zero for discrete highway lane changes.
Cusumano-Towner et al. (2025) demonstrated large-scale self-play reinforcement learning for driving
policies, by simulating copies of its own agent. These works illustrate the core ideas of AlphaZero –
self-play, MCTS search, and neural network learning – can be applied to self-driving. However, the
approaches focus on high-level planning rather than low-level continuous control, which presents
unique challenges including noise sensitivity and stability requirements.

4 Method

We compare three approaches: (1) a tuned PID controller as our human baseline, (2) AlphaZero
learning from scratch, and (3) AlphaGo with human guidance.

4.1 Baseline: PID Controller

We use a Proportional-Integral-Derivative (PID) controller as our human-level policy baseline. PID is
typically used in industrial control systems, and is a useful heuristic for closed loop feedback control.
The controller parameters (Kp = 0.3,Ki = 0.05,Kd = −0.1) were tuned for the environment task.

4.2 AlphaZero Implementation

We developed a parallelized AlphaZero Continuous (A0C) implementation combining MCTS with
neural network learning. Our implementation follows the A0C framework by integrating progressive
widening into MCTS to handle the continuous action space. In the base MCTS algorithm, the number
of children m at each state s is determined by:

m = ⌊k ·Nα
s ⌋ (1)
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where Ns is the visit count for state s, k is a constant that controls the rate of expansion, and α ∈ (0, 1)
determines how quickly the width grows with visits. This progressive widening technique prevents
the tree from becoming too sparse in continuous domains. The PUCT formula for action selection at
the root node remains

a∗ = argmax
a∈A(s)

(
Q(s, a) + cpuct ·

√
Ns

1 +N(s,a)

)
(2)

where cpuct is the exploration weight, Ns is the visit count for state s, and N(s,a) is the visit count
for state-action pair (s, a).

Our implementation differs from Moerland et al. (2018) since we use Q-value estimates rather than
normalized visit counts to construct the target policy, and we employ a softmax temperature to
control the sharpness of the distribution. The policy network learns from MCTS search results using
cross-entropy loss:

Lpolicy = Es∼D

[
−

∑
a∈A

πMCTS(a|s) log πθ(a|s)

]
where πMCTS(a|s) = softmax(Q(s, a)/τ) is the target policy derived from Q-values with temperature
τ , and πθ(a|s) is the neural network policy. The temperature parameter prevents overconfident target
policies when Q-value estimates have high variance.

The value network is trained to predict expected returns minimizing mean squared error:

Lvalue = Es∼D
[
(Vϕ(s)− z)2

]
where z is the discounted return from MCTS rollouts and Vϕ(s) is the value network prediction.

The policy and value network are distilled from the MCTS exploration. The networks enable
generalization and improves MCTS efficiency by (1) reducing search breadth (policy network biases
exploration toward promising actions) and (2) reducing search depth (truncating rollouts and using
value network leaf node estimates).

4.3 AlphaGo Control

Standard MCTS planning performed poorly in the control environment due to action sensitivity in
closed-loop feedback systems. Search depths beyond 2-3 steps caused rapid error accumulation,
leading to extreme Q-value estimates and system divergence (Figure 5). We experimented with two
key modifications to address the instability:

Guided Exploration: Instead of initializing with sampling from a random policy, we sample actions
using Gaussian exploration around the PID policy output:

at ∼ N (πPID(st), σ
2)

where πPID is the PID controller policy and σ2 is the action variance, controlling the amount of
exploration around the selected action.

Rationale: While discrete AlphaZero uses policy priors πθ(a|s) as probability weights for action
selection, continuous action spaces have unbounded probability densities that cannot be directly used
as weights. Our method achieves similar bias toward promising actions by sampling from a Gaussian
centered on the expert policy, ensuring exploration remains within a reasonable action region while
preserving the ability to discover improvements.

Guided Rollouts: We replace random simulation rollouts with PID-guided rollouts. At the root node,
we explore alternative actions using the action sampling above, but for all descendant nodes, we
follow the PID policy:

at ∼
{
N (πPID(st), σ

2) if root node
πPID(st) otherwise

Rationale: This formulation is well-suited for policy improvement because: (1) it provides low-
variance value estimates by leveraging the known PID policy for rollouts, in comparison with Monte
Carlo rollouts which are high-variance, and (2) it enables direct policy improvement by comparing
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the value of alternative actions against the current policy, following the standard Q-learning paradigm
where π′(s) = argmaxa Q

π(s, a) yields policy improvement when Qπ(s, a) estimates are accurate.

These modifications enable more stable policy improvement through Qπ(s, a) estimates. The
approach preserves MCTS’s ability to discover improved policies, while avoiding the exploration
instability in standard tree search.

5 Experimental Setup

5.1 Controls Challenge Environment

The Comma AI controls challenge1 is a realistic driving controls environment for evaluating controls
algorithms. The goal is to output torque to steer a car along a desired trajectory, while minimizing
control effort. To simulate the car’s steering responses, a GPT-based simulator trained on real-world
noisy dynamics from customer vehicles is used.

The controller receives ego vehicle state vego, aego, roll, current and desired acceleration
acurrent, adesired, and 2 seconds of future plan states and past context. The controller output u is
continuous steering torque corresponding to a steering wheel input.

The controls challenge captures three critical aspects of real-world RL: (1) high-dimensional continu-
ous state-action spaces, (2) sensitive dynamics where errors accumulate rapidly, and (3) realistic noise
from a simulator trained on real vehicle data. We use this domain as a toy problem for evaluating
exploration strategies in safety-critical control domains.

5.2 Problem Formulation

The Controls Challenge can be formulated as a finite-horizon MDP:

M = {S,A, T,R, γ, Th},

where S ⊆ Rns is the continuous state space, A ⊆ Rna is the continuous action space, T (s′ | s, a)
represents the GPT-based transition model, and R(s, a) is the deterministic reward function:

R(s, a) = − |alateral(s, a)− adesired| − λu∥a∥

The objective is to find the optimal policy for steer actions which maximizes expected cumulative
reward:

π∗ = argmax
π

Eπ

[
Th−1∑
t=0

γtR(st, at)

]
.

5.3 Network Architecture

For all our experiments, actor and critic networks use multi-layer perceptrons with [256, 256] hidden
layers and ReLU activation. The input dimension is 304 dimensions, consisting of the environment
state as well as PID terms (error, integral, and previous error). The actor outputs a Gaussian policy
with learnable log standard deviation. We use 30 training iterations with 10 epochs each and 200
steps, for a total of 60K training steps.

More implementation details and hyperparameters are provided in the Appendix Figure 3.

6 Results

Our results are evaluated on the Controls Challenge with a fixed set of 5,000 total evaluation trajecto-
ries. Our primary metric is the average reward, defined as a weighted sum of lateral acceleration error
and jerk cost.

1Comma AI control challenge, https://github.com/commaai/controls_challenge
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6.1 Planning Performance

We first evaluate the planning capabilities of different MCTS variants. Human-guided MCTS achieved
23% lower cost than the PID baseline, while standard MCTS failed to converge due to exploration
instability (Table 1).

Table 1: Planning method comparison. Results averaged over 10 evaluation rollouts (200 steps each)
with search depth d = 3 and simulations n = 10. MCTS planning requires 8× longer execution time
per training step (0.627s vs 0.075s for PID baseline), highlighting the tradeoff between planning
accuracy and computational efficiency.

Method Total Cost ±Std Runtime/step

PID (baseline) 80.17 95.04 0.075s
Standard MCTS 6443.13 4657.55 0.605s
Human-guided MCTS (ours) 61.70 42.64 0.627s

6.2 Policy Learning Results

After distilling MCTS exploration into neural networks, we evaluated the learned policies over 5,000
rollouts. AlphaGo Control significantly outperformed the standard AlphaZero (Table 2).

Table 2: Policy evaluation results averaged over 5,000 rollouts. AlphaZero training used 100 workers
and 30 iterations.

Method Total Cost Lat Accel Cost Jerk Cost

Standard AlphaZero 4887.31 97.22 26.52
AlphaGo Control (ours) 197.73 3.38 29.00

7 Quantitative Analysis

7.1 Learning Curves

Figure 2 shows that AlphaGo Control achieves stable learning with consistent reward improvement,
while standard AlphaZero fails to converge. This may be due to the exploration-exploitation dilemma,
where deviating from stable policies leads to error accumulation, preventing learning from random
initialization.
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Figure 2: Learning curves comparing AlphaGo Control (human-guided) versus standard AlphaZero
(from scratch). Left: episode rewards during training showing stable improvement for AlphaGo
Control versus diverging returns for AlphaZero. Right: value network loss convergence.
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7.2 Ablation Studies

We validated our design choices through ablation studies removing (A) human-guided action sampling
and (B) guided rollouts.

Figure 3 shows that both components are essential to stable learning. Without human-guided
exploration or rollouts, the network fails to learn higher rewards throughout training. The value
network also does not converge to a low loss.
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Figure 3: Learning curves for ablation studies. Without action sampling (red), random exploration
fails to discover improvements in the large continuous action space. Without guided rollouts (blue),
high-variance returns prevent effective value network learning, resulting in flat performance curves.

8 Qualitative Analysis

Analyzing the rollout trajectories, guided MCTS planning leads to improved trajectories compared
to the PID baseline. Guided MCTS exploration around PID actions can lead to discovering better
actions. This improvement is particularly evident during rapid acceleration changes, where PID tends
to overshoot 4.

(a) Human-guided MCTS rollout (b) PID rollout

Figure 4: Comparison of control trajectories. Control actions are in green, goal trajectory is in blue
and actual trajectory in red.

Interestingly, ablation A (no action sampling) learns oscillatory control behavior, while ablation B
(no guided rollouts) learns conservative policies that produce minimal control actions (Figure 6).
The oscillatory behavior may be due to poor initial actions from a randomly initialized policy. The
conservative behavior in ablation B suggests that high-variance value estimates may lead to similar
Q-values across actions, causing the policy to default to low-magnitude control outputs to minimize
immediate penalties. Furthermore, the difference in policy behaviors suggest multiple local optima
exist, and human priors can help select for behaviorally optimal solutions.

6



Figure 5: MCTS divergence without stability constraints. Initial deviations in control action (green)
lead to outputs (red) and actions exploding after just a few steps.

9 Discussion

Our results suggest that human demonstrations can provide crucial constraints for safe exploration in
sensitive control environments. While standard MCTS diverges rapidly in the control setting, human-
guided search achieves stable improvement with 23% better performance than baseline PID control.
We demonstrate in ablations two key components for stable convergence: (1) guided exploration
with action sampling and (2) guided rollouts. These components were used in the AlphaGo training
framework to train a control policy, which showed greater stability over standard AlphaZero learning
from scratch.

This finding suggests that human priors can be effective for safe exploration in real-world control tasks.
Unlike games with well-defined rules, control systems require careful balance between exploration
and safety in order to achieve stable learning, which human priors may naturally provide. While we
used a PID controller as our human policy, this could be replaced with other heuristics or initializing a
policy learned through imitation learning from human data. These can extend beyond driving controls
to other human-centered domain where safety and exploration in large continuous state spaces is
important.

Our work provides preliminary evidence that the AlphaGo paradigm (human initialization followed
by reinforcement learning improvement) may be more suitable for real-world control applications
than pure self-play approaches. However, there are several limitations to our work. First, we focus on
a single control task with limited scope and complexity. Second, computational constraints restricted
our MCTS search depth, potentially limiting the full potential of from-scratch learning methods.
Third, our comparison uses a relatively simple PID baseline rather than more sophisticated human
policies. Future work aims to scale up search and generalize to other tasks to better evaluate from
scratch and human-guided methods.

10 Conclusion

In this work, we investigated whether human-guided reinforcement learning approaches outperform
learning from scratch in real-world control environments. Through experiments on a realistic
driving control task, we demonstrated that AlphaGo-style methods (human initialization followed
by reinforcement learning) achieve superior performance compared to AlphaZero-style approaches
(learning from scratch). Our human-guided MCTS achieved 23% better performance than PID
baseline control, while standard MCTS failed to converge due to exploration instability in the
sensitive control environment. The AlphaGo Control approach leveraging human-guided MCTS
learns a controller successfully whereas traditional AlphaZero from scratch fails to converge. We
identified two critical components for stable learning: guided action sampling around human policies
and guided rollouts that leverage human priors for low-variance value estimation.
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A Additional Experiments

We provide additional trajectory visualizations for the ablation studies in Figure 6, and AlphaGo
Control rollouts in Figure 7.

B Implementation Details

B.1 Training Hyperparameters

Key hyperparameters include: learning rate 1× 10−3, batch size 10,000, 100 parallel workers, 30
training iterations, MCTS depth 3, 10 simulations per action, action sampling variance 0.1, and
discount factor γ = 0.99. Full details are provided in Table 3.
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Figure 6: Sampled trajectories for ablations. Top row: ablation A (no action sampling) produces
oscillatory behavior. Bottom row: ablation B (no guided rollouts) produces near-zero control output.

Figure 7: 6 sampled trajectories for AlphaGo Control learned policy. The controller is able to properly
track lateral acceleration, as shown in the red and blue trajectories.
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Table 3: Hyperparameters used in AlphaGo Control training
Parameter Default Value Description
Training Parameters

Max iterations 30 Maximum training iterations
Episode steps 200 Steps per episode during rollout
Workers 100 Number of parallel tree workers
Learning rate 1× 10−3 Adam optimizer learning rate
Training epochs 10 Epochs per iteration
Batch size 10,000 Training batch size
Replay buffer size 100,000 Maximum replay buffer capacity

Network Architecture

Hidden sizes [256, 256] Hidden layer dimensions for actor/critic
Log std -2 Initial log standard deviation for actor
L2 regularization 1× 10−4 L2 penalty coefficient
Value loss weight 0.5 Weight for value function loss

MCTS Parameters

Exploration weight 0.1 UCB exploration constant
Discount factor (γ) 0.99 Reward discount factor
MCTS depth 3 Search tree depth
MCTS simulations 10 Number of simulations per action
Action variance 0.1 Variance for action sampling
UCB parameter (k) 2 UCB formula parameter
Dirichlet alpha (α) 0.5 Dirichlet noise parameter

Policy Training

Temperature (τ ) 1 Softmax temperature for policy targets
Entropy coefficient 0.001 Entropy regularization weight

Evaluation

Evaluation episodes 5 Episodes for evaluation during training
Evaluation steps 200 Steps per evaluation episode
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