Extended Abstract

Motivation Tactile graphics are essential tools for conveying visual information to blind and low-
vision learners. However, current generation methods either require labor-intensive manual editing or
produce non-editable raster images that fail to meet tactile accessibility guidelines. Most automated
vector generation models prioritize visual aesthetics, often ignoring haptic clarity, path simplicity,
and stroke consistency—criteria that are essential for real-world tactile usability.

Method We propose a two-stage RL-guided pipeline to generate touch-optimized SVGs from text
prompts. Our method builds on the SVGDreamer architecture, comprising SIVE (Semantic Image
Vectorization) and VPSD (Vectorized Particle Score Distillation). In SIVE, we introduce a custom
“tactile” style that biases generation toward clean contours and uniform strokes. During VPSD, we
incorporate a novel hybrid reward function combining ImageReward (aesthetic fidelity) and Tactile
Reward based on tactile-readability metrics such as stroke width consistency, path simplicity, and
inter-element spacing. The final reward signal is used in a hinge-based loss to refine halfway-denoised
latents via backpropagation through the diffusion model.

Implementation We implemented the hybrid reward by modifying SVGDreamer’s open-source
VPSD configuration. The model operates on halfway-denoised latents produced by a pretrained
Stable Diffusion U-Net, which are decoded into SVGs and scored at inference time. To enable
gradient flow through vector parameters, we rendered SVGs using DiffVG—a differentiable vector
graphics library—allowing gradients from our reward function to update stroke positions and widths.
We added a tactile reward module that computes path-level heuristics including stroke width variance,
element spacing, and control point count. These scores were normalized and linearly combined with
ImageReward to form a final hybrid score. We tested different reward weights (0.3, 0.5, 0.7) and
implemented a flexible scoring class to balance tactile vs. visual feedback. In the SIVE stage, we
experimented with particle radii (5 vs. 20) and iteration counts (50 vs. 100) to assess initialization
quality. All experiments used fixed prompts and seeds for reproducibility, and metrics tracked include
reward score, total hinge loss, LoORA adaptation loss, and convergence step count.

Results VPSD with tactile reward achieved faster and more stable convergence compared to
visual-only optimization. Specifically, integrating the tactile reward reduced the average number of
VPSD refinement steps from 462 to 351, and total hinge loss dropped nearly 50% (958.5 to 504.0).
Interestingly, the LoRA adaptation loss increased (0.0936 to 0.1831), suggesting stronger U-Net
updates when tactile feedback is applied. At reward weight 0.3, we achieved the highest hybrid reward
score (0.72495), though with slightly higher total loss. Qualitatively, outputs at this weight showed
improved tactile legibility: lines were more uniform, clutter was reduced, and background detail was
suppressed. However, excessive iteration or high tactile weighting led to overfitting—introducing
fine ridges and excessive paths that compromised simplicity. These tradeoffs illustrate the importance
of balancing reward weight and stopping criteria to maintain both visual fidelity and tactile clarity.

Discussion We found that tuning both the Tactile Reward weight and the number of VPSD iter-
ations is critical for achieving a balance between visual aesthetics and tactile readability. Lower
weights favor ImageReward, preserving visual detail but often failing tactile accessibility guidelines.
Conversely, higher weights prioritize Tactile Reward metrics, but risk overfitting—introducing re-
dundant ridges or overly complex contours that reduce overall clarity. The Tactile Reward not only
accelerated convergence but also increased the magnitude of LoRA-specific adaptation, indicating
deeper structural adjustments in the diffusion backbone. However, the rule-based Tactile Reward
metrics used remain heuristic and may not fully capture the nuances of human touch perception.
For example, stroke width variance or spacing thresholds may not correspond exactly to perceptual
thresholds for low-vision or blind users. Future work could address this by incorporating user studies,
perceptual calibration, or human-in-the-loop feedback mechanisms to refine the reward signal and
validate tactile usability beyond automated metrics.

Conclusion This work demonstrates a lightweight, inference-time RL pipeline for generating tactile-
optimized SVGs using diffusion models. By combining a stylistic SIVE stage with reward-guided
VPSD refinement, we show that editable graphics can be optimized for haptic legibility without
retraining the entire model. This has potential applications in inclusive education and adaptive STEM
graphics for visually impaired learners.

ReFL guided Text2SVG Generation for Tactile
Graphics

Seonghee Lee
Department of Computer Science
Stanford University
sh11027@stanford.edu

The full implementation and source code are available at https://github.com/shljessie/
tactile-svgdreamer, A github repo guide is included at the end of the paper (appendix)

Abstract

Tactile Graphics—raised-line vector diagrams that are haptically readable play a
crucial role in STEM education for blind and low-vision learners. However, existing
generation methods either demand exhaustive manual SVG editing or produce
non-editable raster images that violate haptic accessibility standards. We present
an automated, inference-time reinforcement-learning pipeline that transforms text
prompts into editable, tactile-optimized SVGs. Our approach extends SVGDreamer
with two key innovations: (1) a custom "tactile" style during the SIVE stage
that promotes flat, clean line-art, and (2) a hybrid Tactile Reward during the
VPSD stage that combines ImageReward (visual fidelity) with rule-based tactile
metrics (stroke width consistency, path simplicity, and element spacing). We
implement Diff VG-based differentiable rendering and perform LoRA fine-tuning
of the Stable Diffusion U-Net, experimenting with reward weighting and iteration
counts. Results show faster convergence (24% reduction in iterations), halved hinge
loss, and significantly improved tactile readability—although excessive iterations
or reward emphasis can introduce unnecessary micro-structures. This lightweight,
editable pipeline bridges visual generation and tactile accessibility, opening new
avenues for inclusive educational content production.

1 Introduction

Tactile graphics—raised-line vector diagrams rendered in SVG—are essential for conveying spatial
and structural information to blind and low-vision learners, particularly in STEM domains. Despite
their importance, creating high-quality tactile graphics remains labor-intensive or inaccessible: man-
ual SVG generation requires extensive design expertise, while automated raster image outputs fail
to support editing and often disregard crucial tactile accessibility guidelines defined by organiza-
tions such as BANA. These include minimum stroke width, sufficient path separation, and contour
simplicity—elements that, while visually subtle, profoundly impact haptic readability.

Recent advances in generative modeling, including diffusion-based frameworks such as Stable
Diffusion, have revolutionized visual content generation. Architectures like SVGDreamer have
adapted these models to output vector graphics by treating halfway-denoised latents as control-
points (particles) in SVG space. However, existing methods optimize for visual similarity—using
metrics like ImageReward or CLIP—and neglect tactile-specific constraints. The resulting SVGs may
appear visually plausible but often contain excessive detail, overlapping strokes, or micro-ridges that
undermine touch-based inference. Moreover, standard SVGs are fundamentally non-differentiable;
modifications to control-points do not propagate through conventional rasterizers, making gradient-
based tactile optimization infeasible.

Stanford CS224R 2025 Final Report

https://github.com/shljessie/tactile-svgdreamer
https://github.com/shljessie/tactile-svgdreamer

Figure 1: An example of tactile graphics: raised-line diagrams are used to convey shapes and spatial
information through touch. Tactile Graphics are often created and exported through SVG so that they
are easier to manipulate for custom purposes. Our goal is to generate SVGs that are simple, readable,
and optimized for tactile graphics.

In this paper, we address these challenges by proposing an inference-time reinforcement-style
optimization pipeline designed to produce editable, tactile-optimized SVGs. We augment the SVG-
Dreamer framework with two key innovations. First, during the Semantic Image Vectorization (SIVE)
stage, we introduce a custom tactile style: through prompt engineering and controlled vector-particle
initialization, we promote flat, high-contrast contours with no shading and minimal background
detail. Second, in the Vectorized Particle Score Distillation (VPSD) stage, we employ DiffVG—a
differentiable vector renderer—to enable gradient flow from a novel hybrid Tactile Reward. This
reward combines ImageReward with rule-based tactile metrics, such as stroke-width consistency, path
simplicity, and inter-element spacing, integrated via hinge-loss and optimized using LoRA fine-tuning
on the Stable Diffusion U-Net.

Through extensive evaluation on structured prompts like “tactile butterfly diagram” and more natural-
istic scenes such as “husky dog outline,” we demonstrate that our pipeline significantly streamlines
convergence—reducing optimization steps by approximately 24%—while halving total hinge loss
and improving stroke uniformity and tactile clarity. We also show that naive extensions, such as overly
long iterations or high tactile reward weights, lead to overfit micro-structures that degrade legibility.
Crucially, our results highlight the importance of balancing visual fidelity and tactile criteria—and
provide a reproducible, inference-time pathway for generating haptically readable, editable vector
graphics without retraining large diffusion models.

2 Related Work

Recent advances in vector graphics generation have largely focused on improving semantic fidelity
and visual quality, but often fall short in addressing accessibility and tactile usability. Our work
intersects multiple lines of research: text-conditioned SVG generation, differentiable rendering for
vector optimization, and reinforcement-style learning applied to graphics generation.

Text-to-SVG Generation StarVector Rodriguez et al.| (2024)) introduced a transformer-based
framework for image- and text-conditioned SVG generation. It demonstrated strong performance on
semantic metrics like LPIPS and DinoScore, but its outputs are optimized for screen-based aesthetics,
not haptic clarity. Similarly, VectorFusion [Frans et al.|(2023)) employs a diffusion-based pipeline
to abstract pixel-based image generation into vector primitives, though its slow iterative refinement
makes it impractical for real-time tactile workflows. IconShop Hu et al.| (2023) uses BERT-based
text encoders for icon editing in SVG, though it is limited to flat path-based commands, making it
unsuitable for complex tactile diagrams. OmniSVG Liang et al.|(2024) and LLM4SVG [Xing et al.
(2025) push the boundary of SVG-text-image alignment using tokenized vector representations and

large language models (LLMs), but neither enforces path simplification or stroke consistency crucial
for tactile perception.

Vectorization Tools and Differentiable Rendering Traditional vectorization methods like Po-
trace [Selinger (2003)) and VTracer Zhu|(2022) convert raster images to SVGs but produce overly
detailed paths with high curvature and noise, incompatible with tactile legibility standards. In contrast,
DiffVG Xing et al.[(2024) enables differentiable rendering of SVG primitives, allowing gradients
to flow through stroke control points and geometry parameters. Our pipeline leverages Diff VG to
enable reward-guided refinement of halfway-denoised latents via backpropagation.

Tactile Graphics Standards The American Printing House for the Blind |American Printing House
for the Blind| (2022)) outlines clear guidelines for tactile diagrams, including constraints on stroke
width, spacing, and path simplicity. None of the current text-to-SVG models explicitly optimize for
these criteria, making their outputs unsuitable for touch-based interpretation. Our work is the first to
integrate such constraints into the SVG generation pipeline through a hybrid Tactile Reward function.

Reinforcement Learning Approaches While RL techniques like DPO [Rafailov et al.| (2023)
and RLOO |Ahmadian et al.[(2024) have found success in aligning language models with human
preferences, their application to vector graphic generation has been limited. Emerging work such as
RLRF (Rendering-Aware Reinforcement Learning for Vector Graphics) ? demonstrates the power
of RL for autoregressive SVG generation: by sampling multiple SVG rollouts, rendering them
via differentiable rasterizers, and computing rewards based on visual fidelity to reference images,
RLREF fine-tunes vision-language models to produce cleaner and more semantically accurate vectors.
Similarly, Reason-SVG ? leverages Group Relative Policy Optimization (GRPO) with a hybrid
reward that evaluates structural validity, semantic alignment, and visual coherence, enabling SVG
generation paired with explicit “drawing rationales”. These approaches show that RL—when paired
with rendering feedback—can substantially enhance code-level vector generation.

While prior works have excelled in semantic generation and SVG structural encoding, none ad-
dress the tactile-specific needs of blind and low-vision users. Our work is the first to introduce a
lightweight, reward-optimized pipeline capable of producing haptically readable, editable SVGs using
a combination of diffusion models, differentiable rendering, and reinforcement-guided refinement.

3 Method

Our pipeline draws from SVGDreamerXing et al.| (2024). We operate on control-points in diffusion-
generated vectors at inference time. Using Diff VG [Li et al.|(2020) for differentiable rendering, we
enable LoRA-based U-Net updates guided by a hybrid Tactile Reward, which blends ImageReward
with a Tactile Reward(stroke consistency, spacing, path simplicity). Unlike SVGDreamer our reward
explicitly targets haptic legibility in SVGs rather than general visual fidelity. Thus, our contribution
extends RL-based SVG optimization toward the domain of tactile accessibility, introducing a domain-
specific reward function and inference-time fine-tuning pipeline that produce editable, tactile-friendly
vector graphics.

3.1 Tactile SIVE Generation

To align the initial SVG generation process with tactile design principles, we adapted the Semantic
Image Vectorization (SIVE) stage of SVGDreamer to incorporate a "tactile" rendering style. This
tactile style increases stroke width, removes excessive detail, and simplifies background geometry to
favor high-contrast, low-noise outputs suitable for touch-based exploration. At each step, control
points ("particles") are optimized based on intermediate renderings and attention guidance. Specifi-
cally, we configured the SIVE rendering module to use a radius of 5 pixels, path count of 256, and
segment initialization using randomized control point placement. The optimization objective was
modified to favor thick, spaced, and connected curves by tuning learning rates for point positions,
stroke widths, and fill color.

We leveraged attention-based initialization (cross- and self-attention from the Stable Diffusion
backbone) to place particles in semantically meaningful regions. Once initialized, particles are
iteratively optimized for 50-100 steps using Adam, guided by both a reconstruction loss (between

| pitishzaion st

-
“f T 2,

. ru

SIVE

Teat Prompt:
"a wman in an astronaut "
suit walking acress a 8
desert, % d
the v
art. linsar color-* 1 1
vou ;
cartral points ector Graphic

[Bac h
|
| “Two astronauts walking ac !
| z:;irryn:rtpfmmrs o the \
grownd”
| Fingiwn '\: Trlﬂ\ PED
VPSD i 0
[ty il pivd”
.
én kpropagate o

(ReFL) e

V6 contral points
and calars

Partioiebased Boore Di iomupsn Lreward — Reward Model

Tactile Rewa rd"

(Combined Tactile Clarity Score We weight each metric according to its relative importance:
Stactile = 0.3 Sconsistency + 0.4 Ssimplicity + 0.2 Sspacing + 0.1 Sbg.

+ Consistent stroke width (Sconsistency) is essential for uniform ridge detection (Weber’s law).
.

+ Simple path geometry (S, piicity) avoids excessive detail in the generated paths so gathers
image components to create a more simple path

+ Adequate spacing (S.pacing) to avoid closely overlaped objects and spacing between compo-
nents (d; > dy,p).

* A clean background (S},) maximizes contrast between ridges and surrounding surface.

Rina = 0.3 RImageReward + 0.7 STactileReward-

Figure 2: Overview of our method: (1) Tactile SIVE converts a text prompt into an initial SVG
by optimizing control-point “particles” in the diffusion latent space with a custom tactile style
that enforces thicker, high-contrast strokes and simplified background. (2) VPSD renders halfway-
denoised latents into SVGs via DiffVG, computes a hybrid Tactile Reward (combining ImageReward
with stroke consistency, spacing, and path simplicity metrics), and applies LoRA-based updates to
the U-Net. This loop repeats until convergence, yielding editable, tactile-friendly vector graphics.

rendered image and diffusion-generated target) and the Tactile Reward. This stage effectively biases
the starting SVG toward tactile-friendly primitives prior to VPSD refinement.

3.2 Tactile Reward

In order to quantitatively enforce haptic-readability constraints in our generated SVGs, we derive
each component of the tactile clarity score directly from perceptual principles and established tactile
guidelines. These metrics ensure that stroke widths remain above thresholds for reliable touch
discrimination, path geometries remain simple enough to avoid confusing ridges, and inter-element
spacing prevents ridge fusion under light contact. By grounding each measure in human tactile
perception models, our reward function can meaningfully guide vector refinement toward outputs that
are both visually coherent and physically discernible by users. Below, we formalize these metrics and
the mathematical constraints that underpin them.

Each component of the tactile clarity score is chosen to align with known thresholds and principles of
human haptic perception. Below, we summarize the rationale and associated mathematical constraints:

3.3 Mathematical Justification of Tactile Metrics

Each component of the tactile clarity score is chosen to align with known thresholds and principles of
human haptic perception. Below, we summarize the rationale and associated mathematical constraints:

1. Stroke Width Consistency Human tactile discrimination follows Weber’s law: the just-

noticeable difference (JND) in ridge (stroke) width is proportional to the mean width. Let w;
be the width of stroke 7, and define

1 1
[= N;wi; Ow = N;(wi_uw)Q-

To ensure that each stroke is consistently above the minimal tactile threshold wy;, and that variance
remains small, we require:

0—111
Haw
where Wi, is the minimum detectable ridge width (e.g., 0.5 mm) and d,,,x is a small relative-
variance threshold (e.g., 0.2). Our consistency score

— : el
Sconsistency =1 - mln(la ﬁ)

HMw > Wmin, 6max7

penalizes situations where o,/ 1, approaches or exceeds 1, thus enforcing uniform, detectable
strokes.

2. Path Simplicity Complex curves with many control points can introduce fine-grained ridges
that exceed the finger’s spatial resolution, increasing confusion. Let P be the total number of control
points across all paths. To map P into a bounded “simplicity” reward, we use a logistic-like function:

2
1+ exp(P% — a) ’
where P is a characteristic point count (e.g., 200) at which the score begins to drop, and « (e.g., 1.5)
shifts the inflection. This construction ensures:

Ssimplicity =

P< P - Ssimplicity ~ 27 P> PR - Ssimplicity ~ 07

so that very complex paths (large P) are heavily penalized, encouraging fewer ridges within the
finger’s discrimination threshold.

3. Element Spacing To avoid ridges merging under light touch, any two adjacent stroke midlines
must be separated by at least dp,in (€.g., 1.0mm). If d;; is the center-to-center distance between
stroke ¢ and 7, then
VZ#j, dij > dmin~
In practice, we approximate this by sampling a small set of pairwise distances and defining
_ o i
Sspaclng Ilrl?él? dmin’

clamped to [0, 1]. Setting a constant default of 0.7 corresponds to encouraging d;; to be at least
0.7 dmin, which empirically balances readability with layout constraints.

4. Background Cleanliness High contrast between raised lines and background is critical: the
proportion of background pixels above a brightness threshold matches contrast thresholds for tactile
perception. Let B be the total pixel count of the rendered image and

W =|{p:I(p) > Ibright }|
be the number of near-white pixels (where I(p) is pixel intensity and Iy,yighy = 250). Then
w
B
measures how “clean” the background is. A larger Sy, (close to 1) implies minimal noise around
ridges, improving detectability.

Sbe =

Combined Tactile Clarity Score We weight each metric according to its relative importance:
Stactile =0.3 Sconsistency +0.4 Ssimplicity +0.2 Sspacing +0.1 Sbg'
The coefficients (0.3, 0.4, 0.2, 0.1) reflect that:

* Sconsistency: Ensures stroke widths remain uniform and above the detectable threshold,
reducing variance per Weber’s law.

* Ssimplicity: Penalizes excessive control points to produce simpler path geometry, keeping
ridges within the finger’s spatial resolution.

* Sspacing: Encourages sufficient gap between elements (d;; > dmin) to prevent ridge fusion
under touch.

* Spg: Rewards a clean, near-white background to maximize contrast between ridges and
surrounding surface.

Final Mixed Reward Combine visual-aesthetic feedback R,;s from ImageReward with St,ctile:

Rﬁnal =0.3 RImageReward + 0.7 Stactile-

During Vectorized Particle Score Distillation (VPSD), Rgy,) is used as a hinge-based loss to back-
propagate through the diffusion U-Net, aligning generated SVGs with both visual fidelity and
mathematically grounded tactile constraints.*“*

4 Experimental Setup

To systematically evaluate our approach, we designed three complementary experiments covering
prompt design, SIVE ablation, and VPSD reward-weight tuning. All experiments use the same
class-level text prompts (e.g., “a black-and-white butterfly tactile graphic”) and fixed random seeds to
ensure reproducibility.

Prompt Design and Baseline. We first generated SVGs without tactile styling or reward to establish
a baseline. We observed that standard SVGDreamer outputs include extraneous structures (hands,
shadows) and non-flat regions that compromise haptic readability (Figure[2] top row). These baseline
failures highlight the necessity of our proposed tactile style and reward shaping.

For all experiments in the SIVE stage, we used the following prompt:

“A black-and-white butterfly tactile graphic contour outline line graphic like a
coloring book, created by tracing the outlines. The lines should be continuous,
and uniform in width. There should be no background and no extraneous detail.
Patterns on the wings should only emphasize key details.”

SIVE Ablation. In the SIVE stage, we evaluated the effect of particle radius (5 vs. 20 pixels) and
optimization steps (50 vs. 100) on SVG clarity. Each configuration was assessed for reconstruction
loss, baseline ImageReward score, and visual inspection of contour quality. We found that smaller
radii (5 px) with moderate iterations (50 steps) yield cleaner outlines, reduced background noise, and
more semantically coherent particle placements, effectively priming the SVG for VPSD refinement.

VPSD Reward-Weight Tuning. Building upon the optimal SIVE setup (radius=5, steps=50), we
conducted VPSD runs under three reward weights: 8 = 0.7,0.5, 0.3, where /3 scales ImageReward
and (1 — f3) scales the TactileScore. Each run executed 500 ReFL iterations with path reinitialization
every 100 steps. We logged (1) convergence iteration count (plateau of hybrid reward), (2) total hinge
loss, and (3) final hybrid reward score. These metrics quantify the balance between visual fidelity and
tactile simplification. Results (Figure[2} bottom rows and Table[I)) indicate that a mid-range weight
(6 = 0.5) delivers the best trade-off, eliminating spurious strokes while preserving essential contours
for haptic exploration.

Together, these experiments demonstrate the critical role of tactile styling and reward scaling in
steering SVG generation toward accessibility objectives without sacrificing semantic alignment.

oy W oW
'5'-‘:'53'.'& IS
\\"‘ ‘." yod

L)

‘e ly
‘:‘-“"!!!l'

oI

Figure 3: Baseline SVGDreamer output without tactile styling. Notice the unwanted background
clutter and non-flat shading that impede haptic readability.

Figure 4: Initial SVG after SIVE tactile-style generation. Thick, uniform contours and a clean
background prime the vector for further refinement.

5 Results

5.1 Detailed Explanation of Key Results

Baseline (No Tactile Styling) In the baseline row, standard SVGDreamer outputs produce butterfly
renderings that are neither visually nor haptically suitable. Many shapes exhibit 3D-like shading,
shadows, or even unintended objects (e.g., glimpses of hands or background noise). The contours are
overly complex, with intersecting strokes and background artifacts that obscure the primary silhouette.
Because no effort has been made to enforce “flatness” or path simplicity, the result is a high-fidelity
visual icon but a poor candidate for tactile conversion.

SIVE Tactile Style When we switch to our custom “tactile” SIVE style (thicker strokes, no
background elements, and higher contrast), the initial vectorization already becomes far more
promising. Background paths (e.g., noisy textures) are removed, and each outline is rendered as
a uniform-width contour. Although some interior wing patterns remain, they are fewer and better
separated from one another—producing a flatter, more 2D silhouette. This preemptively reduces the
downstream burden on VPSD and yields a cleaned-up SVG that serves as a strong starting point for
tactile refinement.

500 VPSD Iterations (With Tactile Reward) After 500 ReFL (Reward Feedback Learning)
iterations with our hybrid tactile reward, the output is still relatively noisy. Many small, overlapping
strokes persist, and path consistency is poor: some lines are jagged, while others are too thin to be
reliably detected via touch. Element spacing remains inadequate, with ridges frequently touching or
crossing. In short, 500 iterations are insufficient to converge toward the tactile objectives; the model
has not yet successfully suppressed spurious details or enforced uniform stroke widths.

1000 VPSD Iterations (With Tactile Reward) At 1000 iterations, we observe a “sweet spot”
where tactile and visual goals are balanced. Most extraneous background paths have vanished, leaving
a coherent butterfly silhouette. Stroke thickness across all paths is now more uniform, and the number
of control points per path has dropped—yielding smoother, more distinguishable ridges. Element
spacing improves: adjacent strokes are separated by at least the minimum tactile threshold, reducing
the risk of ridge fusion under a finger. Overall, this version achieves clear haptic legibility without
sacrificing essential wing details.

5000 VPSD Iterations (With Tactile Reward) By 5000 iterations, the model begins to over-
optimize the tactile reward. Although the silhouette remains recognizable, an overabundance of

Figure 5: VPSD outputs at 500, 1000, and 5000 iterations using the hybrid Tactile Reward. The
1000-iteration result (middle) best balances stroke consistency and simplicity.

Figure 6: Hybrid Reward score vs. total hinge loss at step 1000 for different reward weightings 3. A
mid-range weight (8 = 0.5) yields the best trade-off.

tiny ridges appears along wing edges and interior patterns. Path simplicity deteriorates: thousands
of micro-curves create a “noisy” ridge texture that can confuse tactile exploration (detailed ridges
may exceed human finger resolution). This overfitting illustrates the trade-off inherent in reward
weighting—too many iterations with a strong tactile signal re-introduce complexity rather than
eliminate it.

In summary, these rows illustrate the progression from an unconstrained, visually focused baseline to
a streamlined, tactile-friendly SVG. The tactile style in SIVE drastically reduces background clutter,
while VPSD with 1000 iterations of hybrid reward best balances stroke consistency, spacing, and path
simplicity. Exceeding this iteration count leads to over-detailed ridges, underscoring the importance
of early stopping or adaptive reward scheduling to maintain haptic readability.

5.2 VPSD Tactile Reward Weight Ablation

Reward Weight Total Reward Score Total Hinge Loss

0.7 0.5705 0.13184
0.5 0.6477 0.14966
0.3 0.72495 0.16748

Table 1: A higher Total Reward Score indicates that the generated SVG better satisfies both visual-
aesthetic and tactile-readability criteria (ImageReward + TactileScore). A lower Total Hinge Loss
shows that the model is successfully minimizing reconstruction error while still achieving a high
hybrid reward.

5.2.1 Metric Descriptions

Hybrid Reward Score (Rgp,1: This is the combined score that the model aims to maximize. At each
denoising step, the U-Net output is rendered to an SVG image, which is scored by ImageReward
(a learned visual-aesthetic network) and by rule-based tactile metrics. These two components are
linearly combined (30% ImageReward + 70% TactileScore) to produce Rgna). A higher value (e.g.,
0.72495 for weight 0.3) indicates that the generated SVG, at step 700, satisfies both visual fidelity
and tactile-readability criteria more strongly. Total Hinge Loss (L.t,1: This is the objective used
to update the U-Net during VPSD. Concretely, VPSD computes a mean-squared-error term Lysg
between predicted denoised latents and target latents, then subtracts a scaled version of the reward:

Liotat = Lmse — A Rénal,

where A is determined by the xing_loss_weight hyperparameter. A lower Ly, means the model
balances reconstruction accuracy (small Lyisg) and high hybrid reward.

A higher Hybrid Reward Score indicates that the generated SVG better satisfies both visual-aesthetic
and tactile-readability criteria (30 % ImageReward + 70 % TactileScore). A lower Total Hinge Loss
shows that the model is successfully minimizing reconstruction error while still achieving a high
hybrid reward.

* Weight 0.3: Highest Hybrid Reward (0.72495) but also highest Total Hinge Loss (0.16748).
This means the model over-emphasizes tactile metrics at the expense of reconstruction
stability.

* Weight 0.5: Intermediate Hybrid Reward (0.6477) and intermediate Total Hinge Loss
(0.14966). This represents a balance between visual fidelity and tactile constraints.

* Weight 0.7: Lowest Hybrid Reward (0.5705) but lowest Total Hinge Loss (0.13184). This
indicates smoother convergence with more stable latent reconstruction, albeit somewhat less
optimized for tactile specificity.

6 Discussion

6.1 SVG Editor Evaluation Results

To evaluate the usability of the generated SVGs for editing purposes, we uploaded the outputs
into a standard SVG editor. The generated SVG code decomposes the graphic into clearly defined
individual paths, making it straightforward to select and adjust control points within each path. This
fine-grained structure enables precise modifications—such as altering stroke thickness or simplifying
curves—without affecting unrelated parts of the image. Such modularity is especially useful when
adjusting tactile graphics to meet specific haptic display requirements.

Figure 7: Screenshots from an SVG editor showing path-level structure of generated tactile SVGs.

However, there are a few limitations to note. The generated output often suffers from path prolifer-
ation, where complex regions are decomposed into numerous small path segments; this increases
visual clutter in the SVG editor and makes overall editing more cumbersome. Additionally, residual
background artifacts sometimes remain after generation—these faint strokes must be manually
identified and removed, adding extra post-processing overhead. Finally, the generated SVG frequently
contains adjacent, disconnected paths that would benefit from being programmatically merged or
simplified post-generation. By joining and streamlining these individual path segments, one could
enhance both tactile readability and editing convenience.

In summary, while the generated SVGs provide excellent path-level control and modularity for fine
edits, some manual cleanup and path consolidation are still required to fully prepare tactile graphics
for production or tactile display.

6.2 RL-Guided Inference-Time Optimization for Tactile SVGs

This work demonstrates a practical and extensible pipeline for generating tactile-optimized SVG
graphics from text prompts using a two-stage approach—Semantic Image Vectorization (SIVE)
followed by Vectorized Particle Score Distillation (VPSD). Crucially, we avoid retraining the base
diffusion model by using inference-time optimization with a lightweight LoRA head and a hybrid
reward function composed of both visual (ImageReward) and tactile (rule-based) components. Our
method illustrates that even minor stylistic changes in the SIVE stage—such as increased stroke
width, contrast maximization, and background suppression—significantly improve tactile readiness
before reinforcement-style refinement begins.

This end-to-end pipeline highlights the feasibility of steering diffusion-generated vector graphics
toward accessibility goals using simple but effective techniques. The plug-and-play nature of our
implementation also allows others to substitute custom tactile metrics, adjust reward weightings, and
rapidly observe the resulting design trade-offs—all without modifying core diffusion weights.

10

6.3 Sensitivity to Hyperparameters and Reward Scaling

Our experiments emphasize that tactile-optimized SVG generation is highly sensitive to VPSD
hyperparameters, particularly the number of inference-time iterations and the weighting of the tactile
reward. Shorter VPSD runs (e.g., 500 steps) yield incomplete convergence with inconsistent stroke
widths and overlapping paths. At 1,000 steps, however, the outputs balance visual structure with
tactile simplicity—achieving clean silhouettes and spaced ridges suitable for haptic exploration.
Pushing further to 5,000 steps causes overfitting, introducing excessive ridge detail and curve noise
that degrade touchability.

Likewise, reward weighting impacts convergence behavior. Higher tactile emphasis (e.g., 70%)
increases stroke consistency and spacing quality but may sacrifice some structural fidelity. Mid-range
weights strike a useful balance, while excessive bias toward visual fidelity diminishes tactile clarity.
These trade-offs underscore the value of inference-time control when optimizing for accessibility,
enabling designers to tailor outputs based on use-case requirements.

6.4 Limitations and Future Directions

While our hybrid reward effectively enforces structural and perceptual constraints, it remains heuristic
in nature. Rule-based metrics like stroke width variance and inter-path distance do not fully capture the
nuances of human tactile perception. Fine lines or overly dense regions may still appear, and without
real-world user studies, these metrics serve only as proxies. Furthermore, our method currently
targets single-object prompts and simple illustrations. Extending this framework to multi-object
STEM diagrams, charts, or circuit schematics would require advances in layout-aware vectorization
and modular reward design.

In future work, we envision integrating semantic segmentation and object grouping into the vector-
ization process to enable tactile structuring of more complex scenes. Additionally, incorporating
feedback from blind and low-vision users could help refine the tactile reward into a more perceptually
grounded objective. With these improvements, the pipeline could serve as a foundational tool for
producing educational materials that are both accessible and editable.

6.5 Broader Impact

By introducing RL-based tactile refinement into the vector graphic generation process, our approach
represents a step toward democratizing the creation of inclusive visual content. The ability to generate
haptically legible, structurally coherent SVGs from text enables new forms of rapid content prototyp-
ing in tactile media, especially in educational and assistive contexts. This method lays the groundwork
for future systems that can support blind and low-vision learners with dynamic, interactive, and
personalized diagrammatic content—advancing both Al-driven creativity and accessibility.

7 Conclusion

Nulla mattis luctus nulla. Duis commodo velit at leo. Aliquam vulputate magna et leo. Nam vestibu-
lum ullamcorper leo. Vestibulum condimentum rutrum mauris. Donec id mauris. Morbi molestie
justo et pede. Vivamus eget turpis sed nisl cursus tempor. Curabitur mollis sapien condimentum
nunc. In wisi nisl, malesuada at, dignissim sit amet, lobortis in, odio. Aenean consequat arcu a ante.
Pellentesque porta elit sit amet orci. Etiam at turpis nec elit ultricies imperdiet. Nulla facilisi. In hac
habitasse platea dictumst. Suspendisse viverra aliquam risus. Nullam pede justo, molestie nonummy,
scelerisque eu, facilisis vel, arcu.

8 Team Contributions

Solo Project Seonghee Lee (sh11027).

Changes from Proposal Compared to the original proposal, the final project pivoted from RLOO-
based fine-tuning of a pretrained SVG generation model (such as StarVector) toward a more

lightweight, inference-time optimization strategy. Initially, we planned to directly fine-tune StarVector
using reinforcement learning with a custom reward function (ZactileScore), composed of semantic,

11

structural, and compression-based components. However, due to time constraints, GPU resource
limitations, and difficulties in stable RL training with token-level outputs, we instead focused on opti-
mizing the SVG generation pipeline using the SVGDreamer framework. Specifically, we introduced a
hybrid reward combining ImageReward (visual aesthetics) and rule-based tactile metrics (e.g., stroke
consistency, spacing, and background simplicity), and applied this reward during the Vectorized
Particle Score Distillation (VPSD) stage to guide inference-time refinement. This alternative allowed
for more controlled experimentation with reward scaling and iteration counts while still exploring the
core question of how reinforcement-style feedback can enhance SVGs for tactile accessibility.

References

Arash Ahmadian, Chris Cremer, Matthias Galle, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Ustun, and Sara Hooker. 2024. Back to Basics: Revisiting Reinforce-Style Optimization
for Learning from Human Feedback in LLMS. arXiv preprint arXiv:2402.14740 (2024).

American Printing House for the Blind. 2022. Guidelines and Standards for Tactile Graphics. https:
//www.aph.org/product/guidelines-and-standards-for-tactile-graphics/. Ac-
cessed: 2025-04-25.

Kevin Frans, Fanbo Xiang, and Igor Mordatch. 2023. VectorFusion: Text-to-SVG by Abstracting
Pixel-based Diffusion. arXiv:2303.08057 [cs.CV] https://arxiv.org/abs/2303.08057

Yiwen Hu, Hang Zhou, Wayne Wu, Ziwei Liu, and Chen Change Loy. 2023. IconShop: Text-
Guided Icon Editing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

Tzu-Mao Li, Michal Luka¢, Gharbi Michaél, and Jonathan Ragan-Kelley. 2020. Differentiable Vector
Graphics Rasterization for Editing and Learning. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 39,
6 (2020), 193:1-193:15.

Guotao Liang et al. 2024. OmniSVG: Scaling up SVG Representation for Vector Graphic Generation.
arXiv:2403.13312 [cs.CV] https://arxiv.org/abs/2403.13312

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
Finn. 2023. Direct Preference Optimization: Your Language Model is Secretly a Reward Model.
In International Conference on Machine Learning.

Juan A. Rodriguez, Abhay Puri, Shubham Agarwal, Issam H. Laradji, Pau Rodriguez, Sai Rajeswar,
David Vazquez, Christopher Pal, and Marco Pedersoli. 2024. StarVector: Generating Scalable
Vector Graphics Code from Images and Text. arXiv:2312.11556 [cs.CV] https://arxiv.org/
abs/2312.11556

Peter Selinger. 2003. Potrace: a tool for tracing a bitmap into a smooth, scalable image. http:
//potrace.sourceforge.net. Accessed: 2025-04-25.

Ximing Xing, Juncheng Hu, Guotao Liang, Jing Zhang, Dong Xu, and Qian Yu. 2025. Empowering
LLM:s to Understand and Generate Complex Vector Graphics. arXiv:2412.11102 [cs.CV] https:
//arxiv.org/abs/2412.11102

Ximing Xing, Haitao Zhou, Chuang Wang, Jing Zhang, Dong Xu, and Qian Yu. 2024. SVGDreamer:
Text Guided SVG Generation with Diffusion Model. arXiv:2312.16476 [cs.CV] https://arxiv.
org/abs/2312.16476

Yan Zhu. 2022. VTracer: A modern image vectorizer written in Rust. https://github.com/
visioncortex/vtracer. Accessed: 2025-04-25.

A Additional Experiments

A.1 SIVE Process Image Comparison Results
A.1.1 Example of a Good Tactile Graphic

A well-designed tactile graphic uses minimal background detail and clear outlines.

12

https://www.aph.org/product/guidelines-and-standards-for-tactile-graphics/
https://www.aph.org/product/guidelines-and-standards-for-tactile-graphics/
https://arxiv.org/abs/2303.08057
https://arxiv.org/abs/2403.13312
https://arxiv.org/abs/2312.11556
https://arxiv.org/abs/2312.11556
http://potrace.sourceforge.net
http://potrace.sourceforge.net
https://arxiv.org/abs/2412.11102
https://arxiv.org/abs/2412.11102
https://arxiv.org/abs/2312.16476
https://arxiv.org/abs/2312.16476
https://github.com/visioncortex/vtracer
https://github.com/visioncortex/vtracer

Figure 8: Example Tactile Graphic in the BANA guidelines: clear, thick lines and no extraneous
detail.

A.1.2 Baseline Style

(a) Baseline 1 (b) Baseline 2 (c) Baseline 3 (d) Baseline 4

Figure 9: SVGDreamer outputs without the custom tactile style and just the given prompt: unwanted
elements in the background and color artifacts appear.

A.1.3 Using Different Radius Sizes

Small particle radius yields finer, more precise vector “strokes,” suppressing background noise and
malformed artifacts.

(b) Radius =5

Figure 10: Comparison of SIVE initialization with (top) large vs. (bottom) small particle radius.
Smaller radius produces cleaner object outlines and fewer spurious details.

Interpretation of Radius The particle radius in the SIVE stage controls the initial size of vector
“strokes” used to approximate image structure. A larger radius (e.g., 20) captures broad shapes
quickly but tends to overlook finer details, while a smaller radius (e.g., 5) enables more precise
boundary alignment and eliminates spurious background textures.

13

Experiment t Liotar Liora
VPSD without tactile 462.00 958.5000 0.0936
VPSD with tactile reward 351.00 504.0000 0.1831

Table 2: Comparison of key VPSD optimization metrics with and without the tactile-specific reward
signal.

A.2 VPSD Process Tactile Reward Results

These results demonstrate that incorporating a tactile-specific reward into the VPSD optimization
process significantly improves key performance metrics. The total loss Ltotal is reduced by nearly
half, indicating more effective convergence and better overall optimization. Interestingly, the LoRA-
specific loss increases, which suggests that the model is adapting more aggressively through the
low-rank adapters to accommodate the tactile reward signal. This trade-off highlights that the
tactile reward encourages meaningful structural adjustments rather than superficial refinements.
Additionally, the optimization requires fewer steps (t=351, vs t=462), suggesting that the reward
accelerates convergence by focusing the model on salient tactile features such as bold lines and
simplified shapes. Overall, the tactile reward appears to steer the model towards producing outputs
that are more interpretable by touch, albeit with some residual complexity that could be further
addressed through post-processing or additional regularization.

The tactile reward guides the fine-tuning to prioritize line clarity and consistency, though some
background clutter and over-detailing of the butterfly may persist.

sy
S~ =

(/

N/
=3 \\!!/!/V =
W

N

000,
-
-

0 — ZAN

u

Figure 11: VPSD outputs with tactile reward enabled. Line strokes are more consistent, but further
background simplification may be needed.

However, even after integrating the tactile reward into the VPSD stage, some outputs remain overly
detailed—especially in complex prompts like animals or diagrams with textured regions. This
suggests that further refinement is needed, potentially by integrating prompt-level complexity control
or penalizing excessive detail directly in the reward function. For the final report I may explore
prompt reweighting strategies or texture-suppressing penalties to enhance tactile suitability.

A.2.1 Other Prompts Tested: Husky Dog

VPSD with the tactile reward also generalizes to subjects beyond simple diagrams, such as animals.
We tested our pipeline using the prompt “a black-and-white husky dog contour line graphic” and
observed that the tactile style effectively removes background clutter while preserving key facial
structures. However, textured regions like fur often reintroduce high-frequency details, requiring

14

additional prompt tuning or postprocessing. Figure [I2] shows representative generations under this
setting.

(a) Stylized contour with simplified (b) Moderate detail; some interior (c) Overfit case with excessive
muzzle and ears. fur textures persist. stroke density.

Figure 12: Husky dog examples generated using tactile style and reward. Even without additional
fine-tuning, the tactile pipeline generalizes reasonably well to animal prompts.

15

B Tactile Reward Implementation Details

The ‘TactileReward* class defines a hybrid reward function that combines visual aesthetic quality
from ImageReward with domain-specific tactile metrics critical for haptic accessibility. This reward
is used during the Vectorized Particle Score Distillation (VPSD) stage to guide the refinement of
SVG outputs. The get_reward method receives a rendered image (either as a tensor, NumPy array, or
PIL image), a list of DiffVG path objects representing the SVG geometry, and the original generation
prompt. It computes the visual score via ImageReward and then calculates a tactile score based on
three key metrics: stroke width consistency, path simplicity (via total control points), and a fixed
spacing score. These components are linearly combined with a default weighting of 70% visual and
30% tactile to form the final reward. The weight of this Tactile reward was changed during the weight
adjustment. This reward is differentiable through the rendering pipeline, enabling backpropagation
into the latent space and producing outputs optimized for both appearance and tactile legibility.

Below is the Python implementation of the TactileReward class:

import torch

from PIL import Image
import numpy as np
import pydiffvg

Import the original ImageReward
from ImageReward.ImageReward import ImageReward

class TactileReward:
def __init__(self, reward_path=’./checkpoint/ImageReward’):
Initialize the base ImageReward model
self .base_reward = ImageReward(reward_path)
self .device = self.base_reward.device

def get_reward(self, rendered_img, svg_paths, prompt):
nmnn
Calculate a hybrid reward combining ImageReward with tactile-
— specific metrics

Args:
rendered_img: The rendered PNG image of the SVG
svg_paths: The wector paths from the SVG
prompt: The text prompt used for gemeration
nann
Convert tensor to PIL image i1f needed
if isinstance(rendered_img, torch.Tensor):
img = rendered_img.squeeze (0).permute(l, 2, 0).cpu().numpy

— O
img = (img * 255) .astype(np.uint8)
pil_img = Image.fromarray (img)
elif isinstance(rendered_img, np.ndarray):
pil_img = Image.fromarray(rendered_img)
else:
pil_img = rendered_img

Get base aesthetic reward from ImageReward
with torch.no_grad():
base_reward = self.base_reward.score(prompt, pil_img)

Calculate tactile-spectific metrics
tactile_metrics = self._calculate_tactile_metrics(svg_paths)

Combine rewards with appropriate weights
final_reward = base_reward * 0.7 + tactile_metrics * 0.3

return final_reward

def _calculate_tactile_metrics(self, svg_paths):

16

"""Calculate tactile-specific metrics from SVG paths"""
1. Stroke width consistency
stroke_widths = []
for path in svg_paths:
if hasattr(path, ’stroke_width’):
stroke_widths.append (path.stroke_width.item())

if stroke_widths:
stroke_consistency = 1.0 - min(
1.0,
np.std(stroke_widths) /
(np.mean(stroke_widths) if np.mean(stroke_widths) > 0
— else 1)
)
else:
stroke_consistency = 0.5

2. Path simplicity
total_points = sum(
len(path.points) for path in svg_paths if hasattr (path, °
— points’)
)
path_simplicity = 2.0 / (1.0 + np.exp(total_points / 200 -
— 1.5))

3. Element spacing (simplified)
spacing_score = 0.7

Combine metrics

tactile_score = (
stroke_consistency * 0.4 +
path_simplicity * 0.4 +
spacing_score * 0.2

)

return tactile_score

B.1 Prompts and Variables

The main prompt used for generating the tactile butterfly graphic was:

python svgdreamer.py \
x=tactile \
skip_sive=False \
"prompt=’A_ black-and-whiteybutterfly tactileygraphic,contouroutline

(SEEN
(SN
(SN
(SN
(SN

ulinegraphicylikea coloring book, created by, tracing,the
outlines._ The lines should be, continuous, anduniform, in
width. There should, be noybackground, and nogextraneous, detail
.uPatterns on,the wings_should only ,emphasize key details.’"

\

result_path=./logs/tactile_butterfly \
seed=262 \

multirun=False \
diffuser.download=True

The x argument selects the “tactile” style—a variant I derived by adapting the built-in styles for
raised-dot graphics. I drastically reduce background iterations (since tactile graphics rely on clear,
uncluttered outlines), force a strictly black-and-white palette with finer stroke radius, and allocate
more iterations to foreground extraction so key features (wing veins, body segments) receive suf-
ficient vector refinement. I also enforce ample spacing between strokes during initialization and
reinitialization to ensure all elements meet minimum tactile separation guidelines, resulting in SVGs
that are both machine-optimizable and highly legible by touch.

17

C GitHub Repository Guide

The full implementation and experimental logs are available at: https://github.com/shljessie/
tactile-svgdreamer.

C.1 Repository Structure
* main/

— svgdreamer/: Core SVGDreamer codebase.

— ImageReward/: Pretrained ImageReward model wrapper.
conf/: Configuration YAML files for SIVE and VPSD stages.
logs/: Experiment logs and output SVGs organized by prompt and hyperparameters.
scripts/: Utility scripts (e.g., training launchers, result renderers).

— data/ (if included): Prompt templates and SVG examples.

* checkpoint/: Saved ImageReward weights and trained LoRA U-Net models.

* README.md: Setup instructions, dependencies, and quickstart guide.

C.2 Quickstart
1. Clone the repo:

git clone https://github.com/shljessie/tactile-svgdreamer.git
cd tactile-svgdreamer

2. Create a conda environment:

conda env create -f environment.yml
conda activate tactile-svgdreamer

3. Download pretrained weights: Place ImageReward.pt into checkpoint/. Optionally,
populate checkpoint/lora/ with pretrained LoRA U-Net checkpoints.

4. Run SIVE stage:

python scripts/run_sive.py \
--config conf/sive_tactile.yaml \
--prompt "a black-and-white butterfly tactile graphic ..." \
--output logs/tactile_butterfly/

5. Run VPSD + Hybrid Reward:

python scripts/run_vpsd.py \
--config conf/vpsd_tactile.yaml \
--checkpoint logs/tactile_butterfly/step_100.ckpt \
--prompt "a black-and-white butterfly tactile graphic ..." \
--output logs/tactile_vpsd_beta_0.5/

6. Visualize Outputs: Rendered images and SVGs are saved in the specified output/ folders.
Use:

python scripts/visualize.py --input logs/tactile_vpsd_beta_0.5/

to generate figures for reports or slides.

C.3 Customizing Experiments

* To adjust reward weights (), modify reward_weight in the VPSD config (e.g., 0.3, 0.5,
0.7).

 To change iteration count, set num_iter in the VPSD config.
* To try different prompts, edit or pass new strings via the -prompt argument.

18

https://github.com/shljessie/tactile-svgdreamer
https://github.com/shljessie/tactile-svgdreamer

C.4 Reproducing Results

All hyperparameters and folder structure align with those reported in this paper. You can reproduce
key figures for the butterfly prompt by running the above commands with equivalent configs. Logs
with suffixes _1000, _5000, etc. correspond to different iteration counts used in the experiments.

Notes
* Ensure GPU availability and correct CUDA drivers before executing the scripts.

* For detailed error tracking or debugging, examine the logs/ directory for per-step loss
metrics and intermediate SVG visualizations.

19

	Introduction
	Related Work
	Method
	Tactile SIVE Generation
	Tactile Reward
	Mathematical Justification of Tactile Metrics

	Experimental Setup
	Results
	Detailed Explanation of Key Results
	VPSD Tactile Reward Weight Ablation
	Metric Descriptions

	Discussion
	SVG Editor Evaluation Results
	RL-Guided Inference-Time Optimization for Tactile SVGs
	Sensitivity to Hyperparameters and Reward Scaling
	Limitations and Future Directions
	Broader Impact

	Conclusion
	Team Contributions
	Additional Experiments
	SIVE Process Image Comparison Results
	Example of a Good Tactile Graphic
	Baseline Style
	Using Different Radius Sizes

	VPSD Process Tactile Reward Results
	Other Prompts Tested: Husky Dog

	Tactile Reward Implementation Details
	Prompts and Variables

	GitHub Repository Guide
	Repository Structure
	Quickstart
	Customizing Experiments
	Reproducing Results

