
Extended Abstract

Motivation Predictive policing systems increasingly use reinforcement learning (RL) to optimize
patrol deployment based on historical crime data. Yet this data is systematically biased—reflecting
patterns of over-policing in minority communities rather than actual crime rates. RL agents trained
on such signals risk amplifying these biases through self-reinforcing feedback loops, raising urgent
concerns about fairness and long-term harm. We address this challenge by investigating whether
RL agents can be explicitly designed to detect crime effectively while avoiding the reinforcement of
structural disparities.

Method We model patrol allocation as a Markov Decision Process (MDP), where agents distribute
limited patrol units across zones to maximize detected crime. We compare three policy-gradient
agents: (1) vanilla Proximal Policy Optimization (PPO), (2) PPO augmented with action normalization
and entropy regularization to promote exploration and equitable allocations, and (3) Constrained
Policy Optimization (CPO), which enforces explicit fairness constraints during learning. Fairness is
evaluated using two novel metrics: outcome DMS, which measures allocation-crime mismatch across
an episode, and procedural DMS, which captures unfairness over time with early-time weighting.
These metrics also motivate the cost in the implementation of CPO.

Implementation We construct a custom simulation environment using two datasets: a synthetically
skewed crime distribution and real arrest data from Oakland, CA. True crime rates are uniform and
sampled from a Poisson distribution; observed crimes depend on patrol deployment and detection
probability. Each agent is trained and evaluated over 365-day episodes. We report cumulative reward
(crime detected) as the utility metric and use DMS scores to assess fairness. Baseline policies include
a random patrol strategy and a greedy allocation based on prior observations.

Results In the biased synthetic setting, fairness-aware agents (Tuned PPO and CPO) achieve near-
optimal rewards (≈1528.6) while dramatically reducing disparities (Outcome DMS < 0.031), in
contrast to the greedy and vanilla PPO agents, which show high disparity (Outcome DMS > 0.70)
and poor performance. The random baseline performs well in fairness but lacks adaptive capacity.
These patterns hold in the real-world environment, where fairness-aware agents remain competitive
in reward and significantly outperform others on fairness metrics, demonstrating generalizability
beyond synthetic conditions.

Discussion Our results show that RL agents trained on biased data without intervention tend to
entrench disparities, while fairness-aware methods can proactively correct them—without sacrificing
performance. Simple mechanisms like entropy regularization and normalization meaningfully im-
prove fairness by encouraging exploration and breaking feedback cycles. Despite embedding fairness
directly into the optimization process, CPO provides negligible gains and performance is equivalent
to tuned PPO. These findings demonstrate that fairness is not a tradeoff but an achievable design goal
in real-world RL applications.

Conclusion We provide empirical evidence that fairness-aware reinforcement learning is essential
for responsible predictive policing. By equipping agents with mechanisms to unlearn historical
bias, we enable systems that are both effective and equitable. Our results argue for integrating
fairness objectives directly into RL design, especially in high-stakes, feedback-driven domains where
algorithmic decisions shape future data.
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Abstract

Reinforcement learning (RL) is increasingly used in predictive policing to optimize
patrol deployment based on historical crime data. However, such data often reflects
patterns of over-policing rather than true crime rates, creating feedback loops
that can amplify bias. We model patrol allocation as a Markov Decision Process
and evaluate three RL agents: standard PPO, PPO with entropy regularization
and normalization, and Constrained Policy Optimization (CPO) with fairness
constraints. To assess fairness, we introduce two Disparate Mistreatment Scores
(DMS) that quantify allocation-crime mismatch over time. Using both synthetic
and real-world data from Oakland, CA, we find that fairness-aware agents achieve
near-optimal crime detection while substantially reducing disparities (Outcome
DMS < 0.031). In contrast, standard PPO and greedy policies reinforce bias and
underperform. Our results show that fairness can be effectively integrated into RL
systems without sacrificing utility, offering a viable path toward more equitable
decision-making in public safety applications.

1 Introduction

Predictive policing systems aim to optimize law enforcement deployment by learning patterns from
historical crime data. However, these data are often shaped by longstanding racial and spatial biases,
leading such systems to replicate and amplify existing disparities rather than mitigate them. Feedback
loops—where biased patrol decisions influence future crime observations—compound this problem,
locking models into distorted perceptions of crime distribution.

Despite growing critiques of predictive policing, most analyses stop at identifying bias without
offering algorithmic corrections. Conversely, fairness in reinforcement learning (RL) has been studied
in isolation, typically ignoring the recursive feedback dynamics that are central to policing contexts.
This disconnect leaves a gap: existing fairness-aware RL frameworks are not equipped to handle the
compounding bias introduced by policy–data interactions.

This work addresses that gap by developing and evaluating fairness-aware RL agents that explicitly
mitigate feedback-driven disparities in patrol allocation. We simulate urban crime environments with
biased historical data and compare three policy-gradient agents: standard PPO, PPO with normaliza-
tion and entropy regularization, and Constrained Policy Optimization (CPO) with fairness constraints.
To quantify fairness, we introduce two metrics—Outcome and Procedural Disparate Mistreatment
Scores (DMS)—which measure spatial and temporal disparities between patrol allocation and true
crime distribution.

Our central question is whether reinforcement learning agents can achieve high crime detection
while avoiding reinforcement of historical bias. We find that fairness-aware methods significantly
outperform standard and greedy approaches in both synthetic and real-world crime settings, demon-
strating that equity and utility are not inherently at odds. This work contributes a principled, empirical
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framework for evaluating and designing RL systems in socially sensitive, feedback-prone domains
like predictive policing.

2 Related Work

Predictive policing systems have been widely deployed to allocate law enforcement resources using
historical crime data, yet these systems often reinforce racial and spatial biases rather than mitigate
them. Models like PredPol, described by Mohler et al. (2015), learn from arrest data to predict future
crime locations and influence patrol deployments. However, such arrest data are deeply shaped by
historical over-policing of communities of color, distorting the model’s input and reinforcing biased
patterns (Gilbertson, 2020). Empirical studies have shown that these systems disproportionately
direct police attention toward minority neighborhoods, thereby amplifying disparities in surveillance
and enforcement (Lum and Isaac, 2016; Ensign et al., 2018). For instance, by replicating PredPol’s
algorithm on Oakland drug crime data, Lum and Isaac (2016) expose a racialized discrepancy between
predicted patrol intensities and actual drug use prevalence, revealing how feedback loops rooted in
biased data can lead to disparate impact. Similarly, Ensign et al. (2018) apply fairness metrics like
equal opportunity (Hardt et al., 2016) to demonstrate that even small initial disparities in historical
data can cascade into significant predictive error and unfair policing outcomes when feedback effects
are ignored.

In the reinforcement learning literature, fairness has received increasing attention, driven by the
recognition that RL agents influence the environment through their actions, which in turn shape
future observations and rewards. Reuel and Ma (2025) surveys existing approaches to fairness in
RL, including multi-objective optimization, welfare-based objectives, action parity via Q-values, and
calibration by group outcomes. One of the earliest treatments, Jabbari et al. (2017), defines fairness
as taking similar actions for similar expected utility, while other approaches incorporate fairness
constraints into policy optimization using techniques like actor-critic models or multi-objective
MDPs (Reuel and Ma, 2025). Constrained Policy Optimization (CPO) (Achiam et al., 2017),
originally developed for safe exploration, provides a general framework for satisfying fairness or
safety constraints during learning and is particularly relevant in high-stakes settings such as predictive
policing.

Despite these developments, there remains a critical gap at the intersection of predictive policing and
fair reinforcement learning. Critiques of predictive policing systems generally do not incorporate
rigorous fairness criteria into their analysis and never attempt to revise or improve the underlying
modeling assumptions to mitigate feedback-driven bias. Conversely, most fairness-aware RL research
neglects the recursive feedback effects introduced by biased historical data, an essential feature
of the predictive policing setting. This disconnect leaves both fields ill-equipped to address the
compounding harms that arise when biased decisions shape future data and policy. Closing this
gap requires models that explicitly account for these feedback loops and embed tailored fairness
constraints in a principled, dynamic framework.

3 Method

We formulate the patrol allocation task as a Markov Decision Process (MDP) defined by state space S ,
action space A, transition dynamics P , and reward function R. At each timestep t, the agent observes
the state st, representing historical and current crime statistics across N zones, and selects an action
at, allocating a fixed budget of patrol units across these zones. The environment then generates the
true number of crimes in each zone by sampling from a Poisson distribution with a uniform mean λ,
reflecting the underlying (unbiased) crime rate.

We compare three reinforcement learning agents, each built upon a policy-gradient foundation but
differing in key regularization and constraint mechanisms. All agents employ neural network policy
parameterizations and are trained using trajectories sampled from the environment as described above.
We select on-policy approaches that learn after each timestep of interacting with the environment
because that best reflects real-world conditions around predictive policing feedback loops.
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3.1 Vanilla Proximal Policy Optimization (PPO)

The baseline agent uses the standard Proximal Policy Optimization (PPO) algorithm. The objective is
to maximize the clipped surrogate objective:

LCLIP(θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
,

where rt(θ) =
πθ(at|st)
πθold (at|st) , Ât is the estimated advantage, and ϵ is the clipping parameter. PPO is

selected for its sample efficiency, robustness to noisy gradients, and reliable convergence properties
in environments with partial observability and feedback loops.

3.2 PPO with Normalization and Tuned Entropy Bonus

The second agent extends vanilla PPO by incorporating output normalization and entropy regular-
ization. The action vector, representing patrol allocations, is normalized to form a valid probability
distribution over zones, ensuring that total allocations are feasible and discouraging degenerate
solutions with highly concentrated patrols. The objective becomes:

L(θ) = LCLIP(θ) + β Et [H(πθ(·|st))] ,

where H is the entropy of the action distribution and β is an entropy coefficient. Entropy regularization
encourages exploration, which is particularly important given the biased nature of the historical
observations; it helps the agent discover and correct for spurious patterns caused by the initial data
skew. See Appendix A for tuning details. Normalization ensures fair and interpretable allocation
decisions throughout learning.

3.3 Constrained Policy Optimization (CPO)

The third agent employs Constrained Policy Optimization (CPO), which extends PPO with a formal
constraint on expected policy-induced disparities. CPO solves:

max
θ

Eπθ

[
T∑

t=0

rt

]

subject to Eπθ

[
T∑

t=0

ct

]
≤ δ,

where ct represents the instantaneous fairness or disparity cost at time t, and δ is a developer-
specified threshold. Policy updates are performed using a trust-region method to guarantee monotonic
improvement in reward while maintaining constraint satisfaction. CPO is initialized with the same
tuned entropy and normalization settings as the second agent, layering constraint-driven optimization
on top of robust exploration. This approach provides explicit control over fairness-utility tradeoffs.
We then tuned the threshold as shown in Appendix A. However, implementing cost based on the
fairness metric requires insight into actual crime rate, which is not realistic in practice.

3.4 Design Rationales

The three agent variants are selected to systematically test the effect of increasingly sophisticated
regularization and constraint mechanisms: vanilla PPO serves as a strong policy-gradient baseline,
entropy-regularized PPO explicitly promotes exploration and distributional fairness, and CPO enforces
provable fairness guarantees through constrained optimization. This suite of models enables a
comprehensive analysis of learning dynamics and the interplay between reward maximization and
fairness constraints in predictive policing contexts.
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Figure 1: Patrol decisions based on observed crime data can create feedback loops, reinforcing or
amplifying initial data biases. We attempt to build agents that unlearn this.

4 Experimental Setup

To evaluate the fairness and effectiveness of patrol allocation strategies produced by different agents,
we developed a simulated predictive policing environment (Figure 1). This simulation models a
simplified urban area divided into multiple zones, each subject to fluctuating crime activity over time.

4.1 Simulated Environment

The simulation environment initializes crime dynamics using two biased datasets of historical crime
that overrepresent certain zones to reflect real-world disparities in arrest data resulting from over-
policing. The number of zones in the environment corresponds to the length of the datasets. The first
synthetic dataset contains 10 zones where the first three are highly skewed to contain more historical
crime rate. The second dataset contains 59 zones with crime statistics from the past five years in
Oakland, California.

At each timestep, the true number of crimes in each zone is generated independently by sampling
from a Poisson distribution. The mean of this distribution is uniform across all zones and derived
from the average crime rate in the historical data. This uniform true crime rate serves as a baseline to
evaluate how effectively agents can detect crime while avoiding reinforcement of historical bias.

Agents interact with the environment by allocating a fixed number of patrol units across the zones.
The probability of detecting at least one crime in a zone increases with the number of patrols assigned,
following this formula:

P (detect any crime) = 1− (1− p)n

where p = 0.3 is the base detection probability and n is the number of patrols in the zone. Detected
crimes are drawn from a binomial distribution based on this detection probability and the true crime
count.

The agent receives a reward at each timestep equal to the total number of crimes it observes,
incentivizing policies that increase crime detection. This reward fits the context because actual crime
is always unknown. Episodes run for 365 timesteps, simulating one year.

4.2 Fairness Metrics

To assess fairness, we introduce the Disparate Mistreatment Score (DMS), which measures the
difference between the distribution of patrols and actual crime. DMS comes in two versions: outcome
DMS and procedural DMS, which correspond to outcome fairness and procedural fairness.

Outcome DMS captures cumulative fairness by comparing the total fraction of patrols assigned to
each zone with the actual fraction of crimes that occurred there across the final episode. The measure
is computed as the total variation distance:
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DMSoutcome =
1

2

∑
z

|Palloc(z)− Pcrime(z)|

A lower score indicates a more equitable match between patrol resources and real crime needs.

Procedural DMS evaluates fairness over time, incorporating a temporal discount factor λ (defaulting
to 0.6) to prioritize early correction of unfairness. At each timestep, a variation distance is computed
as in the outcome metric, but discounted to emphasize early-time behavior. The procedural DMS is
aggregated over time and averaged across episodes:

DMSprocedural =

T∑
t=0

γt ·

(
1

2

∑
z

|Palloct(z)− Pcrimet(z)|

)
This metric allows us to distinguish between agents that gradually adjust their behavior and those that
enforce fairness from the outset.

4.3 Baseline Methods

To contextualize the performance of our reinforcement learning agents, we implement two baseline
patrol allocation strategies: a random baseline and a greedy baseline.

Random Baseline. The random baseline uniformly allocates patrols across all zones at each timestep,
independent of both historical and current crime observations. This approach serves as a fairness-
oriented benchmark: because patrols are distributed without regard to observed crime patterns (which
may be biased), this policy avoids reinforcing feedback loops and, in expectation, matches the true
uniform distribution of crime. However, it does not adapt to any potential spatial or temporal variation
in true crime rates.

Greedy Baseline. The greedy baseline allocates patrols in direct proportion to the most recently
observed crime counts in each zone. At each timestep, the agent assigns more patrols to zones where
more crimes were detected in the previous step. While this approach aims to maximize immediate
observed crime detection, it is highly sensitive to initial data bias and can exacerbate disparities.
The greedy policy typifies the logic of many real-world predictive policing deployments, which risk
amplifying existing feedback loops and producing unfair outcomes.

These baselines provide useful reference points: the random baseline captures the lower bound
of intervention, while the greedy baseline demonstrates the pitfalls of naive data-driven allocation
without fairness considerations.

5 Results

Overall, we find that randomized and fairness-aware patrol allocation methods (Tuned PPO, CPO)
robustly outperform naive and greedy approaches on both fairness and performance, in both synthetic
and real environments. By visualizing DMS metrics and reward tradeoffs, we also highlight the
necessity and effectiveness of explicit bias mitigation in RL for predictive policing.

5.1 Quantitative Evaluation

We evaluate each model on both a synthetically skewed dataset and real crime data from Oakland.
Metrics include average reward, outcome DMS, and procedural DMS (see Tables 1 and 2).

In the skewed environment, the random baseline achieves the highest reward (1530.77) and lowest
disparity (Outcome DMS = 0.00061, Procedural DMS = 0.00034). Despite being uninformed,
its uniform allocation avoids reinforcing bias. In contrast, the greedy baseline earns a low reward
(482.09) and exhibits high disparity (Outcome DMS = 0.700, Procedural DMS = 0.00196), illustrating
how naive data-driven methods entrench existing bias. Vanilla PPO performs similarly poorly, with
the lowest reward (202.67) and highest Outcome DMS (0.776).

Fairness-aware methods significantly improve performance. Tuned PPO achieves a near-optimal
reward (1528.64), while reducing Outcome DMS to 0.0308 and Procedural DMS to 0.00035. CPO
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Table 1: Skewed Environment Metrics

Method Reward Outcome DMS Procedural DMS

Random Baseline 1530.77 0.00061 0.00034
Greedy Baseline 482.09 0.700 0.00196
Vanilla PPO 202.67 0.776 0.00243
Tuned PPO 1528.64 0.0308 0.00035
CPO 1528.60 0.0293 0.00035

Table 2: Actual Environment Metrics

Method Reward Outcome DMS Procedural DMS

Random Baseline 1100.41 0.00084 0.00044
Greedy Baseline 1118.29 0.00076 0.00047
Vanilla PPO 466.08 0.49666 0.00198
Tuned PPO 1098.24 0.03303 0.00044
CPO 1097.82 0.03217 0.00044

yields comparable results (Reward = 1528.60, Outcome DMS = 0.0293, Procedural DMS = 0.00035),
validating that fairness and utility are not inherently in conflict.

In the real-data environment, reward trends shift due to non-uniform true crime rates. The greedy
baseline now performs well in reward (1118.29) but maintains similar disparity (Outcome DMS =
0.00076). Vanilla PPO again underperforms in reward (466.08) and exhibits the highest disparity
(Outcome DMS = 0.49666). Tuned PPO (Reward = 1098.24, Outcome DMS = 0.03303) and CPO
(Reward = 1097.82, Outcome DMS = 0.03217) remain both fair and effective, with procedural DMS
near 0.00044 in both cases. These results demonstrate that fairness-aware methods generalize robustly
across environments.

5.2 Qualitative Analysis

Figure 2 compares outcome and procedural DMS across models. In both environments, the random,
tuned PPO, and CPO agents achieve extremely low DMS values. By contrast, vanilla PPO and greedy
baselines show large disparities—particularly in the skewed case, where vanilla PPO exceeds 0.75 in
outcome DMS and 0.0024 in procedural DMS. Tuned PPO and CPO maintain procedural DMS near
0.00035 across both settings, indicating early and sustained fairness corrections.

Figure 2: Comparison of Outcome and Procedural DMS across models in both the skewed and actual
data environments. Fairness-aware agents (Tuned PPO, CPO) exhibit significantly lower disparity
across both metrics, while naive agents (Greedy, Vanilla PPO) amplify bias—especially in the skewed
setting.
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Figure 3: Reward vs. Outcome DMS tradeoff for all models in skewed and actual data environments.
Only fairness-aware agents (Tuned PPO, CPO) and the Random baseline achieve both low disparity
and high reward. Greedy and Vanilla PPO occupy poor tradeoff regions, highlighting the cost of
reinforcing biased observations.

Figure 3 visualizes the reward–DMS tradeoff. In the skewed case, only the random, tuned PPO, and
CPO agents achieve both high reward and low disparity. The greedy and vanilla PPO models lie far to
the right, demonstrating their poor fairness–utility tradeoff. In the actual environment, the separation
is more compressed, but fairness-aware agents continue to dominate the top-left of the tradeoff space.
These visuals reinforce the quantitative findings: fairness-aware RL agents can effectively balance
equity and performance, while naive methods systematically fail to do so.

5.3 Model-Level Takeaways

The random agent achieves strong fairness by avoiding feedback-driven allocation, and performs
surprisingly well in the uniform-crime setting. The greedy agent performs poorly on skewed data due
to bias lock-in but improves on actual data where observed and true crime distributions partially align,
though at the cost of persistent disparities. Vanilla PPO lacks any corrective mechanism for biased
rewards and quickly converges to unfair policies, leading to poor performance across metrics. Tuned
PPO mitigates this through action normalization and entropy regularization, promoting exploration
and reducing over-allocation to biased zones, which results in low DMS and high reward. CPO
further improves fairness by imposing explicit disparity constraints, maintaining competitive reward
while ensuring robust fairness across settings.

6 Discussion

Our findings highlight the importance and effectiveness of fairness-aware reinforcement learning in
predictive policing contexts. Without explicit interventions, even advanced agents like PPO are prone
to amplifying feedback loops present in biased observational data. This is particularly evident in the
skewed environment, where both vanilla PPO and the greedy baseline reinforce historical disparities
and perform poorly in terms of both fairness and utility.

By contrast, we demonstrate that fairness interventions—through action normalization, entropy
regularization, and constrained optimization—can break this cycle. Tuned PPO and CPO not only
reduce disparate treatment but also maintain near-optimal reward levels, even under challenging
conditions. These results underscore that fairness and performance are not inherently in conflict; with
proper algorithmic design, both objectives can be achieved.

Our evaluation on actual crime data from Oakland further supports the practical value of these
approaches. Despite the shift to non-uniform true crime rates, fairness-aware agents continue to
perform competitively, validating their robustness and real-world relevance.

Limitations. This work relies on simulated crime dynamics and fairness proxies, which do not
capture the full complexity of real-world policing impacts or community harm. While the procedural
DMS metric captures temporal fairness, it remains an aggregate measure and does not account for
compounding effects across demographic or geographic groups.
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7 Conclusion

This work demonstrates that fairness-aware reinforcement learning strategies can significantly re-
duce disparities in predictive policing without compromising performance. In both biased synthetic
environments and real crime data from Oakland, fairness-driven agents—particularly those using
normalization, entropy regularization, or explicit constraints—consistently achieve high crime de-
tection while avoiding reinforcement of data-driven bias. By contrast, naive approaches like greedy
allocation or standard PPO amplify existing disparities, especially under skewed data conditions.

Our results support a broader conclusion: fairness should not be treated as an afterthought in policy
learning systems, particularly in domains involving historically marginalized communities. Explicit
design interventions—such as fairness constraints and exploration incentives—are essential to prevent
unintended harms. While limitations remain in terms of simulation realism and metric scope, this
work provides strong evidence that fairness-aware RL is both feasible and necessary for responsible
AI in public safety applications.

8 Team Contributions

As indicated in the project proposal, the author completed this project independently.
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