Extended Abstract

Motivation The development of Large Language Models has revolutionized our ability to solve
general tasks with machines. Recent developments in the field had shown great promise in leveraging
chain of thought reasoning to improve model performance. The current state-of-the-art open source
method relies on large scale reinforcement learning solely using final answer accuracy rewards. We
seek to develop methods that leverage entropy in different ways to develop structured reasoning traces
to improve beyond simple accuracy rewards.

Method We use the GRPO RL algorithm. It iteratively trains a model by sampling multiple outputs
on the same prompt, then computing a relative reward-based advantage to reinforce responses with
high reward compared to others. DeepSeek-R1, the current SOTA, uses simple binary accuracy
rewards to compute advantage. We propose Answer-level entropy reward (ALER) and token-level
entropy reward (TLER) to be used with GRPO. ALER works by calculating the entropy among the
space of different answers given by the outputs and assigning higher rewards to those with the largest
entropy contribution to the total. Answers that contributed the most to entropy, ie those who are the
closet to other answers, are reinforced, to converge the model to a single answer. TLER encourages
the model to have a high entropy at the token level at the start of its reasoning, then a gradually lower
entropy at the end. It is meant to mimic exploration then exploitation to a unified final answer.

Implementation We use Qwen2.5-Math-1.5B and Qwen2.5-0.5B as our base models. We train on
the GSM8k and DeepScaleR datasets and evaluate on the GSM8k and AIME 2024 datasets. Accuracy
is evaluated based on simply prompting the model to answer within a box and comparing the value
inside the box to the ground truth; preliminary experiments showed this was a simple, effective
method.

Results We find that training our models on GSM8k was more effective than on DeepScaleR
evaluated on both GSM8k and AIME. We find that the models struggler to learn effectively over
training steps on DeepScaleR. On GSMS8Kk, our entropy methods outperformed accuracy rewards.
Notably, our TLER method trained on GSM8k outperformed Qwen2.5-Math-1.5B-Instruct by 1.25
points on AIME. On DeepScaleR, accuracy rewards performed better than entropy-based methods.
Finally, we observe that our methods trained on TLER displayed higher entropy at the start of
reasoning and lower entropy at the end of reasoning compared to other methods, the closest one to
ideal.

Discussion Our entropy methods, trained on just the GSM8k dataset, were able to learn general
problem solving strategies that extended to strong performance increased on AIME. However, the
accuracy-only model learned the most from DeepScaleR. We theorize that accuracy rewards are
more robust and entropy rewards require stronger baseline accuracy to prevent divergence due to
exploration. Finally, our entropy curves after training show that we are effectively able to learn
exploration then exploitation using the TLER method, possibly leading to the effective transfer
accuracy.

Conclusion In order to leverage our entropy methods effectively, training first on an easy dataset
like GSM&8k then training on gradually harder problems leveraging a stronger baseline may be
effective. Overall, TLER is a first attempt to improve LLM ability to explore then exploit and learn to
reason in a more structured, guided way. We have evidence to show it takes a step towards achieving
that, and explore the cases in which it succeeds and fails. The field of reasoning is moving fast, and
there are many more explorations of reward functions beyond accuracy to be done in the coming
future.
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Abstract

We introduce novel entropy-based rewards for chain-of-thought reasoning rein-
forcement learning. Past works have shown that prompting Large Language Models
to think step by step in a process called Chain of Thought reasoning can improve
their ability to think and solve problems. However, the current leading methods
depend primarily on final answer accuracy rewards. Such rewards suffer from a
lack of interpretability in the reasoning trace, in addition to being sparse and binary,
which can make convergence more difficult. In this paper, we explore methods
that go beyond accuracy rewards, focusing on the idea of entropy. We introduce
Answer-level and Token-level Entropy Reward (ALER and TLER, respectively),
methods that encourage the model to have a structured exploration and exploita-
tion step in its reasoning. We experiment with post-training Qwen2.5-0.5B and
Qwen2.5-Math-1.5B on base accuracy, answer-level and token-level entropy GRPO
rewards on the GSM8k and DeepScaleR datasets. We find that training with TLER
on GSMS8k outperforms Qwen2.5-Math-1.5B-Instruct on AIME by 1.25 points and
entropy-based methods learn general problem solving abilities that better optimize
entropy across the thinking trace.

1 Introduction

In the past few years, Transformer-based Large Language Models (LLMs) have asserted themselves
as powerful general task solvers. OpenAl was the first to publicly release results from web-scale
pretraining of LLMs, and found that mere next-token prediction at scale can produce Al models good
at many tasks [Radford et al.|(2019) Brown et al.| (2020). Beyond pre-training, modern LLM research
has focused on aligning language models to human preferences through the use of reinforcement
learning from human feedback (RLHF) and instruction finetuning (Ouyang et al.| (2022)). These
methods have enabled LLMs to act as helpful assistants and solve general tasks very effectively for
use in daily life.

The very latest progress in LLM research has been to improve reasoning ability through a process
called Chain-of-Thought (CoT) reasoning. This was first introduced by Google, who showed that
simply prompting a language model to "think step by step" before giving its response significantly
increased its performance |Wei et al.| (2022). Many methods have been proposed since then to directly
train models to "think" before answering, beyond prompting.

Closed source reasoning models like OpenAI’s ol have dominated benchmarks in terms of reasoning
ability|OpenAll (2024). However, in January 2025, DeepSeek released DeepSeek-R1, an open-sourced
LLM that rivaled o1’s performance on major benchmarks |DeepSeek-Al| (2025). It was trained with
Group Relative Policy Optimization (GRPO) introduced in an earlier paper|Shao et al.|(2024). This
reinforcement learning method proved highly effective by being data and memory efficient. However,
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while it had impressive numerical performance, its reasoning traces lack structure, logical consistency,
and many times, the reasoning did not even correlate to its final answer.

In this paper, we introduce Token-Level Entropy Reward (TLER). TLER rewards a language model
to have high entropy at the start of its reasoning chain and gradually lower entropy until the end.
Entropy has been shown to be a key metric in reducing LLM hallucination and correlating with final
answer correctness. When solving a problem, humans will naturally brainstorm multiple ideas first,
then think deeply about a few number before coming to the final answer. We propose this formulation
from the hypothesis that high entropy will encourage the model to explore multiple different solutions
at the start of its reasoning trace, then converge to a unified correct answer by the end of its reasoning.
TLER reinforces reasoning traces with this format with dense, process-based rewards.

We explore accuracy rewards, TLER, as well as Answer-level Entropy Rewards (ALER), where
we reward convergence in model answers. We train a language model using GRPO on all three of
these rewards methods on the GSM8k and DeepScaleR datasets, for 1.5B and 0.5B models. Our
TLER method trained on GSM8k is able to outperform Qwen2.5-Math-1.5B-Instruct on AIME by
1.25 percentage points on average and 2 questions out of 30 in pass@8. From our experiments, we
find that entropy rewards improve most effectively when the base model has a strong grasp of the
problem to start with, and learn general problem solving ability that generalizes even among datasets
of varying difficulty. Furthermore, on such datasets, TLER trains the model for effective exploration
and exploitation measured by a more optimal token entropy distribution.

2 Related Work

Past work in training LLMs for CoT reasoning has debated Process Reward Models (PRMs) vs
Outcome Reward Models (ORMs). Early work in reasoning was in favor of PRMs. A 2023 work by
OpenAl |Lightman et al.|(2023) designed a process reward model using 800k step-by-step human
feedback annotations for solutions to mathematics problems. They found the PRM was significantly
more correlated than an ORM trained on 100 times the data in correctness of its reasoning and
solutions, and was more logical and aligned to human preference. However, this method requires the
collection of human annotations, which is expensive and subject to bias and variation.

While DeepSeek-R1 gained high performance using its accuracy-based ORM with novel training
techniques, it suffers from a lack of logical consistency and structured reasoning. The original
paper pointed it out as a limitation: DeepSeek-R1-Zero, their version of the model trained purely
with accuracy-based rewards, would sometimes reason in different languages even when prompted
in english. While true of language models in general, its thinking process was not logical or
mathematically precise. This evidence point to a lack of interpretability in the model’s reasoning.
Interpretable, mathematically logical reasoning steps are essential for validating the model’s final
answer and ensuring transparency and trust for the user.

Furthermore, research by Aviral Kumar and others has asserted that DeepSeek-R1’s outcome-based
rewards lead to suboptimal test-time compute and convergence to the correct answer |Qu et al.
(2025)). DeepSeek-R1 was observed to go through different ideas in a seemingly random order before
answering. Many times, its answer would not even correlate to its reasoning. They propose a PRM
method that rewards a model for making the most amount of progress at each step in its reasoning. It
does so by analyzing future reasoning paths at given steps, and rewarding those steps based on how
many of those reasoning paths succeed.

However, their PRM approach was motivated primarily by optimizing test-time compute. The method
we propose aims to introduce structure and interpretability in the language model’s reasoning through
regulating its token-level entropy at different stages in its reasoning. Furthermore, computing multiple
future pathways at training time is expensive, and we sought to develop a method that only requires a
linear reasoning path. Our GRPO-based method only requires linear reasoning traces to compute
reward.

Entropy has been shown to correlate strongly with hallucinations in language models. One such
paper introduced the concept of semantic entropy [Farquhar et al. (2024) and found it correlated
highly with hallucinations in LLM output. Semantic entropy is computed as the entropy across the
space of different possible answers the model gives. Answers are grouped into semantic clusters,
evaluated by bi-directional implication determined by a lightweight LLM (DeBERTa). This way,
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even if two answers are different in terms of wording but represent fundamentally the same idea, they
are considered the same for the entropy calculation. Answers with high entropy were most likely
hallucinated, and answer with low entropy most likely were not.

Inspired by this result, we posed the question: could we train an LLM to produce solutions with high
entropy? As the LLMs learns to give the correct answer, it also learns not to hallucinate in parallel.
Beyond that, our method deviates from existing methods significantly. In order to avoid using an
LLM as an evaluator to compute semantic equivalence, our method works at the token level instead
of computing semantic clusters. Furthermore, we sought to consider the reasoning trace itself, not
just the distribution of final solutions. We present the precise formulation of our PRM below.

3 Method

3.1 GRPO

All of our experiments were run using the GRPO algorithm proposed by DeepSeek. While traditional
optimization algorithms like PPO require a separate critic and actor model, GRPO optimizes it away
by considering the relative advantage between a group of G different outputs. It samples multiple
outputs on the same prompt using policy 7y ,, and reinforces the log probabilities of all of tokens in
the policy mg with the following formula:
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where Dy, is the familiar KL-divergence from PPO of the old and new policy to prevent drifting too
fast from the old policy:

B 7o (0la)
Do | meer) = 3 _molol) log ey

In DeepSeek-R1-Zero, we have the advantage function A; based on the normalized reward
; — mean{ry,...,7¢}
std{ry,...,rq}

The advantage function can be used to optimize arbitrary rewards. In the original DeepSeek-R1 paper,
they propose a simple accuracy reward, where r; = 1 if the ith solution is correct, else r; = 0. Thus
correct answers are rewarded, and incorrect answers are punished, and their magnitude scales with
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how rare their rewards were. They also used format rewards, where the models were rewarded to
keep their thinking traces within special <think> tokens and answers within <answer> tokens. In this
paper, we do not consider any format rewards. The model is free to think and answer in any order (in
practice it always answers at the end) for simplicity.

3.2 Answer-level Entropy Rewards

Before, we introduce TLER, we also experimented with an intermediary entropy-based reward
method, closer to the result of Farquhar et al.| (2024), which we will call Answer-Entropy reward.
While their semantic entropy algorithm only measured the entropy across all answers, we want a
different reward value for each answer. Thus, we converged on the idea of entropy contribution. On
the same prompt, we sample G different outputs. We extract only the answers of those outputs. For
each output, we then calculate (1) the total entropy across all answers, and (2) the total entropy across
all answers without considering the answer from that output. In other words, for GG, being the set of
outputs for a given prompt p, we count
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Then, for each generation g € G, we do the same but instead calculate the entropy across all outputs
minus the current generation g:

C/

¢, =#{i€G,/{g}: answer; = a}, P(a) = Zac’
b b

and we get the remainder entropy
Hrest(Gpvg) = - ZP/(G) log Pl(a)'

We calculate the difference between the total and the remaining entropy to get a raw reward value
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We normalize by the total entropy to be consistent within batches. With our r, value, we normalize it
to be between [0, 1] to get the final reward value for that generation
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Thus, answers are rewarded based on how much they contributed to entropy. If an answer contributes
positively to entropy, that means it was a common answer (it made the space of answers more ordered)
and it is rewarded, and if it contributes negatively, it was an uncommon answer (it increased the
disorder of the space and moved it closer to uniform) and it is negatively rewarded.

3.3 Token-level Entropy Reward

Our token-level entropy reward function is similar to the answer-entropy reward function, except
that it measures entropy contribution based on the token distribution. Like before, we sample G
outputs from a prompt p to get a set of outputs G,. Then, each output is cut into n segments (for
our experiments, n = 5) such that a given element g € G, is represented as g = s1]|s2||s3]|s4| 5.
Each segment is of equal length for answers of varying length; thus the cutting is based on percentile.
Define S; = {s; € g : g € G, } representing the set of the jth segment for all responses.

For each segment across all completions, we compute the entropy

Hou(S;))=— Y, P(t)logP(t)

tetokens(S;)
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Figure 2: Visual Representation of the entropy contribution per segment calculation (d, ;) in TLER. x-
axis represents segments, y-axis represents different responses. Observe that the entropy contribution
is computed as the total - rest entropy for a given segment.

for P(t) being the number of times it appears divided by the total number of tokens. Then, similarly
to the previous entropy method, for each generation g = s1||s2||ss||s4||ss, for each of its segments
5; we compute the remainder entropy per token:

Hrest(sjvsj(g)) = - Z P(t) logp(t)
t€tokens(S;/{s;(9)})
For each completion g this results in n values for the entropy contribution of each of its segments
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Then, we take a linear combination of these segments entropy contributions to get our raw reward
value. We chose w = [0.57 0.3, 0.1, —0.3, —0.5] as our weights for the linear combination.
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Our choice of w is such that positive weights on the first three segments encourage exploration (high
entropy) early, while negative weights on the last two segments encourage convergence (low entropy)
later. After that, we put it through the same normalization function as before to get our final result
r; — min;(r;)

T, =

max;(r;) — min;(r;)
Thus, if an answer has high entropy at the start or low entropy at the end of its reasoning, that

contributes positively to its reward, and vice versa. This token level heuristic allows us to approximate
exploration and exploitation.

4 Experimental Setup

We made initial experiments with prompting and final answer validation in preparation for training.
After that, we explored a variety of datasets, models, and methods to evaluate different entropy
approaches.

4.1 Base Models

We chose to use the Qwen2.5 family of models as our base models Team|(2024)) due to their wide
use in existing literature. Our initial experiments were performed on Qwen2.5-0.5B. After that, we
expanded to the Qwen2.5-Math-1.5B model [Yang et al.|(2024). Qwen2.5-Math-1.5B differs from
Qwen2.5-1.5B in that it includes additional finetuning on a mathematical corpus. We also report



evaluation baselines for Qwen2.5-0.5B-Instruct and Qwen2.5-Math-1.5B-Instruct. These models
were trained with instruction finetuning on top of the base model to align with user preferences
and solve tasks directly. Furthermore, Qwen2.5-Math-1.5B-Instruct included post-training with an
LLM-based 70B process reward model.

4.2 Datasets

We trained our initial models on the GSM8k dataset|Cobbe et al.|(2021)). This is a high quality corpus
of mathematical question answer pairs at the grade school level, spanning 7.4k training set and 1.3k
testing set. The questions require only a few steps of reasoning and can be solved without equations,
only using natural language.

We also experimented with the much harder DeepScaleR corpus|Luo et al.|(2025). This dataset is
a combination of AIME problems from 1984-2023 and AMC problems before 2023, along with
questions from the Omni-MATH and Still datasets. AIME, which stands for the American Invitational
Math Exam, and AMC, the American Mathematics Competition, are nationwide math competitions,
spanning a collection of very difficult questions. These problems require many steps and mathematical
equations. The DeepScaleR corpus was curated to remove duplicates and answers that could not be
easily graded, and all problems have numerical answers, culminating in 40k question answer pairs.
We use the AIME 2024 questions as the testing set to evaluate our model on this dataset.

4.3 Answer Extraction

Our system prompt was "Please reason step by step, and put your final answer within \boxed{}." We
found in our early experimentation that even the models without post-training were able to align to
this format. Using this, we evaluated the models accuracy by searching for \boxed{} in the model’s
answer, and extracting the text inside to compare to the ground truth answer. We found that the
model would always only answer with a single box and it would align with its final answer with high
probability.

4.4 Reward Functions

We show results for training with accuracy-only reward, replicating DeepSeek-R1-Zero, as a baseline
for both Qwen2.5-Math-1.5B and Qwen2.5-0.5B base models.

We further experiment with training both models on answer-level and token-level entropy methods.
Our experiments with the two different entropy rewards also include accuracy rewards. For answer-
level entropy rewards, both rewards have the same weight. For token-level entropy rewards, we report
experiments with TLER weighted by 0.6 to keep the model focused on final answer accuracy. We do
not perform exhaustive hyperparameter tuning on the reward weights; that is one limitations of this

paper.

5 Results

We find that our token-level entropy reward method is able to outperform Qwen2.5-Math-1.5B-
Instruct on the AIME’24 dataset when trained on GSM8k. Furthermore, answer-level entropy rewards
performed best for the 0.5B base model. Models trained on the DeepScaleR dataset performed worse
than those trained on GSM8k.

5.1 Quantitative Evaluation

We report full quantitative results of our main experiments in [5.I] Because AIME 2024 is a 30
question test, we compute an average score and 95% confidence interval over 8 runs. Furthermore,
we report pass @8 accuracy and average response length (in terms of characters) for the same runs.
Finally, we report percentage accuracy on the test set of GSM8k. We report results for 0.5B models
trained on GSMS8k, 1.5B models trained on GSM8k, and 1.5B models trained on DeepScaleR (noted
as DSR).



Method (Dataset) GSMS8k (%) AIME’24 (95% CI) Pass@8 (%) Avg Length

Qwen2.5-Math-1.5B 60.58 7.08 £ 3.21 23.33 2984.43
Qwen?2.5-Math-1.5B-Instruct 83.78 10.00 £ 2.04 23.33 2844.71
Accuracy Rewards (DSR) 79.30 7.92 + 3.32 26.66 2974.30
Answer-level Entropy (DSR) 64.37 6.25 +£2.48 26.66 3074.93
Token-level Entropy (DSR) 78.70 7.50 £ 2.56 26.66 2819.33
Accuracy Rewards (GSM8k) 80.67 833 +£3.54 26.66 3158.50
Answer-level Entropy (GSM8k) 82.56 9.58 £2.48 26.66 3083.33
Token-level Entropy (GSM8k) 76.95 11.25 + 2.34 30.00 3151.24
Qwen2.5-0.5B 40.56 0.00 £ 0.00 0.00 3100.13
Qwen2.5-0.5B-Instruct 44.20 0.00 + 0.00 0.00 2406.85
Accuracy Rewards (0.5B) 51.86 0.83 £1.02 3.33 2833.29
Answer-level Entropy (0.5B) 49.73 1.25 + 1.14 10.00 2895.42
Token-level Entropy (0.5B) 50.27 0.83 £ 1.02 6.67 2309.58

Table 1: Test set accuracy comparison across all base models, reward methods, and datasets. We
report GSMSk test set and AIME 2024 % accuracy. We additionally report a 95% confidence interval
for AIME 2024 based on its standard deviation over 8 runs, and its Pass@8 accuracy. We also report
average response length in characters on the AIME questions

We began by training Qwen2.5-Math-1.5B and Qwen2.5-0.5B base models with simple accuracy-
based GRPO. Our GRPO baseline is able to increase the accuracy on GSM8k by 20 points for the
1.5B model and 11 points for the 0.5B model when training on GSM8k.

Next, we implemented answer-level and token-level entropy rewards. Training on GSM8k, we found
that answer-level entropy increased performance on GSM8k by 2 points from the accuracy rewards,
almost reaching the Qwen2.5-Math-1.5B-Instruct accuracy. On 0.5B, our answer-level entropy
rewards outperformed all other methods on AIME results, solving 3/30 questions in pass@8. We
also see that our entropy-based methods have significantly lower standard deviation in their accuracy
compared to the accuracy rewards, yet their pass@8 accuracy is equal to or better.

Furthermore, we found that, even though the 1.5B models were only trained on GSM&8Kk, their
performance on AIME’24 increased significantly. The answer-level entropy method increased AIME
accuracy by 3 points from the base model, as well as 1.25 points above the accuracy-only rewards.
Token-level entropy increased it by 5 points, even surpassing Qwen2.5-Math-1.5B-Instruct by 1.25
points. Furthermore, its pass@8 accuracy evaluation showed that it was able to solve one additional
question (out of 30 questions on the AIME exam) compared to other post-training methods, and 2
questions compared to the base models. While the model does not outperform Qwen2.5-Math-1.5B-
Instruct by a statistically significant margin based on our confidence interval computation, the results
are striking nonetheless.

We then decided to train with our three different methods on the DeepScaleR dataset. Surprisingly,
training on this dataset had significantly worse final answer accuracy than when trained on GSM8K,
even for AIME’24 evaluations. The answer-level entropy reward model’s accuracy sank to below the
baseline on AIME. GSMS8k accuracy increased, and AIME accuracy increased by less than a point for
the other two methods. The models learned significantly less on the DeepScaler dataset than GSMS8K,
which we discuss further below.

We report training curves in[3] The top two curves show accuracy rewards (proportion of correct
answers) for the GSM8k and DeepScaleR experiments, respectively, across all three models. The
entropy_rewards curve on the bottom left represent the TLER reward value, and the bottom right
curve represents Answer-level entropy reward (ALER in the labels) for both GSM8k and DeepScaleR
(since the corpora are differently sized, the DeepScaleR curves go on for longer).

We first observe that, across experiments, the rewards rise fast initially, then largely stabilize for the
rest of training. The effect is less pronounced for the DeepScaleR models, which was indicated by
their reduced improvement on the testing sets compared to the base models. Indeed, accuracy rewards
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Figure 3: Reward curves per training step for 1.5B models (Model | Dataset). Top left is GSM8k
accuracy, right is DeepScaleR accuracy, bottom left is TLER, right is ALER across relevant 1.5B
models.

on the DeepScaleR dataset for all models rises very slowly across training, while GSM8k accuracy
rewards show notable improvement across training steps.

The two entropy methods in the GSM8k experiment showed significantly higher performance over
time than the base model. On the DeepScaleR experiment, there was little difference between each
method, and the rewards had a large amount of noise across steps. On the token-level entropy method,
we see the model is able to learn the reward significantly more effectively on the former dataset,
although it exhibits more noise. The same is not as clear for the answer-level entropy rewards. On
average, its answer-level entropy values are higher, but not significantly so, exhibiting significant
noise.

5.2 Qualitative Analysis

To more deeply investigate the difference in token-level entropy rewards and the model’s ability to
explore and exploit, we graph the average entropy contribution per segment for each model after
training on DeepScaleR infd] We see that, across the board, GRPO reduces token-level entropy; the
base model has the highest entropy in segments 1-5. Accuracy rewards created the lowest entropy
generations in segments 0-4, representing a collapse in diversity that may have hindered its accuracy
across datasets. Notably, TLER successfully has the highest first segment entropy and the lower last
segment entropy, representing its strongest reward coefficients. It aligns closest to the ideal curve
compared to others, although remains far off. Answer-level entropy, which performed poorly trained
on DeepScaleR, is shown here as having high final-segment entropy, potentially predicting its lower
eval scores.

Our experiments reveal significant differences in how different reward models impact model behavior
across datasets of different difficulty and diversity. Our results indicate that TLER is able, to some
degree, increase model exploration and convergence to a solution, shown by its higher entropy value
for the first segment and lower entropy in its last segment and answer standard deviation. When
trained on GSMS8k, whose solution paths are relatively homogeneous, TLER enabled the model to
learn general problem solving abilities; its performance transferred effectively to AIME. DeepScaleR
is a harder problem space to optimize over, where only a small set of solution paths are able to find
the correct answer. There, the TLER method’s exploration bonus sometimes led the model astray,
causing early saturation and lower final accuracy.

Answer-level entropy rewards echo some of these conclusions. ALER is able to converge effectively
around solutions, if common solutions exist with a reasonable frequency. It performed the best on
GSMS8k when trained on GSM8Kk, but performed the worst on AIME when trained on DeepScaleR. If
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the number of answers that are correct are low, the algorithm will reward answers that are not correct,
which might cause divergence in training. The token-level entropy of its final segment is higher,
reflective of its inability to converge to a solution on DeepScaleR. On the other hand, on an easier
dataset where the model is more frequently correct, it makes the model converge more effectively
to those answers, causing the high performance on GSMS8k. Its also transfers the most effectively
from GSM8k to AIME on the 0.5B model, a medium difficulty task in between 1.5B on AIME and
GSMB8k. Perhaps at that size, there are enough correct answers that the answer-level entropy reward
reinforces training with a dense reward signal.

Our training curves show that models trained on GSM8k are able to better learn our entropy rewards
compared to on DeepScaleR. By contrast, simple accuracy rewards proved more robust on the
heterogeneous DeepScaleR dataset, being able to continuously improve however slowly, reaching the
best accuracy on that dataset compared to the entropy-based methods. A clear correctness signal is
essential to guide the model toward the narrow set of valid approaches on this dataset. For GSM8Kk,
accuracy rewards performed consistently on the GSMSk test set but generalized worse to AIME. In
addition, from this model’s entropy curves per segment, we see that its overall entropy decreased,
collapsing to a worse level of exploration and exploitation that entropy-rewards mitigated.

6 Discussion

Our results were limited in multiple ways. We were limited in terms of compute, so we were only
able to experiment with 1.5B models and 0.5B models on a 2000 token context window. Larger scales
may change convergence behavior and emergent properties. We also did not implement format-based
restrictions or rewards, instead extracting the boxed answer and comparing it to the ground truth,
requiring the model to learn format rewards through accuracy, which can be slower.

Futhermore, our entropy-based methods run the risk of reward hacking due to evaluating only on
token-level entropy. For example, the model could output many rare tokens to artificially increase its
entropy in the first stages. However, it nevertheless teaches the model to have more new tokens at the
start, which can increase the amount of possible branches and therefore opportunities for successful
branches, if exploited upon successfully later in reasoning.

The AIME 2024 benchmark is also a very small evaluation set, prone to a lot of variation in
performance. While our results, especially for TLER, are higher than baseline, some results are not
statistically significant at the level of 95%, so they cannot be accepted outright. More experimentation
would have to follow to fully verify our results. Nevertheless, the improvements on entropy and
across datasets remain significant.

Some difficulties we faced during the project were mainly getting models running on the computing
cluster. It required tuning the batch size, gradient accumulation, and the number of generations per
step in order to fit everything efficiently in the context window. Training also took over 24hrs in some



cases, requiring constant attention for bugs and inaccuracies in implementation so that results are
accuracy and quality controlled.

Beyond that, we hope that our work can be used to inspire methods to train reasoning models that
can think in human-interpretable ways. We hope to gain a broader interpretability of LLM thinking
processes, and how they compare with human’s, so that we can understand the answers they give us,
and in which directions we can improve future language models.

7 Conclusion

We conclude that our entropy-based methods are able to reinforce the accuracy of tasks the model
already has some grasp over. Furthermore, training on easier datasets allow the models to learn
general problem solving skills that transfer to more difficult datasets. On these tasks, the models
learn to explore and exploit effectively. In difficult datasets without a warm start, entropy rewards
confuse and hinder learning from the accuracy rewards.

We propose that, for training models with entropy-based rewards in the future, a strong strategy might
be to incorporate a staged training procedure. First, we can train on easy datasets the base model
already has a strong grasp of. Then, we can gradually extend to more difficult datasets, where the
model can now continue to improve its problem solving ability. This methods enables the model
to only train on tasks where it starts with a strong base accuracy, where it has been proven to work
effectively.

Furthermore, we can scale these experiments to larger models to measure scaling laws from our
entropy rewards. With more compute, we can increase the context length of our models to allow
for longer, complex reasoning traces. TLER may perform better if it has more room to explore in
the context window. We can also explore varying the number of segments from 5 to, say, 2 or 10,
to measure if a higher level of granularity can improve TLER. We can also place a higher reward
coefficient on the TLER rewards, and see if we can continue the positive trend we observed in our
entropy per segment curves to get closer to our hypothesized idea.

The field of open source methods for training LLMs for mathematical reasoning has just begun. After
DeepSeek-R1 was introduced 6 months ago, countless hours of work across the globe have been
spent to recreate their results and explore improvements. We present one such example in this work,
but there is still much more work to do. There are many signs that chain-of-thought reasoning is the
future of LLMs, and large scale reinforcement learning is the most effective method of training we
have. It is a path research will continue to explore, and we will continue to emphasize interpretability
in reasoning and thinking.

8 Team Contributions

* Julien Darve: Prompt engineering. Answer extraction pipeline. Base model and dataset
curation. Reward function formulation and design. GRPO trainer implementation and
deployment. Running and monitoring all experiments. Model evaluation on testing sets.
Entropy experiments and analysis.

Changes from Proposal We originally proposed to implement a method closer to|Farquhar et al.
(2024)), but landed on token-level entropy for the reasons described in our methods (not LLM-based
so less hackable, faster to compute, clearer to implement/evaluate). ALER essentially covers the
exploration of that technique. We also planned for our entropy reward feedback to be at the advantage
level, ie computing A=A, —aH (1) to reduce the entropy in the answers. However, we decided
to use the idea of entropy contribution to have a different reward per output, in order to use GRPO
as it was intended with individual rewards per output to compute relative advantage. We originally
planned to train the model on NuminaMath, but the dataset was less standardized than DeepScaleR,
so we went with the latter.
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