
Countdown to Brilliance: Evolving Math Reasoning Through
Train and Test-Time Compute

Motivation Supervised fine-tuning (SFT) demonstrates significant improvements in the Countdown
task, but is limited by the quality of the dataset. We explore two methods of improving performance
over SFT: 1) additional train-time compute and 2) additional test-time compute. Train-time compute
aims to optimize the dataset through iterative augmentation and curriculum; test-time compute
exploits known reward models to increase performance through increased samples.

Method Expert iteration (ExIt) augments the SFT dataset by having multiple rounds of "experts"
add to the dataset, increasing diversity through off-policy samples. Each expert generates responses to
unsolved Countdown problems, but this leads to poor sample efficiency as experts attempt problems
that are too easy/hard. Curriculum learning (CL) solves this by finding an optimal difficulty level for
each expert to solve.

Due to the stochastic sampling of LLMs, multiple generation samples can have different answers.
Best-of-N sampling exploits this at test-time by generating N responses for each question. Then, a
verifier can score each response, and the best response is chosen. To further improve sample efficiency,
we dynamically vary N with an exponential schedule for each problem based on its difficulty.

Implementation The methods are evaluated by training the Qwen 2.5 0.5B base model. The
provided Countdown warmstart dataset is used as a baseline for SFT. ExIt, CL, and RLOO sample
unsolved problems from the same TinyZero dataset. Three different hand-crafted curriculum for CL
are tested by increasing available operators, number count, and number range. We also discuss the
usage of third-party LLMs for automatic curriculum crafting.

Results As a baseline, SFT on the warmstart dataset achieves a 0.33 score on the test dataset. ExIt
vastly improves model performance—surpassing reinforcement learning methods like RLOO through
fine-tuning alone—with a score of 0.51. CL achieves comparable performance (0.40) to ExIt with
only 35% of the samples using a naive hand-crafted curriculum. Test-time compute achieves the best
score by far of 0.93 at the cost of additional samples during inference time. Notably, we outperform
much larger commercial models like Gemini-Pro-2.5-06-05 Low Reasoning Mode (which scores
0.78) and reached 2nd place on the CS224R class leaderboard.

Discussion A good training dataset for SFT can outperform reinforcement learning, as ExIt sur-
passes RLOO in performance. At the same time, ExIt is the least sample-efficient training method
tested. Curriculum learning improves sample efficiency, but crafting an effective curriculum is unin-
tuitive and not trivial; further work should aim to automate curriculum crafting as using third-party
LLMs proved to be intractable. Test-time compute is far more effective than train-time compute in
improving Countdown performance, achieving a near perfect score with enough samples. However,
test-time methods add inference latency that is undesirable in user-facing applications.

Conclusion This work explores tradeoffs in sample efficiency and model performance. For domains
like Countdown where verification is fast and cheap, test-time compute quickly improves performance
with small number of samples. The added inference latency can be reduced by transferring compute
from test to train time using expert iteration and curriculum learning. Boosting the training dataset
with off-policy samples significantly boosts SFT performance at the cost of compute, but this cost
can be minimized with cleverly designed curriculum.

Countdown to Brilliance: Evolving Math Reasoning
Through Train and Test-Time Compute

Codey Sun
Department of Electrical Engineering

Stanford University
codeysun@stanford.edu

Doug Fulop
Department of Computer Science

Stanford University
fulop@stanford.edu

Xiang Li
Department of Computer Science

Stanford University
kevin02@stanford.edu

Abstract

Countdown is a math reasoning task used to evaluate the arithmetic reasoning
of a large language model (LLM). Through supervised fine-tuning (SFT) alone,
emergent reasoning capabilities demonstrate impressive performance on simple
Countdown problems. However, SFT performance is limited by the quality of the
training dataset. This work explores expert iteration and curriculum learning as
methods of improving SFT performance through dataset augmentation. In addition,
we explore the tradeoff of train-time compute and test-time compute methods for
optimizing Countdown performance.

1 Introduction

Countdown is a math reasoning task used to evaluate the arithmetic capabilities of a large language
model (LLM). Given an array of numbers and a target, the LLM must find the correct sequence of
arithmetic operations (from +,−, ∗, /), to convert the numbers to the target. For example,

nums: [72, 30, 29]
target: 72

answer: (30 - 29) * 72

The simplicity of Countdown’s format and score function, yet challenge for small LLMs to solve
effectively, makes it an accessible test bed for math reasoning. This project explores methods
improving the LLMs performance in the Countdown task through expert iteration and curriculum
learning. In addition, we evaluate the effect of test-time inference strategies in improving Countdown
performance.

2 Related Work

Self-play in RL is a variant of multi-agent in which the model competes with a copy of itself in an
adversarial manner. Doing so ensures that the model learns in an environment with an adversary of
similar level as the agent, maximizing performance gains. This self-play method has shown promising
results in games such as Go Silver et al. (2017).

The most related work to us is STP Dong and Ma (2025), which trains a single agent to act as both a
conjecturer that comes up with math statements with appropriate difficulty level and act as a prover

Stanford CS224R 2025 Final Report

Figure 1: Method Overview. Gray blocks show the vanilla SFT pipeline using the warmstart dataset.
We first add the expert iteration (blue) to iteratively augment the dataset with new samples given
unsolved problems. Next, we add a curriculum (orange) to improve sample efficiency.

to prove those statements. Previous works like Wu et al. (2024) wastes the majority of their compute
on unsuccessful proofs that are too challenging for the model. STP solves this issue by iteratively
and dynamically adjusting the difficulty level of synthesized proofs so that the prover can receive
meaningful, dense reward signals during training.

MINIMO Poesia et al. (2024) aims to have a model learn conjecturing and theorem proving through
intrinsic motivation—learning from an environment with no explicit goals. In this case, the environ-
ment’s action space is the axioms of a mathematical domain. Like STP, MINIMO performs self-play
alternating between conjecturing and proving. MINIMO also introduces hindsight labeling, in which
failed trajectories are recycled as successful trajectories by changing the goals, improving sample
efficiency. The key difference from STP is that MINIMO trains from scratch in an environment with
finite action space (the axioms).

Both of these works focus on theorem-proving in formal languages through automatic curriculum
learning. Our work relaxes this constraint, instead applying self-play to the Countdown task. In
addition, we explore different curriculum crafting methods and compare their effectiveness in both
sample efficiency and effectiveness.

Scaling test-time compute has been shown to more effectively improve model performance on math
problems Snell et al. (2024). Given the same sample budget, Cobbe et al. (2021) doubles the test
solve rate on GSM8K by using verifier-based test-time scoring. Their simple idea, best-of-N, rollouts
N samples from the model and returns the best sample with the highest verifier score. We explore the
effect of test-time compute on the Countdown task.

3 Method

As part of the default project, the base Qwen 2.5 0.5B model is pretrained on a warmstart dataset
through supervised fine-tuning (SFT). This pretrained model can than act as a starting point for
reinforcement learning methods like RLOO Ahmadian et al. (2024).

This project explores two methods of improving performance over vanilla SFT: 1) additional train-
time compute and 2) additional test-time compute. Train-time compute primarily attempts to augment
the initial SFT dataset through expert iteration and curriculum learning. Test-time compute explores
how increasing samples and exploiting a known verifier can significantly increase performance. We
also compare the sample efficiency of the methods.

3.1 Train-time Compute

SFT alone achieves significant improvements in the Countdown task from the base model. However,
given a limited dataset, SFT saturates quickly as the training expends all available knowledge from
the given examples. In addition, the dataset may contain erroneous examples that limit the model’s

2

upper bound performance. Solving this garbage-in, garbage-out problem is the intuition behind the
first improvement: augmenting the dataset with off-policy samples.

Expert iteration (ExIt) aims to augment the SFT dataset by having multiple iterations of “experts"
add to the dataset Havrilla et al. (2024). After the base model is trained through SFT, it is treated as
an expert. Afterwards, N unsolved Countdown problems are sampled and answered by this expert.
Correct responses—as verified by the reward function—are appended to the SFT training dataset,
and the model is retrained on the augmented dataset. Repeating this process effectively adds many
off-policy trajectories being included in the dataset, making the dataset more diverse. Note that for
each iteration, we retrain the model back from the base model. Otherwise, the model learns little
additional information from its own responses.

However, blindly sampling problems for experts to answer results in very low sample efficiency as
hard problems can take many samples to solve correctly, if solvable at all. This can be solved by
defining a problem difficulty level suitable for the model. As demonstrated in Dong and Ma (2025),
the order in which a model learns skills can drastically vary its reasoning abilities. In other words,
by crafting a curriculum that allows the model to effectively learn foundational skills, curriculum
learning (CL) can be 1) more efficient and 2) more effective. In practice, we compare three different
hand-crafted curriculum and discuss the use of LLM-crafted curriculum in a multi-agent setup.

Figure 1 showcases the improvement added to the SFT pipeline.

3.2 Test-time Compute

Naively sampling N times for each question is compute intensive. This is because some questions
are easy and a solution can be found in one or very few trials while other questions are much more
challenging and require more trials. The optimal strategy in theory is to sample each question variable
number of times until a correct solution is verified. However, this can be very slow in practice
due to suboptimal use of GPU resources. To strike a balance between sample efficiency and GPU
utilization, we design an exponential sampling schedule as shown in Algorithm 1, where we batch
sample unfinished questions in each iteration and doubles the number of samples for each question.

Algorithm 1 Exponential Sampling Schedule
Require: Dataset D = {q1, q2, ..., qn} of queries
Ensure: Best completion c∗i for each query qi

1: U ← {1, 2, ..., n} ▷ Unfinished query indices
2: k ← 1 ▷ Initial sample count
3: for i ∈ {1, ..., n} do
4: Ci ← ∅ ▷ Completions for query i
5: Si ← ∅ ▷ Scores for query i
6: end for
7: while |U | > 0 do
8: for i ∈ U do
9: Generate k completions for query qi

10: for each completion c do
11: s← EVALUATE(qi, c)
12: Ci ← Ci ∪ {c}
13: Si ← Si ∪ {s}
14: end for
15: end for
16: U ← {i ∈ U : max(Si) < 1.0} ▷ Keep queries without perfect score
17: k ← 2k ▷ Double the sample count
18: end while
19: for i ∈ {1, ..., n} do
20: c∗i ← argmaxc∈Ci Si(c) ▷ Best completion for query i
21: end for

3

4 Experimental Setup

The initial base model is the Qwen 2.5 0.5B model. The Asap7772/cog_behav_all_strategies
warmstart dataset is used as the initial dataset for SFT Gandhi et al. (2025). For RLOO and expert iter-
ation, unsolved Countdown problems are sampled from the Jiayi-Pan/Countdown-Tasks-3to4
dataset provided by TinyZero Pan et al. (2025). For validation, we hold out 200 unsolved problems
from this TinyZero dataset.

For SFT, we train with an effective batch size of 8 for 5 epochs; the learning rate is 5e−5 and decays
on a linear schedule. Each expert iteration follows these same hyperparameters with an additional
boosting step, wherein responses are sampled until 250 correct responses are added to the training
dataset.

For test-time compute, we use our SFT model and the exponential sampling algorithm to sample up
to 16384 times per question and pick the attempt with the highest score.

For curriculum learning we manually created three curriculum (two of which are shown in Table
1 that generate Countdown problems of increasing challenge for the model (with target numbers
between 1 and 100). A third curriculum includes up to 6 6-digit numbers, a target number between
0 and 999,999, and a solution that requires targeted placement of parentheses. We initially used
the same hyperparameters from SFT, along with the addition of a starting difficulty level of 0 and a
threshold of 70% successful completions to prompts before the model was allowed to progress to
the next difficulty level. We experiment with applying the curriculum to the base Qwen model, the
best performing SFT model, and the best performing RLOO model. To understand the importance of
targeted difficulty we also perform a grid search of starting difficulty between levels 0 and 11 out of
12 difficulty levels.

Difficulty Level Cur 1: Operator Complexity Cur 2: Number Count
Count of Numbers Available Operators Count of Numbers Available Operators

0 3 {+} 3 {+}
1 3 {+,-} 3 {+,-}
2 3 {+,-,*} 3 {+,-,*}
3 3 {+,-,*,/} 4 {+}
4 4 {+} 4 {+,-}
5 4 {+,-} 4 {+,-,*}
6 4 {+,-,*} 5 {+}
...

Table 1: Comparing the curriculum of Operator Complexity and Number Count. Division
moves from level 3 in Operator Complexity to level 9 in Number Count as the division operator
proved to be more challenging for the model to learn than to solve problems with increased counts of
numbers from 3 to 4 or 4 to 5.

We also prompted OpenAI’s GPT-4o and 04mini, Google’s Gemini Pro and Flash, and Claude
3.7 Sonnet to produce a curriculum based on a sample of problems that were challenging to our
current model iteration but we discovered that these larger models were incapable of generating
valid countdown problems within a reasonable period of time (for example, less than 4% of training
examples generated by Gemini Flash were valid countdown problems where the proposed solution
used all the numbers and equaled the target. Each valid problem took between 15 and 30 seconds to
generate which proves to be intractable as an expert iteration round requires continually generating
batches of 250 valid problems until our model successfully solves 250 problems, which could require
hours per batch given an initially low success rate (e.g. at an initial success rate we saw of 0.1 this
could require 10 batches which would require 2,500 LLM-generated examples and a minimum of 10
hours for one iteration, compared to seconds of generation with other curriculum approaches.

For RLOO, we train with an effective batch size of 64 with k = 8 for 1000 iterations. Note that the
k responses are resampled if their rewards are equal. The reward function provided by TinyZero is
used, which outputs 1.0 for correct responses, 0.1 for correct formats, and 0.0 otherwise.

Experiments are run on a RTX 4090 GPU with 24GB VRAM, an L40S with 48GB VRAM on AWS,
an H200 on Runpod, and H100 on SF Compute.

4

Figure 2: Countdown score vs number of samples seen by the model. Scores are calculated over
a random subset of JiayiPan/Countdown-3to4 with 200 samples. Scores for test-time compute are
calculated on another random subset of the same dataset but we believe the performance should be
similar.

Method Milestone Score Final Score
SFT 0.57 0.33
ExIt 0.70 0.51
CL 0.59 0.40

RLOO 0.69 0.47
TTC 0.99 0.93

Table 2: Test results on leaderboard held-out data, both the milestone and final variants.

5 Results

Results are summarized in Figure 2. Both ExIt and CL demonstrate improvements over vanilla SFT.
However, test-time compute method test-time compute far outperforms all other methods with a
fraction of the cost.

5.1 Quantitative Evaluation

Tables 2 lists the evaluation results on the Leaderboard Milestone and Final test datasets, respectively.
As shown, Best-of-N outperforms other train-time compute methods by far. ExIt outperforms RLOO,
showing that good SFT data can outperform RL methods.

5.1.1 Test-Time Compute Results in Great Improvement but Plateaus Quickly

As shown in Figure 3, number of questions solved increases quickly as we increase the number of
samples for each question. However, the growth rate plateaus after 32 samples. Additionally, we plot
the distribution of attempts per question in 4 and study its correlation with features of the question
like number count and average digits. Overall, we found that the number of attemps is extremely
skewed to the left with the vast majority of the questions being easy and requiring only few attempts
to solve. We also discovered a weak positive correlation between the question number count and

5

attempts required, showing that increasing the length of the questions makes them more difficult
for our SFT model which is only trained on 3 to 4 number counts. Interestingly, we found that the
average number of digits in the question is very weakly correlated with number of attempts required,
showing that our SFT model can effectively generalize to larger number of digits.

Figure 3: Number of questions solved increases quickly as number of samples increases from 1 to 32.
Then, the growth rate plateaus even as number of samples keeps on doubling.

Figure 4: Left: Histogram of number of attempts per question. Middle: Number of attempts has
weak positive correlation with length of input num array. Right: Number of attempts is very weakly
correlated with number of digits in the numbers of the questions.

5.1.2 Test-Time Compute Outperforms Gemini on Low Reasoning

We found that Google’s Gemini-Pro-2.5-06-05 was able to solve 100% of the first 50 problems from
the holdout test when using High reasoning, though it only solved 78% of these same problems
with Low reasoning. We also note that these 100 total generations with the Gemini API cost $3.54
which suggests the importance of empowering smaller models to solve tasks. As our model was able
to solve 93% of these Countdown problems we see that test-time compute of our small model can
outperform a larger model that uses low-levels of reasoning, at a fraction of the compute cost.

5.1.3 Curriculum Learning is More Sample Efficient than Expert Iteration

Curriculum learning (CL) overcomes the sample inefficiency of ExIt by intelligently picking problems
for the expert to solve. Figure 5 illustrates this benefit—CL achieves comparable performance with
only 35% of the samples that ExIt needed. This is due to ExIt answering problems with < 30%

6

Figure 5: Sample efficiency of ExIt (orange) vs. CL (green). Left: success rate of response
samples. CL has a much higher success rate for responses and thus reaches 250 boost responses
quicker. Note that the dips in success rate occur at difficulty level increases. Right: validation score.
CL achieves comparable score with 35% of the samples of ExIt.

Figure 6: Curriculum Learning starting with RLOO Model as base. Left: The success rate
shows the model’s ability to successfully solve problems at the current difficulty level. Right: The
validation score shows the model’s score on the heldout test problems. From these graphs we can see
that only the curriculum that starts at difficulty level 0 is able to improve in validation performance
while the others fail to learn with challenging initial problems.

success rate, while CL has on average a 50% success rate. Note that with each step-up in difficulty,
the success rate of CL plummets but quickly rises again. CL’s performance plateaus at difficulty level
4, which increases from 3 numbers to 4 numbers.

5.1.4 Challenges of Designing Curriculum Difficulty Levels

In addition to the challenge of designing an appropriate curriculum the models are also sensitive to
the hyperparameter of starting difficulty level. In Figure 6 we show the validation scores of starting
curriculum learning at 5 different difficulty levels (level 0, 3, 5, 7 and 9 out of 12) with an allowed
75 minutes per run on an Nvidia H100 each. We see that starting at difficulty 0 leads to the best
performing curriculum learning model. From success rates in the figure we see that the model is able
to achieve non-zero success at difficulty levels 0, 5, and 9.

As the success rate determines how many times the model must re-sample to find 250 successful
examples to add to its replay buffer, we can see that the difficulty 0 model approaches 2x the steps
of difficulty 5 model and 3x the steps of difficulty 9 model in the same period of time. However
the models that start training at levels 3 and 7 are not shown in this chart as they fail to achieve a
success rate above 0, which led to a complete failure of the curriculum process, as the models failed
to add entries to their replay buffer. Notably levels 3 and 7 are the difficulty levels where the model
is given 6 numbers to use instead of 3 numbers at difficulty level 0 and 4 at difficulty level 5 and 9.
The reduced success rate at level 9 compared to level 5 is explained by the introduction of division
at level 9. The model appears to tolerate the requirement of using parentheses in solutions without
issue, as an unintuitive result compared to adding a 6th number.

5.2 Qualitative Analysis

Figure 7 lists a sample response demonstrating the emergent reasoning capabilities of the model. We
can see that the model learns to factor target numbers and backtrack when it reaches a dead end in its
current solution path.

7

Question: Using the numbers [28, 88, 30, 56], create an equation that equals 44

1. First, let’s look at factors of 44:
• 1, 2, 4, 11, 22, 44
• None of our numbers are factors

of 44 directly
2. Let’s try to work backwards from 44:

• We could try to get a number close
to 44 and then adjust

• Or we could try to get a number
larger than 44 and subtract

3. Looking at the numbers:
• 88 is quite large, maybe dividing

it would help
• 28 and 30 could be used to reduce

88
• 56 could be divided to get closer

to 44

4. Let’s try: 88 ÷ 30 = 2.8 (approxi-
mately)

• This isn’t helpful as we need exact
integers

5. What if we start with smaller numbers:
• 28 + 30 = 58

• 58− 56 = 2

• 88÷ 2 = 44

This works!
6. Let’s verify:

88÷ (28 + 30− 56) = 44

Final Answer: 88÷ ((28 + 30)− 56) = 44✓

Figure 7: A sample response demonstrating our model’s systematic reasoning strategies, including
factoring target numbers and backtracking when stuck.

6 Discussion

Test-time compute is far more effective than train-time compute. Thus, one may assume that allocating
compute to inference is the best solution for performance. However, in latency-critical applications
this is not desirable as it drastically degrades the user experience. Train-time compute methods are
still a critical research area in practice.

While a hand-crafted curriculum for Countdown via simple arithmetic steps seems intuitive to
humans, this curriculum is challenging for an LLM—difficulty increases that seem trivial turn out to
be insurmountable for the LLM, e.g., the division operator or adding one additional number from
5 numbers to 6 numbers. In fact, creating an effective curriculum is time-consuming, difficult, and
unintuitive. This highlights the need for an automatic curriculum. While we attempted this through a
third-party LLM, the high latency for responses made this intractable.

7 Conclusion

Both expert iteration and curriculum learning can significantly improve the performance of a pre-
trained SFT model, even surpassing reinforcement learning algorithms. Creating an effective curricu-
lum is not trivial, and future work should aim to automatically create an optimized curriculum. To
push Countdown performance to the maximum, test-time compute methods far outperform train-time
compute methods. However, train-time compute methods are still valuable as additional latency
during inference can degrade user experience.

8 Team Contributions

• Codey Sun: SFT; expert iteration; RLOO

• Doug Fulop: Curriculum learning

• Xiang Li: SFT; RLOO; test-time compute

References
Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,

Ahmet Üstün, and Sara Hooker. 2024. Back to Basics: Revisiting REINFORCE Style Optimization

8

for Learning from Human Feedback in LLMs. arXiv:2402.14740 [cs.LG] https://arxiv.org/
abs/2402.14740

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. 2021. Training Verifiers to Solve Math Word Problems. arXiv:2110.14168 [cs.LG]
https://arxiv.org/abs/2110.14168

Kefan Dong and Tengyu Ma. 2025. STP: Self-play LLM Theorem Provers with Iterative Conjecturing
and Proving. arXiv e-prints (2025), arXiv–2502.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D. Goodman. 2025.
Cognitive Behaviors that Enable Self-Improving Reasoners, or, Four Habits of Highly Effective
STaRs. arXiv:2503.01307 [cs.CL] https://arxiv.org/abs/2503.01307

Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-Yu,
Maksym Zhuravinskyi, Eric Hambro, Sainbayar Sukhbaatar, and Roberta Raileanu. 2024. Teaching
large language models to reason with reinforcement learning. arXiv preprint arXiv:2403.04642
(2024).

Jiayi Pan, Junjie Zhang, Xingyao Wang, Lifan Yuan, Hao Peng, and Alane Suhr. 2025. TinyZero.
https://github.com/Jiayi-Pan/TinyZero. Accessed: 2025-01-24.

Gabriel Poesia, David Broman, Nick Haber, and Noah Goodman. 2024. Learning formal mathematics
from intrinsic motivation. Advances in Neural Information Processing Systems 37 (2024), 43032–
43057.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. 2017. Mastering the game of go
without human knowledge. Nature 550, 7676 (2017), 354–359.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. 2024. Scaling LLM Test-Time Compute
Optimally can be More Effective than Scaling Model Parameters. arXiv:2408.03314 [cs.LG]
https://arxiv.org/abs/2408.03314

Zijian Wu, Suozhi Huang, Zhejian Zhou, Huaiyuan Ying, Jiayu Wang, Dahua Lin, and Kai Chen.
2024. Internlm2. 5-stepprover: Advancing automated theorem proving via expert iteration on
large-scale lean problems. arXiv preprint arXiv:2410.15700 (2024).

9

https://arxiv.org/abs/2402.14740
https://arxiv.org/abs/2402.14740
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2503.01307
https://arxiv.org/abs/2408.03314

	Introduction
	Related Work
	Method
	Train-time Compute
	Test-time Compute

	Experimental Setup
	Results
	Quantitative Evaluation
	Test-Time Compute Results in Great Improvement but Plateaus Quickly
	Test-Time Compute Outperforms Gemini on Low Reasoning
	Curriculum Learning is More Sample Efficient than Expert Iteration
	Challenges of Designing Curriculum Difficulty Levels

	Qualitative Analysis

	Discussion
	Conclusion
	Team Contributions

