
Extended Abstract

Motivation Generalizing reinforcement learning methods across hospital systems presents a critical
challenge for clinical decision support, as patient populations, treatment protocols, and data collection
practices vary substantially between institutions. While RL has demonstrated potential for healthcare
applications, most existing research focuses on single-site datasets, providing limited insight into
real-world policy transferability. This work addresses the gap by benchmarking deep reinforcement
learning algorithms across distinct hospital systems to evaluate cross-institutional generalization for
the clinically relevant task of potassium repletion in ICU patients.

Method We construct standardized patient cohorts from MIMIC-IV (Beth Israel Deaconess Medical
Center) and STARR-OMOP (Stanford Health Care) datasets, focusing on ICU patients who received
intravenous potassium chloride and had recorded potassium measurements. We formulate potassium
repletion as a Markov Decision Process with 4-hour time windows, discrete action space of KCl doses
(0, 10, 20, 40 mEq), and state features including patient demographics, vital signs, and laboratory
values. The reward function uses a Gaussian centered at the clinical target potassium level (4.25
mmol/L). We evaluate three algorithms: Behavior Cloning (BC) for clinician policy modeling, Fitted
Q-Iteration (FQI) for value-based learning, and Conservative Q-Learning (CQL) for safe offline RL
with distributional constraints.

Implementation All methods utilize identical two-layer MLP architectures with 256 ReLU units,
trained with Adam optimization and inverse-frequency weighting to address severe class imbalance
(82-85% of timesteps involve no KCl administration). Missing laboratory values are imputed using
bin-based interpolation across adjacent 4-hour windows. Training employs soft target network
updates and validation-based early stopping.

Results Off-policy evaluation using weighted importance sampling reveals distinct algorithmic
behaviors across institutions. CQL demonstrates closer alignment with clinician practice, learning
policies with mean doses similar to observed clinical behavior. In contrast, FQI exhibits substantial
deviation toward higher dosing strategies, with learned policies favoring doses significantly above
clinician norms. BC shows intermediate performance with dataset-dependent alignment. Importance
sampling weight distributions indicate that CQL maintains better distributional support, while FQI
generates policies that frequently select actions rarely observed in clinical practice, leading to clipped
importance weights and potentially unreliable value estimates.

Discussion The observed differences in learned policies highlight important considerations for
cross-institutional RL deployment. CQL’s conservative regularization successfully prevents value
overestimation for out-of-distribution actions, maintaining clinical alignment across both datasets.
FQI’s tendency toward aggressive dosing likely stems from Q-value overestimation amplified by class
imbalance weighting, demonstrating the risks of unconstrained offline RL in clinical settings. The
variation in baseline patient characteristics between institutions suggests that hospital-specific factors
influence policy learning and may require domain adaptation techniques for successful generalization.

Conclusion This work demonstrates that algorithm choice significantly influences both safety and
generalizability in clinical RL applications. While conservative approaches like CQL show promise
for maintaining clinical alignment across institutions, the observed performance differences indicate
that further research is necessary to develop robust evaluation frameworks for multi-institutional
healthcare data. Our findings suggest that successful clinical RL deployment is a question worth
investigating if we want to use RL for healthcare, requiring continued development of domain
adaptation techniques and standardized benchmarking protocols that balance optimization objectives
with practical medical constraints.
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Abstract

This study presents a comprehensive benchmarking of deep reinforcement learn-
ing algorithms for clinical decision support across distinct hospital systems. We
specifically examine potassium repletion using real-world data from MIMIC-IV
and STARR-OMOP. We construct standardized patient cohorts and evaluate three
algorithms—Behavior Cloning (BC), Fitted Q-Iteration (FQI), and Conservative
Q-Learning (CQL)—using weighted importance sampling for off-policy evalua-
tion. Our results reveal some algorithmic differences in policies learned across
institutions: CQL demonstrates closer alignment with clinician behavior across
both datasets, while FQI exhibits notable deviation toward higher dosing strategies.
These findings highlight important considerations for generalizing reinforcement
learning policies across healthcare institutions and suggest the value of conser-
vative approaches for clinical applications where distributional shift and safety
considerations are relevant.

1 Introduction

The challenge of cross-institutional generalization in healthcare RL extends beyond simple domain
adaptation, encompassing fundamental questions about the transferability of learned medical decision-
making policies. Hospital systems differ not only in their patient demographics and clinical protocols
but also in their electronic health record systems, laboratory measurement frequencies, and institu-
tional treatment philosophies. These variations create a complex landscape where a policy optimized
for one institution may perform poorly or even unsafely when applied to another. Furthermore, the
high-stakes nature of clinical decision-making amplifies the consequences of poor generalization,
as suboptimal policies could directly impact patient outcomes. Understanding these generalization
challenges is crucial for the practical deployment of RL-based clinical decision support systems, as
any real-world implementation must demonstrate robustness across diverse healthcare environments
rather than excellence within a single, controlled setting. While RL has demonstrated potential
for clinical decision support, much of the existing research focuses on optimizing policies within
single-site datasets, providing limited insight into real-world variability.

This project proposes benchmarking DRL algorithms across distinct hospital systems — specifically,
MIMIC-IV (Beth Israel Deaconess Medical Center) and STARR-OMOP (Stanford Health Care)
— by constructing standardized patient cohorts across datasets. By controlling for MDP structure,
we aim to enable consistent evaluation across datasets. We further seek to analyze how algorithm
performance shifts between institutions, identifying critical barriers to robust policy generalization.
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2 Related Work

Prior work in healthcare reinforcement learning has primarily focused either on single-institution real-
world datasets or on synthetic environments. Raghu et al. (2018) applied model-based RL to optimize
sepsis treatment strategies using real-world ICU data from MIMIC-III. However, evaluations were
restricted to a single hospital system, leaving questions about policy transferability across institutions
unexplored.

While some early efforts toward standardization exist, such as the evaluation guidelines proposed
by Gottesman et al. (2019), broader benchmarking for reinforcement learning in healthcare remains
limited. More recently, Hargrave et al. (2024) introduced the EpiCare benchmark to standardize
offline RL evaluation for clinical decision-making, but their framework operates on simulated patient
trajectories rather than real clinical records, limiting insights into real-world variability.

Our project aims to address both of these gaps by benchmarking RL methods on real-world clinical
datasets and explicitly evaluating policy generalization across distinct hospital systems.

More recently, Prasad et al. (2022) introduced an RL-based framework for guiding electrolyte
replacement in critical care, centering on efficient, effective, and patient-oriented policies. We adopt
their task formulation and a similarly simplified MDP structure for potassium repletion, but whereas
Prasad et al. focus on cost-efficiency and resource optimization within a single institution, our
work emphasizes benchmarking and explicitly generalizing learned policies across distinct hospital
systems.

3 Experimental Setup

3.1 Markov Decision Process

We study the task of potassium repletion Prasad et al. (2022) using MIMIC IV Johnson et al. (2024)
(Beth Israel Deaconess Medical Center) and STARR-OMOP (Stanford Health Care) datasets. For
each dataset, we construct a cohort of hospital stays in which patients (i) received at least one
intravenous potassium-chloride (KCl) dose and (ii) had at least one recorded potassium lab (serum or
whole-blood). For this study, we sample 200 patients from each cohort.

Time discretisation. Every hospital stay that passes the cohort filter is sliced into fixed, non-
overlapping 4-hour windows. To avoid trajectories that are almost entirely missing signal, we discard
stays with (i) fewer than six valid windows, or (ii) a usable potassium measurement in < 60% of
windows and a non-zero-dose frequency below 1

12 (i.e. less than one intervention per 48 h).

Action space Our action is intravenous administration of potassium chloride (KCl), which we
discretize into the clinically representative bins

A = {0, 10, 20, 40} mEq.

Timesteps with no KCl administration action default to the 0 mEq bin.

(a) MIMIC cohort (n=3498) (b) STARR cohort (n=7192)

Figure 1: Empirical proportions of observed KCl dose buckets in the training data.
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As seen in the plots above, both cohorts exhibit a pronounced skew toward the zero-dose bin (here n
= number of stays). In MIMIC, 82% of timesteps receive no KCl, about 3% receive 10 mEq, 14%
receive 20 mEq, and under 1% receive 40 mEq. In STARR, 85% of timesteps are zero-dose, 5% are
10 mEq, 9% are 20 mEq, and almost none are 40 mEq. This extreme imbalance arises because every
interval without a recorded drug is encoded as the 0 mEq “do nothing” action, making zero-dose
by far the most common choice. Such skew forces naïve learners to default to the majority class
and motivates our use of oversampling or weighted-loss techniques to ensure that rarer but clinically
important dosing actions are properly learned.

State space The feature vector for window t is st = [age, sex,weight,Kpre, extra covariates], where
Kpre is the latest potassium lab before the action. Extra covariates include heart rate, systolic blood
pressure, diastolic blood pressure, respiratory rate, serum creatinine, and serum anion gap.

Missing lab values within the primary time interval [t, t + ∆t) are imputed using a bin-based
interpolation procedure. When no observation occurs in the target window, we iteratively examine up
to three adjacent bins of width ∆t,

[t+ k∆t, t+ (k + 1)∆t) k ∈ {0,±1,±2}

This search spans±3 bins (i.e.±12 h) to accommodate the typical once-daily frequency of potassium
measurements. Within each bin, we compute the arithmetic mean of all recorded values, adopting the
first non-empty bin mean as the imputed value. If all evaluated bins are empty, the value is set to 0.0
to denote absence. This approach preserves temporal proximity, leverages local measurement density
to mitigate interpolation bias, and explicitly flags missing daily measurements.

Figure 2: Violin plots of the first measured serum potassium value per stay in MIMIC and STARR,
with dashed lines indicating the laboratory reference range (3.5, 4.25, and 5.0 mmol/L).

The plot above shows initial distribution of measured potassium accross patient stays. Both cohorts
exhibit a central tendency near 4.0 mmol/L, but the MIMIC distribution is noticeably wider, with
more patients below 3.5 mmol/L and above 5.0 mmol/L. In contrast, STARR values are more tightly
concentrated within the reference range, suggesting fewer extreme hypo- or hyperkalemic cases. This
population difference indicates that our algorithms are more likely to encounter rarer states in the
MIMIC cohort.

Reward function. Let Kpost
t+1 be the first potassium lab obtained after dose at. We assign

rt = exp
(
−
(Kpost

t+1 − 4.25)2

2σ2

)
, σ = 0.25,

a Gaussian that peaks at the mid-point of the clinical reference range for normal potassium (3.5−
5.0)mmol/L. Rewards are clipped to [0, 1] and paired with the next state to form (st, at, rt, st+1)
tuples; episode termination occurs at discharge.
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4 Method

4.1 Algorithms

Behavior Cloning (BC) To capture the clinician’s decision-making directly from data, we first
fit a behavior-cloning model that learns to mimic observed dosing choices. This approach requires
no reward signal and provides a convenient estimate of the behavior policy πb for subsequent OPE.
Concretely, we parameterize

BC_Policy : s ∈ Rd 7→
[
z1, . . . , zn

]
, πb(ak | s) =

exp(zk)∑n
j=1 exp(zj)

,

where each ak is one of the n discrete dose buckets. We train by minimizing a weighted categorical
cross-entropy,

LBC(ϕ) = −
1

N

N∑
i=1

wai log πb(ai | si),

with inverse-frequency weights wk ∝ (#{ai = k})−α (α ∈ (0, 1)) to correct for severe class
imbalance. After training, πb can be queried deterministically or stochastically via the network’s
get_action and get_action_probs methods.

Fitted Q–Iteration (FQI) To learn a dosing policy that maximizes expected cumulative reward, we
employ Fitted Q–Iteration, a batch RL algorithm that approximates the Bellman operator by repeated
regression. Starting from a fixed dataset of transitions {(st, at, rt, st+1, at+1)}, we fit a Q-network

Qθ(s) =
[
Qθ(s, a1), . . . , Qθ(s, an)

]
by minimizing the per-sample weighted Bellman-residual

yt = rt + γ (1− dt)Qθ̄(st+1, at+1), LFQI(θ) =
1

B

∑
t∈batch

wat

(
Qθ(st, at)− yt

)2
.

Here dt marks terminal steps, θ̄ is a target network slowly updated via θ̄ ← (1−τ)θ̄+τθ for stability,
and weights wat

again compensate for under-represented dose actions. After convergence, the greedy
policy πe(s) = argmaxa Qθ(s, a) is used for evaluation.

Conservative Q-Learning (CQL) Offline value estimates can be overly optimistic on out-of-
distribution actions, so we adopt Conservative Q-Learning Kumar et al. (2020) to bias the learned
policy toward safer, well-supported actions. CQL augments the FQI objective with a log-sum-exp
penalty on the Q-values,

LCQL(θ) = LFQI(θ) + α
(
Es

[
log

∑
a

eQθ(s,a)
]
− E(s,a)∼D[Qθ(s, a)]

)
,

where α > 0 controls conservatism. We implement this via d3rlpy’s DiscreteCQLConfig (v2.8.1)
with a MeanQFunctionFactory and DefaultEncoderFactory. The resulting greedy policy
πCQL(s) = argmaxa Qθ(s, a) balances return maximization against the risk of unsupported dosing
choices.

4.2 Off-Policy Evaluation

Since deploying our learned policies in a live clinical setting is infeasible, we estimate their expected
return using off-policy evaluation (OPE). In this framework, we distinguish between the behavior
policy πb, which generated the observed trajectories, and the target policy πe, whose value we wish
to estimate. We approximate πb by fitting a behaviour-cloning (BC) model to the clinician’s logged
data Gottesman et al. (2018), and take the greedy policies learned by FQI or CQL as our πe.

Among OPE estimators, we choose weighted importance sampling (WIS) for three reasons: (i) it
remains fully model-free, avoiding any bias from a simulator; (ii) it is consistent and asymptotically
unbiased; and (iii) by self-normalizing the importance weights it dramatically reduces variance
compared to ordinary importance sampling.
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V̂WIS =

∑N
i=1 wi Gi∑N
i=1 wi

, wi =

Ti−1∏
t=0

πe(ai,t | si,t)
πb(ai,t | si,t)

, Gi =

Ti−1∑
t=0

γt ri,t.

In contrast, the ordinary IS estimator V̂IS = 1
N

∑
i wiGi can suffer from extremely high variance

when likelihood ratios wi vary widely. WIS’s normalization trades a small bias for a substantial
variance reduction, making it more reliable on finite clinical datasets.

5 Results & Discussion

We evaluate the greedy policies learned by FQI and CQL with the weighted–importance–sampling
(WIS) estimator introduced in Section 4.2. Table 1 summarises the point estimates and clipped weight
statistics; Figure 3 shows the corresponding dose distributions.

Dataset Method WIS Value Estimate Clipped mean Clipped std
MIMIC FQI 1414.7 5.89 4.80
MIMIC CQL 1319.2 10.00 0.00

STARR FQI 1696.5 5.02 4.94
STARR CQL 1473.5 9.27 2.52

Table 1: WIS estimates and moments of the clipped importance-sampling weights for greedy FQI
and CQL policies.

On both hospitals the FQI policy attains the higher WIS (1414.7 on MIMIC, 1696.5 on STARR),
reflecting its willingness to deviate from clinician practice when the estimated Q–function predicts a
gain. Its clipped weights have lower means (≈ 5–6) but higher dispersion (std ≈ 4.8–4.9), signalling
moderate yet uneven divergence from the behaviour policy.

CQL’s conservative penalty pushes many weights to the clipping ceiling (mean ≈ 10). This tightens
the variance (std 0 on MIMIC, 2.5 on STARR) and keeps the action distribution closer to clinicians,
but costs 7–13 % of estimated return. For MIMIC + CQL every importance weight was truncated at
the upperbound, giving a clipped mean of 10 and a standard deviation of 0. This extreme occurs when
the learned greedy policy selects actions the clinician almost never used, so the raw ratios explode
and are uniformly clipped.

(a) MIMIC cohort (b) STARR cohort

Figure 3: Dose–bucket proportions (0–40 mEq) for clinicians and learned policies. Vertical dashed
lines mark the mean prescribed dose in each panel.

The plots above show the learned action distributions of our algorithms compared to clinician behavior
on each dataset. We notice in the action distributions that CQL demonstrates better alignment with
clinician behavior across both datasets. This likely stems from CQL’s regularization term that
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penalizes Q-values for out-of-distribution actions, constraining the learned policy to remain within
the behavioral distribution observed in training data and preventing value overestimation for rarely
observed high-dose actions. This stability could suggest that CQL’s conservative regularization adapts
to institutional differences by maintaining distributional alignment with local clinical practice, rather
than optimizing toward a fixed dosing strategy.

In contrast, we observe that FQI most drastic departure from clinician distribution, learning policies
that favor substantially higher doses with means of 14.2 mEq (MIMIC) and 19.8 mEq (STARR). This
bias toward out-of-distribution actions occurs because FQI optimizes Q-values through iterative boot-
strapping without distributional constraints, while class imbalance weighting (α = 0.6) inadvertently
encourages exploration of infrequent high-dose actions. The algorithm’s target Q-network updates
create a feedback loop where high-dose actions receive inflated values despite being rarely prescribed
clinically. The tighter initial potassium distribution observed in STARR may paradoxically worsen
FQI’s overestimation problem, as the algorithm encounters fewer examples of high-dose interventions
during training, leading to more pronounced Q-value inflation for out-of-distribution actions.

BC shows intermediate performance with dataset-dependent behavior: close alignment in STARR
(3.1 mEq) but more aggressive dosing in MIMIC (4.9 vs 3.5 mEq). Algorithm performance varies
systematically between datasets, with BC benefiting from STARR’s concentrated clinician distribu-
tion that provides clearer imitation signals, while FQI becomes increasingly aggressive in STARR
due to sparser high-dose examples amplifying Q-value overestimation. CQL maintains consistent
performance across datasets, demonstrating robustness that reinforces the value of conservative
approaches for clinical reinforcement learning applications.

6 Conclusion

Our investigation into cross-institutional reinforcement learning for potassium repletion reveals
important considerations for deploying RL algorithms across diverse healthcare settings. Notably,
although FQI achieved higher off-policy evaluation (OPE) estimates than CQL in both MIMIC-IV
and STARR-OMOP, its action-selection distribution deviated substantially from clinician practice,
prescribing high doses far more often. CQL, by contrast, produced dosing histograms much closer to
the clinician baseline, suggesting greater “realism” and safer behavior despite slightly lower OPE
scores. We also observed differences in the initial potassium distributions between the two cohorts,
which may help explain why each algorithm performs differently across sites. The variation in results
indicates both the choice of RL algorithm and the underlying patient population characteristics shape
policy behavior and must be considered in clinical decision support.

However, these findings are not conclusive- the tradeoff between return-maximization and clinical
alignment emphasizes that no single algorithm clearly dominates across institutions. Instead, our
study serves as a commentary on a few factors—algorithmic bias, state-distribution shifts, and cohort
heterogeneity—that underlie cross-institutional challenges in healthcare RL. Deeper investigation is
needed to understand these effects and guide safe, generalizable policy deployment.

7 Team Contributions

This project was completed individually. I am currently a research assistant in a Biomedical Data
Science lab, where RL generalization in non-synthetic settings is an active area of interest. I accessed
the MIMIC-IV and STARR-OMOP datasets through my lab for this project. While my lab mentors
were not directly involved in the course project, they provided guidance and helpful recommendations
when necessary. I intend to extend and build on this work beyond the class to explore deeper insights
into cross-institution generalization.

Changes from Proposal Our original proposal included evaluating model-based RL methods
alongside model-free baselines, but this study focused only on model-free approaches (FQI and
CQL). In future work, we could build a simple simulator of how potassium levels respond to different
doses—using historical lab and treatment data—and then test planning-based RL algorithms within
that simulator to see if they can improve on our current policies.
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8 Limitations & Future Work

To address limitations in this study and provide more comprehensive commentary, we plan to pursue
the following open questions in future work:

• Improved interpolation for sparsity. Refine our bin-based lab imputation—e.g. via learned
time-series models—to reduce bias from missing measurements.

• Reward function design. Explore alternative reward schemes that penalize both under-
and over-correction of potassium more explicitly, to sharpen the value gap between dosing
actions.

• Larger cohort evaluation. Expand beyond the initial 200-patient sample to test our methods
on a substantially larger dataset, improving statistical power and robustness.

• Confidence intervals. Compute and report uncertainty estimates (e.g. bootstrap confidence
intervals) for all OPE metrics to quantify estimation variability.

• Cross-institutional policy testing. Evaluate each learned policy by applying it to the other
dataset (e.g. train on MIMIC, test on STARR and vice versa) to assess generalizability across
hospital systems.
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after every gradient step using τ = 0.1. Training runs for 100 epochs (approx 100 k gradient steps),
and the checkpoint with the lowest validation TD-loss is chosen for evaluation.

Input features are standardized (zero mean, unit variance) via a StandardScaler fit on the training
trajectories. BC is trained with weighted cross-entropy using inverse-frequency class weights; FQI
minimizes a weighted Bellman-residual mean-squared error; CQL adds the log-sum-exp conservatism
penalty on top of FQI’s loss. All experiments were implemented in Python 3.8 with PyTorch 1.12,
d3rlpy 2.8.1, NumPy 1.21, and scikit-learn 1.0.
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