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Extended Abstract
Nowadays there have been various RL based methods approaching language model fine-
tuning from different points of view, however, they’re mostly trying to solve the same
optimization problem despite that their different formulations. This piques our interest
into looking for a ”unified approach” covering all of them together.

Inspired by this, the report dives into various methods of training LLM’s on prefer-
ence finetuning under a reinforcement learning point of view. It starts with a baseline
approach running SFT on smoltalk + DPO on ultrafeedback, then dives into implement-
ing a novel approach AGRO which claims to set up a uniformed framework for most
existing methods on RL finetuning. We trained AGRO in both offline and online settings
and compared their performance with DPO.

The pipelines are having good performance on a ”simpler” preference dataset found
online. However, on ultrafeedback the models’ ability rate accepted responses higher
than rejected never exceeded 53%. The potential guess is preferences are much more
complex to learn on ultrafeedback dataset, and further hyperparameter tuning is also
required if one hope for further improvements.

Given limited bandwidth and compute resource, we were not able to outperform DPO
using AGRO, where in the paper it was claimed to have faster convergence, less variance
and better theoretical guarantees. However, their performance are close to each other
on submission leaderboard (0.2500 vs. 0.2725), which lies within top percentile among
current submissions. We’ll extend our effort beyond the end of this project to explore
further down this path.



Abstract
In this report, we dived into various RL based methods for
finetuning LLM’s on learning human preferences. We ex-
plored the typical approach of SFT + DPO, then dived into
a recent work unifying various existing online/offline meth-
ods into a single framework. We tried running preference
finetuning on ultrafeedback dataset and got satisfactory re-
sults.

Introduction
Fine-tuning large language models, which takes a pre-

trained base model and aim to improve its performance on
various downstream tasks without retraining from scratch,
has drawn raising concern in the field of Artificial Intel-
ligence. One popular approach, called ”preference finetun-
ing”, is to train the model on preference data containing
relative feedback. The workflow usually consist of train-
ing language model on pairs of (x, yw, yl) prompts and ac-
cepted/rejected responses, where the goal is to learn rating
yw’s over yl’s and model ”desired preference” by doing so.

A popular paradigm is treating the problem as a reinforce-
ment learning problem, that is, treating the language model
as a policy π(y|x), where x is prompt and y is the model’s
generation. The goal of language fine-tuning turns into train-
ing an optimal policy which maximizes the reward of its
generation given specific tasks, where reward for preference
fine-tuning encourages the model to give higher probabili-
ties to yw’s than yl’s.

Various approaches have been proposed to solve the
framework above, main difference lies in training methods
(online/offline) and reward modeling (explicit/implicit). On-
line methods usually train an explicit reward model classify-
ing yw’s from yl’s, then approach to train the policy online
maximizing the reward. Offline policies, on the other hand,
choose to reparameterize the reward function into policy
outputs and training optimal policy with given (x, yw, yl)’s
only.

This report dives into the offline setting of preference
fine-tuning, which trains a Direct Preference Optimization
Model warm-started using supervised fine-tuning, then it ap-
proaches to implement Any Generation Reward Optimiza-
tion (AGRO) in both offline and online setting as an exten-
sion. I’m going to compare their performance with DPO on
both a small dataset found online and ultrafeedback, and an-
alyze the outcome of experiments.

Related Work
The RL-based fine tuning framework can be formulated

as maximizing the expected reward following policy π, that
is, given some reward r(x, y), a set of policy having form
of π(.|x), and some mechanism ρ representing support of
prompt x, we hope to find an optimal π∗ maximizing the
reward with some KL regularization based out of some ref-
erence model we start fine-tuning from:

G(π) = Ex∼ρ[Ey∼π(.|x)[r(x, y)]−βKL(π(.|x)||πref (.|x))] (I)

Leave-One-Out REINFORCE (RLOO), proposed by Ah-
madian et al. in 2024 (0), visits the problem using a typical
online approach. It first trains a Bradley-Terry reward model,
which learns to model preference as P (i ≻ j) = eθi

eθi+eθj
=

1

1+e−(θi−θj)
, and then trains the policy online using typical

policy gradient method with leave-one-out baseline, where
the gradient can be expressed as:

1

k

k∑
i=1

R(y(i), x)−
1

k − 1

∑
j ̸=i

R(y(j), x)

∇ log πθ(y(i) | x)

Direct Preference Optimization (DPO) , proposed by
Rafailov et al. in 2023 (0), dives further into ”theoretical
roots” of the framework. It proved that when using Bradley-
Terry preference model, it can re-parameterize and represent
reward implicitly using π(x, y) and πref (x, y), resulting in
a single training objective in offline setting:

−E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
Recent works in 2024 went even beyond that by deriving

the actual analytical form of optimal policy under (I) with
any given form of reward:

π∗(y | x) =
πref(y | x) exp

(
1
β r(x, y)

)
exp

(
1
βV

π∗(x)
)

where the normalizing constant is

V π∗
(x)

def
= β log

∑
y∈Y

πref(y | x) exp
(
1

β
r(x, y)

)
This inspired the efforts of giving a unified algorithm for

solving (I) regardless of training setting and reward func-
tion: in early 2025, Tang et al. proposed AGRO algorithm
(0), which attempts to maximize generation consistency and
approach optimal policy by doing so. We’re going to dig fur-
ther into this algorithm in next section and take as extension
of our experiments.

Any Generation Reward Optimization
Given the analytical form of optimal policy, Any Gen-

eration Reward Optimization (ARGO) goes beyond above
past approaches by trying to solve (I) in general with mini-
mal assumptions. It first proves that the regularized reward
r(x, y) + βlog π(.|x)

πref (.|x) is consistent to x under optimal pol-
icy, s.t.:

r(x, y)− βlog
π∗(.|x)
πref (.|x)

= some V (x)



Leveraging this finding, the author attempted to optimize
(I) by minimizing variance of regularized reward produced
by policy. It was proved that it will converge to global op-
timal in both offline and online settings using loss below,
where µ(.|x) is distribution of y’s on the same prompt x in
offline setting and is simply π(.|x) while applied to online.

L(π) =
1

2
Ex∼ρ[V ary∼µ(.|x)[r(x, y)− βlog

π∗(.|x)
πref (.|x)

]]

When exploring its behavior in offline settings, the author
proved that gradient of this loss compromises the gradient
of IPO (implicit preference optimization). Furthermore, he
proved that DPO is a special case of ARGO when n = 2 and
using Bradley-Terry Model in offline setting for preference
fine-tuning. This makes sense as both of them attempted to
solve (I) analytically. However, ARGO gives more flexibility
by generalizing to any reward function and being capable for
both online and offline training.

In online setting on the other hand, the author proved that
in online setting the gradient of AGRO is the gradient of
RLOO plus another likelihood estimate term:

∇L(π) = E [∇f(x, y, π)]︸ ︷︷ ︸
∇PDL(π)

+E [f(x, y, π)∇ log π(y | x)]︸ ︷︷ ︸
∇LRL(π)

Training using both the RLOO gradient itself and the
ARGO gradient would lead to optimal policy π∗, but the
learning dynamic of ARGO ensures less variance & more
stabilized training.

Methodologies: Implementation & Setup
Details

I am planning to implement 3 workflows of Preference
fine-tuning and compare their performance with each other:
Direct Preference Optimization, AGRO under offline set-
tings, and AGRO under online settings. The goal is to eval-
uate how they connect to each other and how their perfor-
mance differs in preference learning.

For each workflow, I use the Qwen 2.5-0.5B model as
a starting point. I first warm-start the model on smoltalk
dataset using supervised fine-tuning, then train DPO/AGRO
on ultrafeedback dataset to further improve the model’s per-
formance. Setups and implementation details on each sec-
tion are given below.

Warm-start using SFT
Before starting preference fine-tuning, I first ”warm-start”

our language models on high-quality conversations to im-
prove its capabilities (i.e. fluency & coherence) to an accept-
able level so that later policy training converges faster. This
is done by training LLM to predict next tokens over care-
fully selected corpus, where the objective can be expressed
as:

max
θ

Ex,y∼D

 |y|∑
t=1

log πθ(yt | x, y<t)


This process is called ”supervised fine-tuning” (SFT),

where in this stage I use smoltalk dataset to warm up our
model. It is a lightweighted dataset helpful for training lan-
guage models < 1B on instruction following tasks. Due
to limited computation resource and GPU memory, I broke
each ”query-answer” pair into a record to train rather than a
round of full conversation, and trim the record to have less
than 512 tokens.

To make training lighter and more efficient, I used flash-
attention implementation of the base model, and attempt to
only train a lora adapter with rank = 16 on top of it. This
reduces of trainable parameters by 98.3 % and the same
settings will be used in other stages as well.

During training, I split out a fixed validation set of size
200 and closely monitor SFT loss and perplexity/token on
both training and validation set to ensure the model is im-
proving.

Preference Fine-tuning using DPO
As mentioned in sections above, it picks up warm-

started language model underwent supervised fine-tuning af-
ter 12000 gradient steps and set it as reference model. The
learned policy is also carried forward from here to optimize
DPO loss below, it applies smart reparameterizations so that
the problem turned from reward maximization into a super-
vised classification problem:

−E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
I am training the model with β = 0.1 on a subset of ultra-

feedback datasets, which is a large scale preference dataset
created by HuggingFaceF4, consisting of a large number of
(prompt, accepted response, rejected response) preference
pairs. In order to speed up training and become more mem-
ory efficient, I chopped off the data to have at most 128
prompt tokens and 512 response tokens, which make token
size to be smaller than 768 for each batch during training.

To ensure the model is learning properly, I am tracking
below metrics on both training set and validation set:

• DPO loss

• win rate, specified as avg(πθ(yw|x) > πθ(yl|x))
• kl divergence

• learning rate

However, given the complexity of ultrafeedback dataset,
the traced metrics are highly oscillatory and improvements
weren’t explicit. In order to verify the correctness of my im-
plementation, I ran the same workflow on a small, simple



preference dataset found online to ensure my results were
converging over there. I’ll present experiment results on the
small dataset as well to show the basic correctness of my
implementation.

Preference finetuning using offline AGRO

In section 5.1 of AGRO paper, it stated that the gradient
of AGRO in offline setting when n = 2 compromise the form
of Implicit Preference Optimization (IPO), which is

−β

(
r1 − r2 − β log

(
π(y1 | x)πref(y2 | x)
π(y2 | x)πref(y1 | x)

))
∇ log

π(y1 | x)
π(y2 | x)

Hence we direct implement the loss form of IPO for sim-
plicity, which gives:

LIPO = E(x,yw,yl)

[(
hπ(x, yw, yl)−

0.5

β

)2
]

where:

hπ(x, yw, yl) = [log pπ(yw)− log pπ(yl)]

− [log pref(yw)− log pref(yl)]

Similar to DPO, I am also training it on both ultrafeedback
dataset and the small preference dataset found online, IPO
loss and win rates will be reported on both datasets. How-
ever, for training on ultrafeedback dataset, instead of using
SFT model as reference model, I’m using the best perfor-
mant DPO checkpoint from last section as reference model,
and see whether IPO can further improve model’s perfor-
mance from there.

Preference fine-tuning using online AGRO

In AGRO paper, the author stated that in online setting
the gradient of AGRO is the gradient of RLOO plus another
likelihood ratio term:

∇L̂(π) = ∇PDL̂(π) +∇LRL̂(π)

= −β

n

n∑
i=1

(
Rπ(x, yi)− R̂π

β,−i(x, π)
)
∇ log π(yi | x)

+
1

2n

n∑
i=1

(
Rπ(x, yi)− R̂π

β,−i(x, π)
)2

∇ log π(yi | x)

The paper claims the both RLOO gradient and this AGRO
gradient with additional LR term guarantees convergence to
optimal policy. However, the additional term in AGRO loss
provides different learning dynamics leading to faster con-
vergence and better variance reduction.

Given above derivations, when implementing the loss I
simply implemented the form below and leave rest of the
work to pytorch’s autograd funcationalities:

L̂(π) = −β

n

n∑
i=1

(
Rπ(x, yi)− R̂π

β,−i(x, π)
)
log π(yi | x)

+
1

2n

n∑
i=1

(
Rπ(x, yi)− R̂π

β,−i(x, π)
)2

log π(yi | x)

where Rπ(x, yi) is defined as r(x, yi) + β log π(yi|x)
πref (yi|x)

and detached from backpropagation. To reduce the variance
further, I’m taking the paper’s advance to subtract a loo base-

line from
(
Rπ(x, yi)− R̂π

β,−i(x, π)
)2

as well in ∇LRL̂(π)

For reward model I was initially considering neumotron-
70B but had to give up due to limited inference speed, even-
tually I picked up a Bradley-Terry reward model available
on huggingface, which is trained on ultrafeedback dataset as
well using Qwen2.5-1.5B model.

When doing online training, given limited computa-
tional resources and infra capabilities (inferencing us-
ing vllm/sgLang would be much faster but is memory-
intensive), I am training using batch of ONE only - this be-
comes stochastic gradient descent and would certainly add
extensive noise to training. For each prompt x, I am generat-
ing 4 responses with max tokens = 300 to speed up training, I
am hoping that length of 300 would be enough to give ”some
signal” for model to start learning on returned rewards.

Performance Metrics
During experiments, we are already collecting certain

metrics ensuring that models are learning, where for SFT
stage we track perplexity per token and during preference
fine-tuning stage we mainly track model’s ability to rate ac-
cepted responses over rejected ones. In this section, we are
discussing more formal ways evaluating model’s improve-
ments on learning desired preferences.

For self-evaluation, we are taking a set of 400 prompts
from testpref set of ultrafeedback and evaluate our model’s
performance by looking at their responses. We generate re-
sponses w.r.t. each prompt using both fine-tuned models
over workflows and base Qwen 2.5-0.5B model before any
finetuning, and evaluate the outputs using a Neumotron-70B
reward model. The key metric is win rate, which is for how
many prompts over the entire test set that our fine-tuned
model beats the baseline.

For course evaluation we’re following a similar manner as
above, the only difference is our fine-tuned model is com-
pared against a stronger SFT model trained by course staff.
There’s a leaderboard listing the win rate of our submissions,
and the passing threshold is 0.1.

Note that to ensure quality of generation and obtain higher
win rate, I had to apply various techniques when doing infer-
ence. Below comes a list of the major specifications I had to



add to generations, same specifications were added to gen-
erations in online training.

• temperature = 0.8, topp =
0.9Penalizeonmeaninglessbytetokens

•• Penalize on repetitions
• Enforce vllm engine/huggingface model to stop at end-of-

speech and pad tokens

Results
Supervised Fine-tuning

For SFT stage, we observed that both validation loss and
validation perplexity were consistently decreasing, indicat-
ing that the model was learning and improving well. Further-
more, when submitting onto the milestone leaderboard my
trained SFT model obtained a winning rate of 0.48, higher
than the threshold of 0.3 on instruction following.

Figure 1: Validation loss over global steps during SFT.

Figure 2: Validation perplexity over global steps during SFT.

Results of offline methods on Small Datasets
For preference fine-tuning, to verify the correctness of my

implementations, I ran DPO and offline AGRO pipelines on
a toy preference dataset before running on ultrafeedback.
This toy dataset consists of only 1100 preference pairs, and
I was hoping to validate whether the model would learn in
relatively simpler scenarios. Below are the validation losses
& win rates I obtained for DPO and offline AGRO:

It is glad to see that both of them are showing fast con-
vergence and win rates are increasing to around 0.9, which
is a good sign proving our implementation correctness. We
are then running the same pipeline on ultrafeedback to check
how much the models can improve over there.

However, it’s noteworthy that the validation curve of of-
fline AGRO is much more oscillatory comparing to DPO. I
suppose this is because I was using a smaller regularization
parameter β = 0.01 here.

Figure 3: DPO validation loss and win rate

Figure 4: offline AGRO validation loss and win rate

Results of methods on Ultrafeedback
The winrate on ultrafeedback validation set wasn’t opti-

mal, for DPO during training the model was able to label
at most 53% of accepted responses higher than rejected,
where for offline AGRO this number is 49%. The training
was highly oscillatory and improvements on validation set
is slow, which I’m still working on finding the root causee,

However, the winrate against Qwen-base model was giv-
ing good results for DPO, the win rate reached 73% for DPO
and 70% for offline AGRO for their most performant check-
points. While submitting on leaderboard the highest win rate
was 27.25%, lying roughly within top 20% percentile among
all submissions.

For online AGRO I was only training over 1000 records
hence its full potential is not revealed, however in self eval-
uation I’m already able to get 65% win rate and win rate
on leaderboard is 25%. It makes sense that it didn’t beat my
results on DPO as it wasn’t trained on enough data, but it’s
still descent enough that it’s not too far behind.

Discussion - possible missing pointers
To be very honest.... it’s unpleasant that I wasn’t able to

obtain very good results especially on proposed extension.
Here comes some of my potential guesses to reasons in such:

For offline AGRO (IPO), it might because I set β too low
towards 0.01, which can make training unstable and easy to
overfit, hurting its performance.

For online AGRO, it might because my batch size was
way too small due to limit of resources. This will definitely
bump variance up and hurt its performance, especially given
that I was training online version on a 1000 records only.



AGRO might also be more ”sensitive” to how the explicit
reward is designed, if accepted and rejected responses are
having rewards close to each other, then it would be more
difficult for AGRO to learn desired pattern. When training in
offline setting I was trying with several other reward models
before switching the IPO form (i.e. score contained within
dataset, neumetron score), non of them had win rate con-
verged even on the toy dataset I was playing around with.

The performance of models are heavily dependent on the
hyperparameter setup: batch size, warm up steps, regulariza-
tion, lora rank..... yet I haven’t had bandwidth to explore into
the optimal hyperparameter setting for each model to set up
a fair comparison.

Conclusion
In this report, we:

• Explored into various RL approaches training LLM on
preference finetuning

• Trained a baseline SFT + DPO pipeline, and obtained
good performance on win rate against SFT

• Digged into Any Generation Reward Optimization, which
unifies offline and online settings with more flexibility and
better theoretical guarantees.

• We tried implementing and training AGRO in both offline
and online setting and were able to get ”okay” results,
however, we didn’t have time to finetune the model well
enough to beat the DPO baseline.

I think the biggest lesson I learned from this project was...
it actually requires ”deep insights” into the contexts around
- see how ARGO derives a uniform framework from analyti-
cal form of optimal policy - if one hopes to actually dive into
the field of AI/computational extensive methods and make
meaningful contributions, rather than throwing the data into
fancy models and praying it will work. The paper impressed
me a lot from this sense, though it is a pity that I was not
able to replicate its theoretical advantages.

Given that.. it also reminds me that it requires extensive
engineering efforts to find the optimal experiment settings
to achieve expected results, and only then one can say he
knows AI and how to use it properly. It is good to realize that
I am still a bit far for both requirements, which I will keep
improving myself towards them beyond end of the course.

For future explorations, my main concern is to dig into my
setup & implementations of AGRO to actually replicate the
performance gain stated in AGRO paper. If had more oppor-
tunities, I would hope to extend the scope see how RL can
help bringing LLM’s to be better at reasoning, which differs
”AI” from typical pattern recognition/feature extractors.
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