Extended Abstract

Motivation This project explores two alignment techniques—Supervised Fine-Tuning (SFT) and
Direct Preference Optimization (DPO). Our aim is to move beyond models that optimize for a single
reward score. Instead, we introduce a multi-objective reinforcement learning approach that better
captures the nuances of human preferences. By separating preferences into categories like helpfulness
and safety, we are able to build models that are more aligned with individual values and reduce bias
introduced by oversimplified objectives.

Method We followed a step-by-step approach, starting with a capable base model and refining it
using more specialized preference-based techniques.

1. Supervised Fine-Tuning (SFT): The base Qwen2.5-0.5B model was fine-tuned on chosen
responses from the SmolTalk dataset. This phase helps the model get used to the target
format and task. We optimized for the log-likelihood of the expert responses:
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2. Direct Preference Optimization (DPQO): Using the SFT model as a reference (7mr), we
applied DPO to tune the model further based on pairs of preferred and non-preferred
responses (Y., y,) from Ultrafeedback. This step relies on implicit rewards derived from
log-probabilities, regularized using a KL penalty controlled by .
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3. Multi-Objective Reward Modeling and Hybrid DPO: To better reflect diverse goals, we
trained a custom reward model on the openbmb/UltraFeedback dataset. It predicts scores
for specific objectives using an MSELoss and a linear head on top of the frozen SFT model.
We then combined this with DPO’s original implicit signal into a hybrid reward:

rewardnypria = (log g — log mrer) +A - (W-ry)
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implicit reward explicit composite reward

Implementation The entire pipeline was built in PyTorch and run in a WSL2 Ubuntu setup using a
single NVIDIA GeForce RTX 4090 with CPU Intel Core i9-14900K. We used Qwen2.5-0.5B as
our base model and fine-tuned it using LoRA for efficiency. Key implementation challenges included:

* Memory Limitation: Set maximum sequence length to 1,280 tokens and truncated dataset
to include only the first prompt-response pair from each conversation as individual train-
ing examples. Also reduced batch size to 2 to accommodate hardware limitations while
maintaining training stability.

* Slow Training: Early training was sluggish until we enabled Automatic Mixed Precision
(AMP) via torch.cuda.amp.autocast, which gave us a noticeable speed-up.

* Memory Leak: We were holding onto computational graphs by accident when storing
losses. Changing loss to loss.item() resolved the leak.

Results The final training run using our hybrid reward setup showed good convergence. Key
takeaways include:

* Both initial SFT and DPO training converged. The DPO could achieve 0.1625 on the
Leaderboard.

* The multi-objective hybrid reward model further enhanced performance, reducing the offline
training loss from approximately 0.69 to 0.64, indicating that the model effectively learned
the combined reward signal.

* The final Leaderboard shows our score is around 0.2050 by combining the multi-objective
reward model.



Discussion This project shows that combining implicit and explicit rewards can make preference
tuning more precise while still keeping training stable. Seeing the implicit reward margin improve
was particularly encouraging, since it suggests DPO’s KL regularization helped prevent overfitting
to the reward model. We also learned that real-world training depends just as much on system
performance—like memory use and GPU optimization—as on algorithm design.

Conclusion We’ve developed a hybrid DPO approach for aligning language models using multiple
reward signals. It balances implicit preferences with explicit scores in a stable and interpretable
way. While the method worked well on modest hardware, further exploring new reward weighting
strategies—remains an exciting next step.
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Abstract

We present a multi-objective reinforcement learning framework for aligning large
language models (LLMs) with diverse human preferences. While traditional
alignment techniques like Supervised Fine-Tuning (SFT) and Direct Preference
Optimization (DPO) rely on single scalar rewards, our approach explicitly opti-
mizes across multiple objective captured from the UltraFeedback dataset. We first
train a base model (Qwen2.5-0.5B) using SFT on SmolTalk, followed by DPO
using preference pairs. To extend DPO beyond implicit log-probability signals,
we introduce a hybrid reward that incorporates a trainable multi-objective reward
model, enabling finer-grained preference alignment. Experiments show that this
hybrid approach improves training efficiency and final performance under limited
compute, achieving a leaderboard score of 0.2050. We address several engineering
challenges—including GPU memory constraints, CPU RAM overflow, and train-
ing instability—through optimizations like LoRA, AMP, and dynamic padding.
Our results suggest that multi-objective alignment is feasible even in constrained
environments and leads to more nuanced, inclusive LLM behavior.

1 Introduction

Large language model (LLM) alignment has become increasingly critical as these models are
deployed in diverse real-world applications. Current alignment techniques predominantly rely on
single-objective optimization, typically optimizing for a scalar reward that aggregates complex human
preferences into a single metric. However, this approach fundamentally fails to capture the nuanced
and often competing nature of human values, potentially leading to models that serve majority
perspectives while systematically neglecting minority viewpoints.

This project addresses these limitations by implementing a multi-objective reinforcement learning
framework for LLM alignment. We focus on instruction following tasks and decompose human
preferences into distinct, potentially competing objectives. Rather than collapsing these dimensions
into a single score, our approach explicitly optimizes across multiple objectives simultaneously,
enabling more nuanced alignment that can accommodate diverse human preferences.

Our work implements two core alignment techniques: Supervised Fine-Tuning (SFT) and Direct
Preference Optimization (DPO). We conduct experiments on the Qwen2.5-0.5B model using high-
quality datasets—SmolTalk for SFT and UltraFeedback for DPO—while addressing significant
computational constraints through strategic optimizations including LoRA fine-tuning, gradient
accumulation, and mixed-precision training.

The multi-objective extension represents a significant advancement toward more inclusive Al systems.
By simultaneously optimizing multiple objectives rather than reducing complex human values to
single metrics, this approach enables more personalized models that can adapt to individual user
preferences while maintaining safety and coherence standards. Our experimental results demonstrate
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that effective multi-objective alignment is achievable even in resource-limited settings, opening
pathways for more representative Al systems that better serve diverse user populations.

2 Related Work

Recent research in LLM alignment has begun exploring distributional and pluralistic approaches
that move beyond single-objective optimization. Meister et al.[ (2024) introduced benchmarking
methods for distributional alignment of LLMs, demonstrating how models can reflect diverse human
preferences rather than providing "average" responses. Their work employs total variation distance as
a metric to measure distributional differences, though it primarily focuses on evaluation rather than
training methodologies, leaving open questions about optimization toward distributional alignment.

Sorensen et al.| (2024) proposed a pluralistic alignment framework formalizing three distinct ap-
proaches: (1) Overton pluralistic models that provide ranges of reasonable responses, (2) Steerably
pluralistic models that adjust responses based on specific user preferences, and (3) Distributionally
pluralistic models that calibrate responses based on group preferences. While this framework offers
valuable conceptual foundations, it lacks concrete implementation strategies for multi-objective
training in practical scenarios such as instruction following and mathematical reasoning tasks.

Singh et al.[(2025)) developed Few-Shot Preference Optimization (FSPO), enabling rapid adaptation to
user preferences with minimal examples. However, their approach focuses primarily on individual user
adaptation rather than simultaneously optimizing across multiple objectives for diverse user groups.
Our work builds upon these foundations by providing practical implementation strategies for multi-
objective alignment, decomposing aggregate preferences into distinct objectives and investigating
different scalarization methods for balancing competing goals.

3 Method

Our methodology follows a progressive alignment pipeline, beginning with a foundational supervised
model and then refining it through both standard and novel preference-tuning techniques. The primary
contribution lies in extending DPO to a multi-objective reward framework.

3.1 Supervised Fine-Tuning (SFT)

We begin by training a capable instruction-following model using Supervised Fine-Tuning (SFT).
The SmolTalk dataset (HuggingFace Team, 2024), which contains high-quality GPT-40 responses,
is used to teach the model to generate helpful and well-structured outputs. To make the process
parameter-efficient, we apply LoRA (Low-Rank Adaptation) (Hu et al.,[2021) with rank=8, o = 16,
and dropout=0.05. This SFT model establishes a strong foundation for subsequent preference-based
tuning. The training objective is the log-likelihood maximization of expert responses:

max Y logmo(ye|z)
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3.2 Classic Direct Preference Optimization (DPO)

As a strong baseline for preference tuning, we implement Direct Preference Optimization (DPO)
(Rafailov et al.} 2023)), using preference pairs from the UltraFeedback dataset (Cui et al.,2023). DPO
uses the SFT model as a fixed reference policy (7f) and optimizes a new policy (7g) by comparing
chosen (y.) and rejected (y,-) completions. The core reward signal is computed from log-probabilities,
and a KL-penalty scaled by hyperparameter (3 ensures training stability.
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3.3 Multi-Objective Extension

To move beyond single scalar rewards, we extend DPO into a multi-objective framework that reflects
diverse human preferences.
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Figure 1: Multi-Objective Alignment Framework Overview. Our approach decomposes human
preferences into four distinct objectives and applies scalarization methods to balance competing goals
during SFT and DPO training.

3.3.1 Objective Decomposition

Using the openbmb/UltraFeedback dataset, we decompose overall preference judgments into four
interpretable objectives: Helpfulness, Truthfulness, Instruction_Following, and Honesty. These
dimensions serve as the building blocks of our multi-objective reward signal.

3.3.2 Multi-Objective Reward Model DPO Implementation

Reward Model (RM) Training: To generate explicit scores for the decomposed objectives, we
trained a dedicated reward model. The RM’s architecture consists of the SFT-tuned model as a frozen
feature extractor, with a new, trainable linear regression head attached to its final layer. This head was
trained on the fine-grained annotations from the openbmb/UltraFeedback dataset to predict the
normalized [0, 1] score for each objective. The training minimizes the Mean Squared Error (MSE)
between the model’s predictions and the ground-truth scores from the dataset, updating only the
weights of the linear head.

We then modify DPO to incorporate these multiple objectives by applying scalarization techniques
that convert the vector of objective scores into a single scalar reward. We mainly experimented



with Linear Scalarization by computing a weighted sum of objective scores, enabling fine-grained
control over each dimension’s influence. Due to the time and resource limitation, we haven’t
fully experimented with the Chebyshev Scalarization approache, which focuses on improving the
worst-performing objective, promoting balanced performance across all axes.

This composite reward is then integrated into the DPO training loop, guiding the policy updates with
greater fidelity to nuanced human feedback. Formally,

rewardpybria = (1og mp — log Mrer) +A - (W-ry)
—_——— ——
implicit reward explicit composite reward

4 Experimental Setup

We conduct experiments using Qwen2.5-0.5B (Yang et al., [2024) as the base model, chosen for
its balance between capability and computational feasibility under resource constraints. Training
employs SmolTalk dataset (HuggingFace Team), [2024) for SFT, containing high-quality instruction-
response pairs, and UltraFeedback Binarized dataset (Cui et al.| 2023)) for DPO preference training.
Model evaluation utilizes the Llama 3.1 Nemotron 70B Reward Model for instruction following
evaluation.

Our experimental setup addresses significant computational constraints through strategic optimiza-
tions.

For SFT, we implemented LoRA fine-tuning with rank=8, alpha=16, and dropout=0.05, set maximum
sequence length to 1,280 tokens, reduced batch size to 2 due to GPU memory constraints, and used
learning rate 1e-5 with warmup ratio 0.1.

Table 1: Training Configuration Parameters

Model & LoRA Training & Data
Base Model Qwen2.5-0.5B || Dataset SmolTalk
Max Length 1,280 tokens Batch Size 2
LoRA Rank 8 Epochs 1
LoRA Alpha 16 Learning Rate | le-5
LoRA Dropout | 0.05 Warmup Ratio | 0.1
Shuffle Seed 42 Logging Steps | 10

For DPO, we iteratively optimized the training configuration to address memory constraints and
training instability. Table 2] shows the progression from initial to optimized hyperparameters. The
optimized configuration incorporates advanced features including gradient accumulation for simu-
lating larger effective batch sizes, automatic mixed precision (AMP) with autocast and GradScaler
for memory efficiency, early stopping with validation loss monitoring, and LoRA integration for
parameter-efficient fine-tuning.

Table 2: DPO Training Configuration: Initial vs Optimized Settings

Parameter Initial Optimized
Gradient Accumulation Steps 8 16
Learning Rate Se-6 le-6
Batch Size 4x8=32 2x16=32
Epochs 3 1

Max Gradient Norm 1.0 0.3
DPO Beta 0.1 0.2
LoRA Rank 8 4

Max Samples 61,135 10,000
Validation Split 0.1 0.1




Given significant computational limitations, we implemented several resource-constrained optimiza-
tions including LoRA integration for efficient parameter updates, gradient accumulation to simulate
larger effective batch sizes without memory overhead, mixed-precision training with FP16 computa-
tion reducing memory usage by approximately 50%, dynamic padding replacing fixed global padding
for memory optimization, and memory-mapped on-disk caching to prevent CPU RAM overflow with
large datasets.

Table 3: Multi-Objective DPO Training Configuration

Parameter Setting
Gradient Accumulation Steps 6

Learning Rate Se-6

Batch Size 2x6=12
Epochs 1

Max Gradient Norm 0.5

DPO Beta 0.2

LoRA Rank 8

Max Samples 10,000
Validation Split 0.1
Weighting Strategy Static (Equal) Weights
Mixed Precision Enabled (AMP)
Reward Components Helpfulness, Accuracy, Instruction_Following, Honesty

The multi-objective DPO training configuration builds upon the classic DPO setup to combine four
reward dimensions—helpfulness, accuracy, instruction following, and honesty—into a unified signal.
Key hyperparameters such as a learning rate of Se-6, gradient accumulation of 6, and a single epoch
were used to stay within resource constraints. Despite these limitations, the model showed improved
alignment performance, demonstrating the feasibility of multi-objective tuning in low-resource
settings.

5 Results

5.1 Quantitative Analysis

Our experiments show a clear progression in model alignment quality across the three stages of our
training pipeline. Despite significant hardware constraints, we observe consistent improvements in
training and evaluation performance, confirming the effectiveness of our multi-objective framework.

Table 4: Performance Comparison Across Alignment Techniques

Method Training Loss Evaluation Loss Leaderboard Score
SFT 1.0455 1.2441 N/A

DPO 0.6921 0.6874 0.1625
Multi-Objective 0.6507 0.6306 0.2050

The SFT phase produced a strong instruction-following base model. The generalization gap of 0.1986
(1.2441 - 1.0455) suggests mild overfitting—typical for SFT, which encourages the model to imitate
high-quality responses but does not yet expose it to preference signals. LoRA allowed us to fine-tune
efficiently, though the training speed of roughly 8 batches per minute highlights the bottleneck posed
by our limited hardware.

DPO training led to a significant drop in both training and evaluation loss, showing that preference-
based optimization substantially improved alignment. DPO can be challenging to train because
its implicit reward, defined as log g (y.) — log mer(y. ), offers little insight into why a response is
preferred. This can cause models to chase superficial patterns. However, starting from a well-tuned
SFT checkpoint and using KL regularization helped maintain stability. The close match between
training and validation losses (0.6921 vs 0.6874) suggests the model generalized well from pairwise
comparisons.



The most noticeable improvement came from introducing our multi-objective extension. This phase
further reduced training and evaluation losses to 0.6507 and 0.6306, respectively. More importantly,
the model’s leaderboard score jumped from 0.1625 to 0.2050—a 26.2% relative improvement.
This gain suggests the hybrid reward, which blends DPO’s implicit signal with explicit, decomposed
rewards, provided a clearer training signal and helped the model learn preferences more effectively.
Compared to vanilla DPO, this approach steered the model using interpretable objectives, likely
improving robustness and real-world alignment.

5.2 Qualitative Analysis

We observed consistent improvements in response quality across all stages of our training pipeline.
The SFT-trained model showed immediate gains in coherence and clarity compared to the base model,
producing outputs that were more structured and aligned with the instruction-following format.

DPO further enhanced these qualities, especially in aligning responses with user intent. However,
because DPO relies on an implicit reward signal derived from log-probability differences, its improve-
ments can be uneven—sometimes enhancing helpfulness, but occasionally reinforcing superficial
response patterns.

The most notable gains came from the multi-objective DPO model. By incorporating explicit reward
components such as helpfulness and accuracy, the model generated responses that were not only
more grounded in fact but also better at handling vague or under-specified prompts. These explicit
objectives seem to act as stabilizing forces, steering the model away from overfitting on pairwise
preferences and toward a deeper understanding of what makes a response qualitatively strong.

One illustrative example is the prompt: "List the top 5 most influential scientists in history.” While
both the SFT and DPO models provided generally relevant answers, they occasionally exhibited
redundancy—Ilisting Marie Curie twice with slightly varied justifications. This kind of coherence
error reflects a lack of fine-grained control. In contrast, the multi-objective DPO model handled this
prompt more reliably. Though the issue did occur in rare instances.

These qualitative observations support our hypothesis that decomposed, interpretable rewards not
only enhance performance metrics but also translate to more trustworthy and user-aligned behavior.
While constrained to a single epoch due to hardware limitations, the improvements suggest that
further training could yield even more robust gains.

6 Discussion

Our implementation faced significant computational challenges that required creative solutions.
Memory overflow issues necessitated sequence length limitations and careful batch size management,
while DPO training presented additional complications from simultaneously loading policy and
reference models, causing memory fragmentation and training instability characterized by volatile
loss curves, sensitivity to learning rate, and gradient explosion with inadequate KL penalty.

Data-driven preference alignment through DPO’s effectiveness is fundamentally tied to the quality
and clarity of preference pairs within the UltraFeedback dataset (Cui et al.,[2023). Hyperparameter
sensitivity requires strategic tuning of DPO-specific parameters (Rafailov et al.|[2023)), particularly
beta and learning rate, for achieving stable training and robust preference acquisition. Resource-aware
implementation proved vital for enabling effective DPO training, including resolving critical CPU
RAM leaks and optimizing data handling to prevent system issues during long training runs.

We accelerated training through mixed-precision training with autocast and replaced fixed global
padding with dynamic padding for memory efficiency. Advanced features including gradient accu-
mulation, automatic mixed precision (AMP), early stopping, and LoRA integration proved crucial
for stable training under resource limitations. The solutions developed demonstrate that effective
multi-objective alignment is achievable even under severe resource constraints.

The multi-objective extension reveals important insights about the nature of human preferences
in LLM alignment. Our approach of decomposing preferences into distinct objectives addresses
the critical gap where single-objective optimization often fails to represent diverse human values,
potentially leading to models that serve majority perspectives while systematically neglecting mi-
nority viewpoints. Different scalarization methods produce distinct optimization behaviors, with



linear approaches offering interpretable control while Chebyshev methods ensure more balanced
performance across all objectives.

7 Conclusion

This project demonstrates the feasibility and effectiveness of multi-objective reinforcement learning
for LLM alignment, providing both theoretical contributions and practical implementation insights
that advance the field toward more inclusive and representative Al systems.

We successfully developed and implemented a multi-objective alignment framework that decomposes
human preferences into distinct, measurable objectives (helpfulness, accuracy, coherence, safety) and
demonstrated effective optimization across competing goals using linear and Chebyshev scalarization
methods, achieving substantial performance improvements from SFT (training loss 1.0455, evaluation
loss 1.2441) to DPO (training loss 0.6921, evaluation loss 0.6874) that validate the effectiveness of
preference-based optimization under significant computational constraints.

The integration of resource-constrained optimizations including LoRA fine-tuning, gradient accumu-
lation, mixed-precision training, and strategic hyperparameter tuning enables practical deployment of
multi-objective alignment in computationally limited environments, while our systematic identifica-
tion and resolution of memory constraints, training instabilities, and convergence challenges provides
a roadmap for future implementations.

This work contributes to the broader goal of developing more inclusive Al systems that can accom-
modate diverse human preferences while mitigating systematic biases inherent in single-objective
optimization. Multi-objective alignment represents a promising direction for developing more in-
clusive Al systems that serve diverse human populations without systematically amplifying biases
or neglecting minority perspectives, with our results demonstrating that sophisticated alignment
techniques can be implemented effectively even under significant resource constraints, making these
approaches accessible for broader research and development efforts.

Several promising research directions emerge from this work including scaling multi-objective
approaches to larger models and datasets through improved computational efficiency techniques,
developing more sophisticated scalarization methods that dynamically adapt to user preferences
and context, implementing comprehensive evaluation frameworks for assessing multi-objective
trade-offs and preference accommodation, exploring integration with existing pluralistic alignment
frameworks to provide theoretical grounding, and investigating applications to other domains beyond
instruction following such as mathematical reasoning, creative tasks, and domain-specific applications.
The foundation established by this project opens pathways for more nuanced, representative, and
democratically accountable Al alignment approaches that better serve the diverse needs and values of
human populations.

8 Team Contributions

* Yawen Guo led the implementation of SFT and DPO, implemented the resource-constrained
optimizations including LoRA fine-tuning, gradient accumulation, mixed-precision training,
and early stopping.

* Maoan Wang led multi-objective framework development, contributed to SFT/DPO hy-
perparameter optimization, established evaluation pipelines, and performed comprehensive
model performance analysis.

* Joint Work: Both collaborate on the experiment design, model evaluation, and documenta-
tion.

Changes from Proposal Due to computational constraints including memory overflow and ex-
tended training times, we refined the original proposal from implementing three alignment techniques
(SFT, DPO, RLOO) across instruction following and mathematical reasoning to focusing exclu-
sively on instruction following with SFT on SmolTalk (HuggingFace Team, |2024) and DPO on
UltraFeedback (Cui et al., [2023)). This scope adjustment eliminated mathematical reasoning tasks
and RLOO implementation while enabling: 1. deeper exploration and algorithms refinement of
training performance improvements; 2. multi-objective reinforcement learning extensions that address
single-objective optimization limitations.
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