Extended Abstract

Motivation We wanted to examine the use of reinforcement learning methods in complex game
play environments. While No-Limit Texas Hold’em poker has been heavily explored, the variant
of Open-Face Chinese Poker (OFCP) has minimal prior research. Through this paper, we aim to
explore various methods of RL methods that can applied to optimal gameplay for OFCP. We seek to
understand how the sparse reward system and complex hand dynamic make OFCP more challenging
than other poker variants, determining whether Q-Learning, PPO, and MCTS can be applied to create
successful agents.

Methods We implemented several RL algorithms on OFCP in a self-play environment, requiring
no external datasets and compared its effectiveness against rule-based and learning-based opponents.
Many of these implementations haven’t been explored for OFCP previously. Q-Learning is used as a
baseline method as it was previously used by [Tan and Xiao| (2018) for OFCP. We also implement
Deep Q-Learning and the Double DQN and Dueling DQN variants. Inspired by [Tan and Xiao
(2018)), the DQN uses a neural network to approximate Q-values, allowing scalability for large
state representations like OFCP. Double DQN mitigates Q-value overestimation in DQN through
decoupling action selection and evaluation. Dueling DQN creates a state-value stream and a action-
advantage stream, allowing the agent to create more ideal Q-values compared to DQN. Our second
category of methods is PPO. PPO has a stable policy gradient learning and stochastic decision-
making, which can better handle imperfect information and uncertainty in game play. We implement
clipped surrogate optimization and entropy regularization, and to improve tie-breaking, Generalized
Advantage Estimation (GAE) is implemented as an extension. Finally, the third class of methods
is MCTS. MCTS explores potential card placements and simulates future rollouts through early
termination and pruning. We implement the cross-entropy method, RAVE, and Counterfactual Regret
Minimisation to address less-informed early moves and long-term planning.

Implementation We created a custom two-player OFCP environment aimed to compete against our
method bots. The reward function follows after OFCP rules, incorporating winning a hand, fouling,
scooping, and royalties. The environment includes deck management (shuffling and dealing cards)
and game simulation (placing cards, checking hand validity, and running rounds). All of the agents
are trained through self-play and evaluated through method win rate, bot win rate, average points per
game, and training efficiency.

Results The results from our experiments demonstrate that MCTS with optimizations of CEM,
RAVE, and CFR achieved the highest model win rate of 89%, limiting the bot win rate to 3%,
and averaging 11.2 points per game over 100 evaluated games. This far outperformed the second
model of PPO with the GAE optimization which has a model win rate of 41% and 5.02 points per
game, limiting the bot to 0% win rate. Among the Q-learning methods, Double DQN optimized
the best, achieving a model win rate of 35% and 3.50 points per game, though significantly less
effective than the PPO and MCTS. Notably, while MCTS has strong performance for the method
implementation, it comes at a computational cost, taking 447 minutes for evaluating 100 games which
is almost 200x longer than PPO’s 20-second evaluation, highlighting the importance of performance
and computational efficiency.

Discussion and Conclusion Our methods focus on two-player OFCP and omits variants like
Fantasyland/Shoot the Moon and multi-player dynamics that would demand richer reward modeling.
While MCTS achieves top performance, its high computational cost limits real-time play. Future
work will optimize MCTS efficiency (e.g. via parallel roll-outs or learned policies), explore hybrid
neuroevolution—-RL to tackle sparse rewards, and systematically tune lightweight methods to improve
their decisiveness without prohibitive compute. We showed both of our hypotheses for this project:
demonstrating that all three classes of methods outperform a Random bot and that MCTS outperforms
the other two classes with a 89% Method Win Rate.

Advancing Multi-Agent Reasoning in Open-Face
Chinese Poker

Alice Guo Ramya Iyer
Department of Computer Science Department of Computer Science
Stanford University Stanford University
azguo@stanford.edu ramyal@stanford.edu
Isabella Lee

Department of Computer Science
Stanford University
leeij@stanford.edu

Abstract

While not explored as often as traditional poker, this paper analyzes various rein-
forcement learning (RL) methods to solve Open-Face Chinese Poker, a complex,
imperfect information with sparse rewards. We implement and compare major
approaches like Deep Q-Learning (including Double DQN and Dueling DQN),
Proximal Policy Optimization (PPO) with Generalized Advantage Estimation, and
Monte Carlo Tree Search (MCTS) with Cross-Entropy Method (CEM), Rapid
Action Value Estimation (RAVE), and Counterfactual Regret Minimization (CFR).
Across 100 evaluation games per method, the MCTS achieved the highest win
rate of 89% and highest average points per game of 11.2, significantly outperform-
ing the other RL methods. However, this method performance trades off with
computational efficiency. Our findings highlight MCTS’s superiority in OFCP en-
vironments, suggesting future works on computational efficiency, faster inference,
and optimizing methods for more complex game variants.

1 Introduction

Open-Face Chinese Poker (OFCP) is a multiplayer, imperfect information card game where players
place 13 cards into three rows (top, middle, and bottom). Players create poker hands of 3, 5, and
5 cards, respectively, aiming to gather the largest amount of points possible without knowing the
order of future cards or the card their opponent is currently placing on their board. OFCP requires
multi-agent reasoning under uncertainty, strategy adaption, and opponent modeling, making it a
benchmark to test Multi-Agent Reinforcement Learning (MARL) techniques.

Reinforcement learning has been previously used to play and solve poker variants like No-Limit Texas
Hold’em (NLTH) through the creation of agents such as Libratus and AlphaHoldem. However, the
game of OFCP remains largely underexplored due to its complicated three-tiered structure, making
the state space more complicated than other poker variants. Methods proposed by [Tan and Xiao
(2018)) and [Kirklin|(2014) have identified additional challenges of sparse rewards and computational
expenses, particularly for methods such as MCTS. Seeing this opportunity, our paper and final project
explores reinforcement learning and search-based approaches for creating an OFCP agent.

We constructed two hypotheses to test. First, all tested methods in this project (MCTS, Q-Learning,
Deep Q-Learning, and PPO) can show significant improvement over a bot placing random cards,
displaying an ability to play strategically or learn patterns through self-play without relying on
pre-existing data. Secondly, we hypothesize that MCTS will perform better than other RL methods

Stanford CS224R 2025 Final Report

such as Q-Learning, Deep Q-Learning, and PPO due to MCTS’s ability to systematically explore
large game possibility spaces and to handle imperfect information by averaging outcomes over many
sampled rollouts. As a result, we anticipate that MCTS will emerge as the preeminent method of
solving Open-Face Chinese Poker.

2 Related Work

Reinforcement learning has driven major advances in poker Al, particularly in No-Limit Texas
Hold’em (NLTH). Landmark systems like Libratus employed abstraction, endgame solving, and
counterfactual regret minimization to defeat professional human opponents in heads-up NLTH Brown
and Sandholm| (2018)), and DeepStack further demonstrated continual re-solving with a learned
value function and sparse lookahead Moravcik et al.|(2017). These approaches excel in two-player
zero-sum settings but depend on expensive offline computation and heavily engineered abstractions,
making them ill-suited to the sequential, multi-row structure of Open-Face Chinese Poker (OFCP).

Multi-agent reinforcement learning (MARL) extends these ideas to environments with hidden infor-
mation and strategic opponents. For example, attention-based actor—critic methods learn opponent
embeddings to guide policy updates in multiplayer NLTH [Shi et al.| (2022), and value decomposition
networks coordinate decentralized agents through a centralized critic in partially observable games
Foerster et al.[(2018). While these frameworks offer powerful opponent-modeling capabilities, they
typically require explicit communication or centralized training data, whereas our PPO agent learns
purely via self-play and shapes its own rewards to elicit strategic behavior.

Within OFCP itself, prior work remains sparse. Early attempts applied Deep Q-Networks to raw
OFCEP states, only to find that sparse rewards and large action spaces severely hindered convergence
Tan and Xiao| (2018)). Monte Carlo Tree Search has been adapted to Pineapple Poker, a close variant
of OFCP, by pruning low-value roll-outs to manage computational cost|Luo et al.|(2018]), and pure
Monte Carlo bots like Kachushi use hand-ranking lookups to simulate millions of random games
Kirklin| (2014)). These methods rely on extensive roll-out simulations or handcrafted heuristics to
break ties and avoid fouls.

In contrast to prior methods that rely heavily on handcrafted heuristics, extensive game abstractions,
or pure tree-search simulations, we explore several end-to-end reinforcement-learning methods,
including Q-Learning, Deep Q-Learning, Proximal Policy Optimization, and Monte Carlo Tree
Search. Each method learns directly from raw card-placement states with a custom reward function to
highlight how modern deep-RL techniques can be applied to OFCP in a complex, multi-row scoring
environment.

3 Experimental Setup

We implemented a custom environment to simulate 2-player Open-Face Chinese Poker that aligns
with the game mechanics while being computationally feasible to use for reinforcement learning
experiments. We implement several interlocking pieces of functionality to imitate a OFCP game. We
create custom data structures to imitate the three-tier hand structure, allowing players to place cards
in a specific row in the player’s hand and check the hand validity. We also use a custom data structure
to imitate the deck, beginning with a normal 52-card deck. Our deck allows shuffling and drawing
both the starting hands and subsequent cards. Furthermore, we allow simulations of an entire game,
from the initial draw to the final scoring, as well as simulating a single round.

We also built a custom reward function based on usual OFCP rules. For example, winning a hand tier
yields +1 point per winning tier. Scoops, winning all three hand tiers, yields +3 points. However, if a
player were to foul with a invalid hand, they would be penalized with -6 points. We also implement
royalties, which yield up to 25 points based on high-value combinations of cards such as flushes and
straights. We chose to use the usual rules of Open-Face Chinese Poker as the basis of our reward
function as we wanted the agents to be able to understand the rules of OFCP and work towards
high-value combinations of cards. By finding concrete rewards for completing the objectives of
the real game, our bots would be able to learn optimal card placements and strategies to achieve
high-scoring hands. However, a modification we made to made to the base model was increasing the
positive benefit of completing a non-fouled hand. We also highly penalized a fouled hand regardless
of whether the opponent fouling or not, discouraging fouls altogether. This ensured that our methods

would not settle for a fouling hand if their opponent fouled - the agents would instead seek valid
hands over fouling ones.

We did not use an external dataset. Instead, all models were trained using self-play in this environ-
ment. Our baseline was a reimplementation of the existing literature on Open-Face Chinese Poker.
Specifically, previous literature attempted to use Q-Learning and Deep Q-Learning to solve OFCS.
These two methods served as a baseline for this project against which we compare our other methods
in the Discussion Section. Another baseline was playing against the Random Bot, which chooses
random positions in which to place the cards rather than strategically selecting a hand. This baseline
serves as one of our evaluation metrics.

To quantitatively evaluate the performance of our agents, we used three metrics. First, we compared
method and Random Bot win rates. In a set of n games, the method win rate was calculated as the
number of games the method won divided by n. Similarly, the bot win rate was calculated as the
number of games the bot won (over the same set of n games) divided by n. Second, we compared
points per game. In some cases, This metric represents the average points per game scored by the
agent. Third, we compare training and computation efficiency by examining the time and resources
used to train the agents.

4 Methods

The agents train on self-play, collecting experiences through learning rather than data. The Q-
Learning, Deep Q-Learning, Doubling DQN, Dueling DQN, Proximal Policy Optimization (PPO),
Monte Carlo Tree Search (MCTS), and their relevent extensions are described in detail in the
following sections.

4.1 Q-Learning

We implemented Q-Learning as an off-policy, tabular RL algorithm, learning the state-action value
function Q(s,a) through interacting with the environment and updating the Q-table through the
Bellman equation. The Q-values learned are selected during evaluation to determine the accuracy.
The agent encodes states as a binary vector with the player’s current hand and the incoming card.

Action Space: During each action step, the agent selects among three placement actions as seen in
OFCP (top row, middle row, and bottom row).

Bellman Equation: During training, we use the e-greedy policy, with ¢ = 0.1 and during the
evaluation the agent acts greedily, choosing the best action. We can express the updates on Q-table as
the Bellman Equation below

Qs,0) Q(s.) +a [r + ymax (s, a') — Q(s,a)

with learning rate of & = 0.1 and discount factor of v = 0.9.

Training and Evaluation: We train the model agent on 2000 episodes against a random bot and
evaluate the model on 100 episodes.

4.2 Deep Q-Learning (DQN)

The DQN model is an extension of the Q-learning that uses a neural network to estimate (s, a). The
state representation and action space are given from the Q-learning method. For the state, we encode

* Top Row: Maximum of 3 cards x 52 = 156
¢ Middle Row: Maximum of 5 cards x 52 =260
¢ Bottom Row: Maximum of 5 cards x 52 =260

e Current card: Next 1 card x 52 =152

which represents 156 + 260 4 260 + 52 = 728-dimensional binary vector.

Network Architecture: The DQN architecture consists of 3 multilayer perceptron with layer
dimension 728 — 128 — 64 — 3 with ReLU activation functions. We update the target network
after every 100 episodes to help stabilize training.

Loss Function: The agent utilized an experience replay buffer that has a maximum size of 10, 000
with batch sizes of 64. The Q-Network is updated through the MSE loss function explicitly denoted
as

L= (T + ’YH}IS;X Qtargel(sl, a/) - Q(S, a))2.

The neural network also uses the Adam optimizer with learning rate of le — 3.

The training and evaluation hyperparameters of training on 2000 episodes and evaluation on 100
episodes.

4.3 Doubling DQN

We extend upon the DQN by implementing a Doubling DQN that migrates Q-value overestimation.
The Doubling DQN involves two networks, one online Q-network and a target network. The target
network loss function is computed through

L= (7' + Y Qta.rget(s/a arg H}f}x Qonline(slv al)) - Q(S, a))2

The target network updates every 20 episodes. We utilize the Adam optimizer with a learning rate of
le — 4, differing from DQN. We create a replay buffer with size 50000 tuples for batch updates. The
agent also follows a linear decay e-greedy policy going from 1.0 to 0.1 over 1000 steps.

4.4 Dueling DQN

The Dueling DQN improves the standard DQN by creating two streams: the value stream and the
advantage stream. We find the Q-values through

Qls,a) = V(s) + (A(s, a) - \711| ZA(s,a')>

where the value stream outputs the scalar V' (s) and the advantage stream outputs action-specific
advantages A(s, a). This allows the agent to focus on the states that have higher attention, indicating
which Q-values are most valuable. The architecture uses an Adam optimizer and MSE loss on target
Q-values.

This model is trained on 2000 episodes and evaluated on 100 episodes, similar to the other Q-Learning
methods above.

4.5 Proximal Policy Optimization (PPO)

We implement Proximal Policy Optimization (PPO) as an on-policy actor—critic algorithm that directly
maximizes a clipped surrogate of the policy objective while learning a separate value function. Our
overall training pipeline consists of the following components:

Agent architecture Our policy/value network is a small multilayer perceptron (MLP) with one
hidden layer of 128 ReLU-activated units and two output heads:
* Policy head: outputs a softmax over the three placement actions (top, middle, bottom).

* Value head: predicts the scalar state-value Vp(s).

State encoding At each decision step ¢, the environment state s; is encoded as an 8-dimensional
vector

5t = (Ctops Vtops Cmid, Umids Chots Ubot, Tank, suit),

where (c;, v;) denote the category and numeric tiebreaker value of pile ¢, and rank, suit index the
incoming card.

Reward design We convert the environment’s native scoring (fouls, royalties, scoop multipliers)
into a dense, stepwise signal:

—6, if the placement invalidates the hand (foul),
re =« (P — By) — (P,—1 — B;_1), if this difference is nonzero,
—0.1, otherwise.

At game end, we further layer on a small tie penalty and scoop bonus (see Results and Analysis for
the exact values and their effect).

Numerical stability and clipping Masking illegal moves can produce zero-sum logits and NaNs.
We therefore fall back to a uniform distribution whenever the masked logits sum to zero. To bound
policy updates and prevent exploding gradients, we adopt the standard PPO clipped surrogate with
e=0.2:

LEMP (9) = — By [min{r(6) Ay, clip(ri(0),1— &,1+¢) A},

where 74 (6) = mg(a | st)/m,old (at | s¢)-
Entropy regularization To maintain exploration, we add an entropy bonus:
—BE[H(mo(- | 5))], B=0.01.
Optimization The full loss is optimized by Adam (learning rate 5 x 10~%):
L(0) = LM (0) + L E, [(Vo(se) — Re)?] — 0.0LE[H(mo(- | 5¢))].
Training is run for 2,000 episodes with stochastic self-play evaluation every 50 episodes.
4.6 Monte Carlo Tree Search (MCTS)

MCTS is a best-first, assymmetric search technique for sequential decision-making problems. Given
a state sg and a finite action set A, MCTS seeks to find and choose the action that maximizes the
expected return

Q(so,a) = E[reward(sg, a, future)].

To do so, MCTS relies on random roll-outs to estimate the value of child nodes. Each child node
stores the visit count IV, the total reward W, the mean value N/W, and the set of child nodes C. In
our implementation, we run 100 simulations. Each simulation consists of 4 stages:

1. Selection: From the root node, the algorithm chooses the best child using the UCT equation,

lnN(’U)]

v = arg max [Q(u) te N (u)

u€eC(v)
c > 0 represents the exploration parameter. We continue choosing the best child until we
reach an unvisited action.

2. Expansion: The algorithm creates all child nodes based on previously untried actions a,
initializing N = 0and W = 0.

3. Roll-Out: The algorithm randomly chooses a new node and conducts a random roll-out
until we reach the game end state. We calculate the reward from this game end state.

4. Back-Propagation: We then traverse the path back to the root node, incrementing the
counts of each visited node by 1 and accumulating the reward based on the game end state
in the Roll-Out stage.

After running all 100 iterations, we select the best child based on the UCT equation as our next
action. This allows the algorithm to strike a balance between exploitation and exploitation without
handcrafted evaluation functions.

MCTS is particularly effective for Open-Face Chinese Poker as it naturally handles stochastic and
partially observable domains such as the unknown cards still in the deck. However, we anticipated

one notable challenge. Though the exploration constant ¢ is recommended to be v/2 for rewards
within [0, 1] based on previous literature, our reward function outputs rewards beyond this range. As
a result, we implemented the Cross-Entropy Method (CEM). CEM learns a probability distribution
over placements and lets MCTS sample actions from a narrower distribution, shrinking the effective
branching factor and allowing the model to do more with the same playout budget (of 100). Addi-
tionally, random rollouts can often lead to high variance of leaf rewards if the range of rewards is
high, requiring hundreds or thousands of simulations to find a stable). CEM creates higher-quality
playouts with lower variance by adapting online, leading to quicker convergence. Importantly, since
OFCP’s reward function is discontinuous, CEM’s requirement of simulation returns makes it applica-
ble as a policy-search method. Thus, we are able to auto-tune MCTS hyperparameters and learn a
global placement policy that decreases roll-out variance, leading to quicker convergence.

Additional architecture decisions for MCTS extensions are explained in the Results section.

5 Results and Analysis

5.1 Q-Learning Methods: Q-Learning, DQN, Double DQN, Dueling DQN

We hypothesized that the Q-Learning methods would present as a baseline method for OFCP. We
implemented each of the variants of Q-Learning, specifically DQN, Double DQN, and Dueling
DQN. We enhance the baseline Q-Learning by using deep neural networks to estimate Q-values
more effectively. As expected, we find that the win rate of Q-Learning is lower than the DQN
implementation. Additionally, the model win rate for Double DQN and Dueling DQN are higher
than the DQN. This is due to the improvements that each of the models had on the overestimation of
Q(s, a), decreasing the biases through different optimization. Each of the methods were trained on
2000 episodes and evaluated on 100 episodes. These comparisons are seen in Table[T}

Table 1: Comparison of Q-Learning Methods

Method Method WR Bot WR Points/Game Total Time
Baseline Q-Learning 22% 35% 0.98 pts/game 33s
DQN 31% 33% 2.08 pts/game Sm7s
Double DQN 35% 23% 3.50 pts/game 4m 16s
Dueling DQN 33% 22% 3.01 pts/game 2m 26s

5.2 Monte Carlo Tree Search (MCTYS)

We implemented Monte Carlo Tree Search to test our hypothesis that MCTS would perform better
than other RL methods such as Q-Learning, Deep Q-Learning, and PPO due to MCTS’s ability to
systematically explore large game possibility spaces and to handle imperfect information by averaging
outcomes over many sampled rollouts. To do so, we first implemented the base algorithm for MCTS,
later expanding upon our initial implementation to address some of the challenges our model faced.
Our experiments showed the best performance from MCTS with cross-entropy loss for optimizing
action proposals at the root node, Rapid Action Value Estimation (RAVE) to improve initial estimates
of the best next move given the large search space and slow warm up, and Counterfactual Regret
Minimization to better handle hidden information within OFCP to take temporarily suboptimal moves
in order to gain better long-term rewards.

We implemented each extension sequentially. Our best results for each step of the implementation
are included in Table 2] All experiments were run over a set of 100 games. In these 100 games,
Method Win Rate describes the percentage of games the implemented method won. The Bot Win
Rate describes the percentage of games the Random Bot won.

Tuning exploration parameter ¢ with the Cross-Entropy Method yielded a best result for ¢ = 10.721.
However, even after implementing the baseline MCTS and the Cross-Entropy Method, we saw in
testing that each child node had few visits and there was still high variance of random playouts.
Additionally, our agent played rather conservatively to avoid fouling, missing out on larger bonuses for

Table 2: Comparison of All MCTS Agents

Method Hyperparams Method WR Bot WR Points/Game Total Time
Baseline MCTS c=5 68% 19% 8.2 pts/game 372m 12s
+ CEM c=10.721 71% 15% 9.6 pts/game 334m 40s
+ CEM, RAVE c=10.721, k=50 84% 6% 9.8 pts/game 356m 37s
+ CEM, RAVE, CFR ¢=10.721, k=75 89% 3% 11.2 pts/game 447m 03s

taking risks. As a result, we implemented two additional extensions: Rapid Action Value Estimation
(RAVE) and Counterfactual Regret Minimisation (CFR).

RAVE stores an action-independent estimate of how good each action is whenever it is played
anywhere later in the same simulation, not only when it is chosen to expand that particular child, for
each state. Then, we can blend this All-Moves-As-First statistic with ordinary UCT. The All-Moves-
As-First (AMAF) estimate has lower variance than the normal MCTS (@), allowing us to blend the
two equations into a new equation:
k
AN) 3N +k’

where k is a tunable parameter. A higher k keeps [large longer. Since our branching factor is
relatively small, with 3 possible actions, RAVE particularly benefits the earliest parts of the search
tree while UCT dominates automatically beyond a low depth. After tuning k£ down to 50, AMAF
influence faded once each child had about 200 visits, allowing long-term convergence to be true to
UCT values. Running experiments with different values of £ with the RAVE architecture yielded the
results in Table[3] The exploration hyperparameter ¢ remained at the best value ¢ = 10.721.

Table 3: MCTS + CEM, RAVE Experiment Results

Method Hyperparams Method WR Bot WR Points/Game
+ CEM, RAVE k=50 84% 6% 9.8 pts/game
+ CEM, RAVE k=100 72% 18% 8.0 pts/game
+ CEM, RAVE k=200 45% 21% 6.2 pts/game

We see that the performance of MCTS with CEM and RAVE degrades when £ is too high. This means
that we are holding /3 too high for too long, resulting in AMAF dominating long after it has enough
data. This can result in the agent becoming biased, assuming that the move’s value is independent of
when it was played and allowing the agent to continue trusting a systematically incorrect assumption.
The value @ associated with each node may also become correlated across actions, and a high k can
result in over-propagation of lucky (or unlucky) rollouts. Thus, we settle on £ = 50 and ¢ = 10.721
as the best hyperparameters for MCTS with CEM and RAVE. Each of these experiments took about
356 minutes to run for 100 games.

However, the continued high-variance of random rollouts inspired the last extension: Counterfactual
Regret Minimsation-trained rollouts. In the best case winning scenario, the player can receive over
60 points due to royalties. However, they can also end a round with -6 points due to fouling. CFR
calculates the regret of playing one move over another, using counterfactual regret rather than raw
utility for backpropagation. Using CFR also updates regrets at information-set granularity, allowing
us to train regret across different full-game trajectories. This allows us to quickly learn generic rules
such as avoiding putting two low pairs on the top hands, sacrificing immediately-optimal hands for
longer-term benefit. CFR is complementary to UCT - while UCT handles exploration at the current
root, CFR supplies a global prior that avoids obviously-bad moves across the whole game tree as
learned over many games. The results from the experiments with different values of k with the full
MCTS + CEM, RAVE, CFR implementation are as follows. Once again, the exploration constant is
set to the optimal ¢ = 10.721.

As shown in Table 4] the choice of hyperparameter & greatly influenced the performance of the
model. This is due to k’s control over balancing the AMAF statistic with UCT, as increased AMAF
control results in increased AMAF noise. Since CFR controls variance, a higher & value is no longer

Table 4: MCTS + CEM, RAVE, CFR Experiment Results

Method Hyperparams Method WR Bot WR Points/Game
+ CEM, RAVE, CFR k=50 75% 13% 7.9 pts/game
+ CEM, RAVE, CFR k=75 89% 3% 11.2 pts/game
+ CEM, RAVE, CFR k=100 68% 32% 6.7 pts/game
+ CEM, RAVE, CFR k=125 42% 27% 3.2 pts/game

necessary to control noise. Rollouts are already fairly informative, making RAVE’s integration of
AMAF statistics less important (though still beneficial to MCTS). Compared to the results with just
CEM and RAVE however, we note that the lower-variance and order-consistent rollouts mean that the
CFR policy tends to play a move at roughly the same stage it appears in the real game. This means
that the penalty for a big k is smaller, though it still is not O.

All experiments took the same time to run. Training CFR for 200 iterations took approximately
133 minutes and 20 seconds. Running MCTS with CEM, RAVE, and (pre-trained) CFR took
approximately 315 minutes to run for 100 games.

5.3 Proximal Policy Optimization (PPO)

Our goal for Proximal Policy Optimization was to learn a robust card-placement policy in the complex
environment of Open-Face Chinese Poker. Our initial results supported our hypotheses that MCTS
performs the best, with PPO coming in second. However, the primary constraint on PPO’s win rate
was the large number of games that resulted in ties.

To tackle this, we first introduced additional reward shaping in Table[5] Beyond the defined reward
function, we layer a small negative penalty for ties and a modest bonus for scoops on top of the
environment’s native fouls and royalties. This gave the agent an extra gradient signal to break
deadlocks. We then incorporated Generalized Advantage Estimation (GAE) as an extension to reduce
variance in our advantage estimates, yielding smoother and more informative policy updates. Having
strengthened the reward signal to encourage decisive play, we next turned to variance reduction in
our policy updates.

Table 5: Reward-shaping hyperparameters.

Parameter Value
Tie penalty, 7e —0.1
Scoop bonus, T'scoop +1.0

Max. scoop diff., Dpax 3

Generalized Advantage Estimation (GAE) We compute temporal-difference residuals and GAE
to reduce variance:

(St =Tt + 7V9(8t+1) — %(St), GAEt = (St + ’7)\ GAEt+1,

where v = 0.99 and A = 0.95. We set the advantage A; = GAE; and the target return
Rt = At + ‘/9(5,‘)

After training for 2,000 episodes, we assessed the agent’s performance by sampling 100 games from
its learned policy. As shown in Table[6} adding GAE increases the player win rate by about 10% and
raises the average point differential from 3.72 to 5.02.

To ensure these findings weren’t due to sampling noise, we also ran a larger-scale evaluation over
1,000 games (Table [7).

We see that incorporating Generalized Advantage Estimation (GAE) into PPO yielded a consistent
10% boost in win rates across both 100- and 1,000-game evaluations, demonstrating that lower-
variance advantage estimates lead to more stable updates and more effective scoop-seeking strategies.
Average point differentials also rose, indicating not only more wins but more decisive victories.

Table 6: Comparison of PPO agent performance over 100 games, with and without GAE.

Metric No GAE With GAE
Player wins 31% 41%
Ties 69% 59%
Bot wins 0% 0%
Avg. player score 3.72 5.02
Avg. bot score -1.86 -2.46

Table 7: Comparison of PPO agent performance over 1,000 games, with and without GAE.

Metric No GAE With GAE
Player wins 26.9% 35.8%
Ties 73.1% 64.2%
Bot wins 0% 0%
Avg. player score 3.25 4.31
Avg. bot score -1.61 -2.15

However, ties still dominate, reflecting the game’s split-pot scoring, which naturally produces many
deadlocks even when the agent aggressively pursues full-hand wins. Further reductions in draw
frequency will likely require complementary techniques: stronger reward shaping (e.g. larger tie
penalties or adaptive bonuses), entropy annealing to reduce randomness post-training, or auxiliary
objectives that directly maximize scoop rates.

The 100 game experiments took approximately 20 seconds to run; 30 seconds for the 1,000 game
experiments.

5.4 Comparing Methods

The hyperparameters for each of these methods are the same as described in previous subsections,
though not repeated again for the sake of space.

Table 8: Comparison of Selected OFCP Agents

Method Method WR Bot WR Points/Game Total Time
Baseline Q-Learning 22% 35% 0.98 pts/game 33s
Double DQN 35% 23% 3.50 pts/game 4m 16s
PPO 41% 0% 5.02 pts/game 20s
MCTS + CEM, RAVE, CFR 89% 3% 11.2 pts/game ~ 447m 03s

All results in Table [§| were run over 100 games. As shown in Table [8] comparing the best-performing
versions of all three methods and the baseline Q-Learning, we find that our results somewhat support
our first hypothesis. We initially hypothesized that the tested methods in this project (MCTS, Q-
Learning, Deep Q-Learning, and PPO) show significant improvement over a bot placing random
cards, displaying an ability to play strategically or learn patterns through self-play without relying
on pre-existing data. All of our non-baseline methods achieve a higher win rate than the Random
Bot over 100 games, though with varying degrees of success. Baseline Q-Learning fails to beat the
Random Bot. Out of Double DQN, PPO, and MCTS, we see that Double DQN performs the worst.
The Baseline Q-Learning model also does not outperform the Random Bot. This is because large
state dimensions (728) makes tabular updates infeasible and the agents learn insignificant policies.
Furthermore, Deep Q-Learning suffers from sparse/delayed rewards. Most card placements only
affect final scoring much later, so the Q-network struggles to propagate useful value estimates back
through 13 sequential decisions. High-dimensional inputs and extremely sparse feedback prevent
stable convergence, even with 2,000 training episodes and experience replay.

Our results do, however, fully support our second hypothesis. We see that MCTS outperforms all
other methods, beating the next highest method in Method Win Rate (PPO) by about 48%. MCTS also

holds the bot at a 3% win rate, though slightly above the PPO Bot Win Rate of 0%. However, MCTS
has the lowest tie rate, showing a lack of double fouling. Specifically, the Monte Carlo Tree structure
naturally mirrors the game’s branching actions and allows efficient reuse of simulations, yielding
low outcome variance by averaging hundreds of roll-outs. PPO and Q-Learning, by comparison, rely
on a single value or policy estimate per move, making them more prone to conservative, split-pot
outcomes. Furthermore, MCTS outperforms all methods with respect to points per game with over
2 times PPO’s points per game. This outperformance is due to MCTS’s ability to handle imperfect
information and simulating possible outcomes with lower outcome variance compared to PPO and
Q-Learning. Specifically, the Monte Carlo Tree structure provides a natural representation of the
game state, as the three possible actions each player may take lends itself naturally to a branching
tree. This tree then allows for efficient backtracking and reuse of game simulations within the MCTS
algorithm. Averaging rollouts throughout this tree gives MCTS a lower outcome variance compared
to PPO and Q-Learning due to averaging over hundreds of rollouts, whereas PPO and Q-Learning
rely on a single prediction of the future. However, we see that MCTS requires significantly greater
training time than the other three methods, showing a computational inefficiency. It requires over 100
times as long as Double DQN when accounting for training time and playing time, showing that the
superior performance comes at a high time cost.

6 Discussion and Future Work

Our project does have a few notable limitations. We do not implement the Fantasyland and Shoot the
Moon rules for Open-Face Chinese Poker. Instead, we solve the basic version of Open-Face Chinese
Poker. In the future, additional complexity and strategy can be integrated by using these variants
of Open-Face Chinese Poker. Furthermore, we do not include higher numbers of players, which
can introduce more complexity as there are more hidden cards and potential bonuses to win off of
opponents. As a single player’s point score is tied to whether they beat another player’s equivalent
hand, adding more players would change the reward function and lead to interesting strategies such
as targeting individual players to gain scoops and royalties while sacrificing to other players. Finally,
from a model perspective, our best performing model is also computationally intensive. Testing
MCTS further would be time-intensive, and the more complicated MCTS becomes with state-of-the-
art heuristics or strategies, the more time it takes to solve a single game. For example, we see that
implementing CFR raises the method win rate and the points per game but at the cost of over an hour
of testing time.

The time requirements for running MCTS made extensive training difficult as mentioned. Imple-
menting CEM was a workaround rather than running a full sweep of hyperparameters. Another
challenge we faced during this project was dealing with tied games in particular. This difficulty has
been discussed above. Sparse rewards also made PPO and Q-Learning difficult to implement, and it
also made it nearly impossible to truncate the MCTS tree, resulting in longer runtimes.

This work has implications for strategy games in uncertain environments as a whole. In particular,
the outperformance of MCTS demonstrates how effective the tree-based search method is for solving
large state space games with uncertainty. This affirms previous literature which names MCTS as a
recommended method for solving sequential decision making problems and games such as Go or
Magic: The Gathering. However, our work also highlights the computational requirements for a
high-performing agent.

7 Conclusion

In this project, we implemented three main methods to solve the strategic card game Open-Face
Chinese Poker. Using Deep Q-Learning, PPO, and MCTS, we investigated two hypotheses. Namely,
we showed that all tested methods in this project (MCTS, Deep Q-Learning, and PPO) improved
over a bot placing random cards, displaying an ability to play strategically or learn patterns through
self-play without relying on pre-existing data. In particular, we investigated reward shaping in
our PPO implementation to better limit the number of tied games. We were also able to improve
Double DQN over the baseline Q-Learning by decreasing the biases through different optimization.
Secondly, we also successfully showed that MCTS performed better than other RL methods such as
Q-Learning, Deep Q-Learning, and PPO. This was due to MCTS’s ability to handle the large game
space and moderate high-variance rollouts with the assistance of Rapid Action Value Estimation and

10

Counterfactual Regret Minimisation. We showed that MCTS is the preeminent method of solving
Open-Face Chinese Poker based on its 89% Method Win Rate and 11.2 average points per game.

Future work may include optimizing the best-performing method MCTS to take less time to be a truly
playable agent for real Open-Face Chinese Poker games. Additional future work may include testing
new methods such as neuroevolutionary methods in combination with RL. This novel approach
limits sparse rewards in imperfect information environments while still retaining RL’s gradient-based
method for higher learning efficiency, allowing for more effective learning. This would overcome the
challenges faced by PPO and Q-Learning regarding the sparse reward space.

8 Team Contributions

All team members contributed to writing the final report and creating the poster for the poster session.

e Alice Guo: Alice implemented the PPO method with clipped surrogate optimization and
entropy regularization. She also implemented the GAE extension.

* Ramya Iyer: Ramya implemented the Q-Learning baseline, DQN inspiration from related
works, Dueling DQN extension, and Double DQN extension.

¢ Isabella Lee: Isabella implemented the custom game environment and reward function. She
also implemented the MCTS method, CEM extension, RAVE extension, CFR extension,
and ran the MCTS-associated experiments.

Our code can be found here: https://github.com/leejisabella/224rfinalproject.git.

9 Changes from Proposal

We originally planned to examine uses of RL in No-Press Diplomacy but realized after running initial
experiments that it was not a feasible final project. In particular, it was not possible to retrieve the
training data or Diplomacy game skeleton. The existing data and framework is blocked by Meta
Research and requires a $5k fee, licensing, and setting up notarized NDAs and contracts requiring up
to a month of processing. Furthermore, the Diplomacy dataset does not provide enough data to train
an effective bot for no-communication games, as it was designed for negotiation-enabled Diplomacy
games. As a result, our models were unable to reach the performance of even existing agents. As
MCTS and Q-Learning both required self-play, the lack of a game skeleton or framework made the
project impossible to complete as we could not compare our results against the existing literature,
which relied on the Meta framework.

We instead pivoted to building an agent to solve open-face Chinese poker, a strategic card game with
similar game characteristics to Diplomacy. This makes solving open-face Chinese poker a valuable
benchmark for testing the limits of current Multi-Agent Reinforcement Learning (MARL) techniques.
With the pivot to open-face Chinese poker, our project no longer relied on any external datasets.
Instead, we were able to build a custom game environment and use a self-play reinforcement learning
framework where the agent plays against a baseline agent. This self-generated data enables the model
to iteratively improve its policy without human supervision or previously-generated data. While
we initially intended to implement SARSA in addition to our other three methods above, we found
that it was more beneficial to improve the performance of our three main methods. Please see the
modifications we made in the Results section as we implemented our methods.

11

References

Noam Brown and Tuomas Sandholm. 2018. Superhuman Al for heads-up no-limit poker: Libratus
beats top professionals. Science 359, 6374 (2018), 418—424.

Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
2018. Counterfactual Multi-Agent Policy Gradients. In Proceedings of the International Conference
on Autonomous Agents and Multiagent Systems (AAMAS). IFAAMAS, 297-305.

John Kirklin. 2014. Kachushi: An Artificial Intelligence for the Game of Open-
Face Chinese Poker. https://scrambledeggsontoast.github.i0/2014/06/26/
artificial-intelligence-ofcp/. Accessed: 2025-06-01.

V. Luo, A. Patel, and L. Zhou. 2018. Building a Pineapple Al: A Monte Carlo Tree Search-Based
Approach. (2018). Unpublished manuscript.

Matej Moravcik, Martin Schmid, Neil Burch, Viliam Lisy, Dustin Morrill, Nolan Bard, Trevor Davis,
Jaromir éiiek, Frederic Davis, Kevin Waugh, Michael Bowling, and Michael Johanson. 2017.
DeepStack: Expert-Level Artificial Intelligence in Heads-Up No-Limit Poker. Science 356, 6337
(2017), 508-513. https://doi.org/10.1126/science.aam6960

Daming Shi, Xudong Guo, Yi Liu, and Wenhui Fan. 2022. Optimal policy of multiplayer poker via
actor-critic reinforcement learning. Entropy 24, 6 (2022), 774.

Andrew Tan and Jarry Xiao. 2018. Mastering Open-face Chinese Poker by Self-play Reinforcement
Learning. (2018).

12

https://scrambledeggsontoast.github.io/2014/06/26/artificial-intelligence-ofcp/
https://scrambledeggsontoast.github.io/2014/06/26/artificial-intelligence-ofcp/
https://doi.org/10.1126/science.aam6960

	Introduction
	Related Work
	Experimental Setup
	Methods
	Q-Learning
	Deep Q-Learning (DQN)
	Doubling DQN
	Dueling DQN
	Proximal Policy Optimization (PPO)
	Monte Carlo Tree Search (MCTS)

	Results and Analysis
	Q-Learning Methods: Q-Learning, DQN, Double DQN, Dueling DQN
	Monte Carlo Tree Search (MCTS)
	Proximal Policy Optimization (PPO)
	Comparing Methods

	Discussion and Future Work
	Conclusion
	Team Contributions
	Changes from Proposal

