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Abstract

Motivation. At the core of today’s large language models’ success lies their
ability to understand and reliably act on user instructions. These models are
expected to adapt seamlessly to a wide variety of topics and tasks, consistently
responding in a relevant, helpful, and coherent way. Meeting the needs of
users also involves meeting each of these criteria and more, often including
stylistic formatting preferences, factual accuracy, and even the "personality" or
confidence of the response. To continuously improve a model’s performance
along these criteria, traditional reinforcement learning methods like Direct
Preference Optimization (DPO) rely on binary user preferences between two
comparable outputs, in order to assign a singular scalar reward for preferred outputs.

Incorporating many aspects of users’ preferred or preferred responses into
a singular scalar reward naturally comes at the cost of granularity in the specific
aspects that may contribute to a better or worse response. To address this limitation,
multi-objective reinforcement learning uses each desired response criteria as
a unique reward signal, enabling optimization across multiple dimensions
simultaneously rather than utilizing a single collapsed reward value. Recent work
has shown that this multi-objective approach can preserve diversity of outputs and
increased pluralistic alignments with a variety of human values (Sorensen et al.
(2024), Meister et al. (2024), Singh et al. (2025)).

Method and Implementation. In this paper, we begin with the open-
weight Qwen2.5-0.5B as our base model for all finetuning and preference
optimization tasks. We first perform supervised fine-tuning (SFT) on the model
using the Smoltalk dataset, in order to further solidify the model’s understanding
of conversational speech patterns. We then optimize this checkpoint via DPO
on the Ultrafeedback dataset, which includes prompts and "better" or "worse"
responses that reflect the relative ability of the response to follow the prompt’s
instructions. Finally, we use the SFT and DPO checkpoint as the baseline for our
multi-objective experiments, where we aim to balance fluency and helpfulness.
Fluency is scored by a dis-fluency reward model (4i/ai/BERT_disfluency_cls) and
helpfulness is scored by a reward model designed to align with human preferences
(OpenAssistant/reward-model-deberta-v3-large-v2). With these two separate
reward scores, we use a weighted aggregation of these two reward heads to scale
the loss between "better" and "worse" responses accordingly. This approach
incentivizes the model to generate responses that represent an overall qualitative
improvement of our model’s responses along these criteria.

Results. We evaluated our models using the Llama 3.1 Nemotron 70B re-
ward model across 200 held-out test prompts. The SFT model performed
comparably to the Qwen2.5 baseline, with a win rate of 48.50%, but showed
signs of overfitting to QA-style outputs. DPO yielded the strongest improvement,
achieving a win rate of 60.50% and the highest average reward. Our multi-objective
model, which jointly optimized for helpfulness and fluency, achieved a moderate
improvement with a 52.00% win rate. These results demonstrate that while SFT
alone does not yield significant improvements, both DPO and multi-objective
reinforcement learning can enhance instruction-following ability—with DPO
achieving the most consistent gains, and multi-objective optimization offering a
promising path toward more balanced response generation.

Discussion & Conclusion. Although we had to alter our initial imple-
mentation, our method for implementing a multi-objective reward function
provided modest results. Future improvements could be through implementing
more robust models, such as RLOO or GRPO. In all, these results show
the potential of multi-objective methods for advancing instruction-following
capabilities in LLMs.
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Abstract

We explore the use of multi-objective reinforcement learning to improve instruction-
following behavior in Qwen2.5-0.5B by explicitly optimizing for helpfulness and
fluency. Starting with supervised fine-tuning on the Smoltalk dataset, we apply
preference-based optimization using the Ultrafeedback dataset. We then combine
separate reward models to score each response on helpfulness and fluency into a
single reward to guide model updates. Our method enables more targeted improve-
ments across multiple behavioral dimensions rather than collapsing preferences
into a single scalar value.
However, our limited set of objectives—restricted to just helpfulness and flu-
ency—may have constrained the model’s ability to generalize, and likely con-
tributed to its underwhelming quantitative performance compared to DPO, which
indirectly captured a broader notion of preference via a single learned signal. Addi-
tionally, while we used a simple scalarized loss function to integrate our reward
signals, there is significant potential for more advanced reinforcement learning
methods—such as Pareto front optimization or constrained policy updates—to
better leverage multi-objective reward structures and achieve improved alignment
across competing dimensions.

1 Introduction

For Large Language Models, being able to follow instructions across a variety of tasks is crucial
in ensuring models are widely helpful and applicable to diverse use cases. Users increasingly
expect coherent, helpful responses that accurately capture the task at hand. In improving model
performance in tasks like instruction following, traditional reinforcement learning approaches
typically use a singular reward head – a metric that is often a measure overall user preference. While
this approach has been shown to be successful (Rafailov et al. (2023)), our team was interested in ex-
ploring a more granular approach to improving model outputs: multi-objective reinforcement learning.

In this paper, we explore existing research and an end-to-end approach for improving re-
sponse helpfulness and fluency through dedicated reward heads. In this exploration, we set out
to determine whether replacing the aggregate reward during optimization with a multi-objective
paradigm with two reward heads would more closely model how humans may judge response quality.

To explore this question, we optimize Qwen2.5-0.5B, a 0.5B parameter open-weight model
through supervised fine-tuning, Direct Preference Optimization (DPO), and explore our primary
extension of multi-objective reinforcement learning. From the original four parameters we selected
to comprise our multi-objective reward function (helpfulness, factuality, fluency, and format clarity),
we narrowed our scope to two. In particular, we selected helpfulness and fluency, as both contribute
to user satisfaction with a response and identifying a reward model for measuring factuality proved to
be challenging.

2 Related Work

This project builds on the work of Sorensen et al. (2024), Meister et al. (2024), and Singh et al.
(2025), three foundational papers that helped motivate and inform our interest in multi-objective
reinforcement learning.

Sorensen et al. (2024) argue for the importance of pluralistic alignment of model outputs with the
diversity of human thought. The paper argues that existing single-objective models tend to reduce
variation of output and that multi-objective RL is crucial in capturing a broader spectrum of human
values, perspectives, and preferences. This work laid crucial groundwork for our extension, but
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did not explicitly define a training method for how to implement optimization of several objectives
simultaneously in practice.

Meister et al. (2024) describe distributional alignment, which involves a model’s ability to accurately
represent a diverse range of opinions. The authors find that existing models primarily succeed at
describing a distribution of opinions, rather than recreating and simulating a variety of opinions,
indicating that current RLHF approaches reduce diversity across responses. Meister et al. primarily
focus on evaluation of existing methods via prompt steering, and does not focus explicitly on
optimizing multiple objectives during training. In this way, this paper works towards a different
goal than we are aiming for: the authors focus on the ability of models to recreate specific opinions,
whereas our project seeks to research multi-objective optimization to emphasize multiple desirable
traits (like fluency and factual correctness) in output quality.

Singh et al. (2025) present Few-Shot Preference Optimization (FSPO), a novel technique that allows
an LLM to be personalized for a user based on labeled preference pairs. FSPO uses these labeled
pairs to generate a unique scalar reward for each user, enabling the model to better represent minority
users preferences in output responses. This work aims to align responses with human values, but in a
fundamentally different way than our proposal: FSPO focuses on scalar rewards tied to an individual
user, and our approach optimizes via several aggregated unique reward sources. Thus, this paper does
not address the key focus of our extension in rewarding multiple metrics simultaneously to improve
model output.

Our extension builds on this motivating groundwork and expands on how the values described in
these papers could be implemented in practice to create a holistic scoring process. In particular, this
paper defines an end-to-end approach to align specific desired qualities (for our purposes, helpfulness
and fluency) with the output of a model’s responses. In an alternate setting, this training method could
be applied with other reward functions that measure different qualities (diversity of opinion, factuality,
or other aspects of model preference). Therefore, this extension aims to propose one method of
training that could be applicable with aligning outputs with specific user or researcher desires.

3 Method

3.1 Supervised Fine-Tuning

We first finetuned Qwen2.5 using the Smoltalk dataset, which contains dialog-style instruction-
following samples designed to simulate conversational speech patterns. The goal of this stage
was to adapt the base model to produce more natural, user-aligned language outputs. We adapted
hyperparameters from existing literature on finetuning Qwen models and used a learning rate of 2e-5
with weight decay set to 0.01, and optimized using Adam with β1 = 0.9, β2 = 0.999, and ϵ = 1e−8.
We trained for 3 epochs using a batch size of 4 and gradient accumulation steps of 8 (yielding an
effective batch size of 32).

We observed that training loss dropped rapidly early in training, which led us to incorporate a linear
warmup over the first 500 steps and an exponential decay schedule to stabilize convergence. Flash
attention was disabled due to compatibility issues with the model architecture. We used mixed-
precision training cautiously and opted out of AMP to avoid instability in early runs. Checkpoints
were saved at the end of every epoch, and training logs were recorded every 50 steps. While the
model showed clear adaptation to conversational tone, later qualitative analysis revealed overfitting
patterns in its tendency to answer all prompts in a QA format, regardless of instruction complexity or
intent—likely due to dataset bias.

3.2 Direct Preference Optimization (DPO)

To further improve Qwen2.5’s performance on the instruction following task, we optimized our
SFT checkpoint with Direct Preference Optimization (DPO) on the UltraFeedback binarized dataset
Rafailov et al. (2023). We use our SFT Qwen2.5 checkpoint as:

• A frozen reference model pref to provide baseline log-likelihood.

• A trainable model pθ, which we train and compute updates on to incentivize better comple-
tions.
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We obtain the pairwise reference data for the instruction following task, in the form of "better" and
"worse" labeled responses from the Ultrafeedback binarized dataset.

At each training step we compute the log likelihood of the better and worse responses (ybetter and
yworse respectively) with respect to a given prompt x on both models pθ and pref. We then calculate
the difference in the log-likelihood ratios:

− log σ ([log pθ(ybetter|x)− log pref(ybetter|x)]− [log pθ(yworse|x)− log pref(yworse|x)]) .

We then use this to incentivize pθ the pref to prefer the better output, and perform a gradient update
on pθ.

In this training, we use a batch size of 4, a beta of 0.1, learning rate of 5e-6 for 3 epochs with 3000
batches selected from the dataset, which is shuffled between epochs.

3.3 Multi-Objective Reinforcement Learning

We further train Qwen 2.5-0.5B to enhance the model’s performance on the instruction following
task via a multi-objective optimization framework that explicitly balances two behavioral dimensions:
helpfulness and fluency.

This approach involves the construction of separate reward signals for each objective. For each
generated output, we compute a per-objective score si and define the gap gi relative to a predefined
ideal ŝi as:

gi = |si − ŝi|,
where i indexes the behavioral objectives.

The reward sources are as follows:

• Helpfulness: Scored using OpenAssistant/reward-model-deberta-v3-large-v2, a
preference reward model trained on human feedback that evaluates how well a model’s
response aligns with helpful intent.

• Fluency: Scored using 4i/ai/BERT_disfluency_cls, a BERT classifier that predicts the
fluency of a response by identifying patterns in generated text which are not fluent.

To reflect the varying importance of each objective, we apply criticality weighting to each gap:

geff
i = wi · gi,

where wi represents the criticality weight assigned to objective i (which, for our experiments, involved
emphasizing helpfulness and fluency equally).

Rather than aggregating these effective gaps into a scalarized loss via a Soft Chebyshev formulation
as initially proposed, our final implementation directly converts the weighted sum of gaps into a
scalar reward:

r = −
∑
i

wi · |si − ŝi|

This reward then modulates the log-likelihood of the generated response under the current model
policy. Specifically, we optimize the following loss:

L = − log pθ(y|x) · r,

where pθ(y|x) is the probability of the generated output y given input x, and r is the reward computed
from the behavioral scores. This approach treats high-reward outputs as more desirable and updates
the model parameters to increase their likelihood.

While our original intent was to implement Direct Preference Optimization, we encountered practical
difficulties with DPO’s implementation and data requirements. Consequently, we opted for this
simpler reward-weighted policy gradient approach to directly optimize for helpfulness and fluency.

Furthermore, we omit brevity as an explicit optimization objective in initial experiments, due to
the difficulty of defining a static ideal brevity target across diverse prompts. Future extensions may
incorporate brevity optimization conditioned on prompt type or use an LLM-based evaluator for more
flexible brevity assessment.
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4 Experimental Setup

4.1 Data

For our experiments, we used two datasets:

• The Smoltalk dataset (Allal et al. (2025)), which was used for our supervised finetuning,
includes over 460,000 conversations between a user and an LLM, of which we used 10% as
a held-out validation set. For instance:

User: "You are a gamekeeper at a medieval village in 14th century England. The
village is surrounded by a forest teeming with wildlife and filled with numerous clearings,
brooks, and ravines."
Assistant: "Good morrow to thee, stranger. ’Tis a grand day to be outdoors, ain’t it? The
sun shines bright, and the forest is full of life. I’ve been out since dawn, checkin’ the traps
and makin’ sure all’s well in the woods. We’ve had some troubles with poachers lately, but
the lord’s men have been keepin’ a sharp eye out. What brings thee to our humble village?
Art thou lookin’ to do some huntin’, or perhaps just enjoyin’ the beauty o’ nature?"

• The binarized Ultrafeedback dataset (Cui et al. (2023)), which was used for DPO and our
multi-objective extension, contains over 60,000 prompts with annotated better and worse
responses. For instance:

User: "List five web frameworks."
Response 1: "As an AI language model, I don’t have a subjective opinion but here are five
popular web frameworks: 1. React 2. Angular 3. Laravel 4. Django 5. Ruby on Rails"
Response 2: "1. Django 2. Ruby on Rails 3. Laravel 4. AngularJS 5. ReactJS"

4.2 Task Description

Instruction following involves ensuring that a model can produce coherent, helpful responses across
many types of questions and instructions from users. Our baseline, Qwen2.5-0.5B was specifically
pre-trained to well across various instruction following tasks, making it well suited to this exploration.
This task-specific improvement will be centered around reinforcement learning methods on the
Ultrafeedback dataset. For instance, here are two sample instruction following prompts we expect
our model to perform well on:

• Convert this HTML document to a LaTeX document, ensuring all formatting and mathemat-
ical expressions are properly translated. Write your response in a code block.

• Create a function to sort an array of floating-point numbers in descending order.

5 Results

5.1 Quantitative Evaluation

To test the performance of our respective efforts, we used the Llama 3.1 Nemotron 70B Reward
Model to measure whether the baseline Qwen or our optimized models performed better across 200
test prompts.

Model Avg Reward Avg Reward Diff from Qwen2.5 Win Rate against Qwen2.5
Qwen2.5-0.5B -24.07 – –
SFT -25.00 -0.93 48.50
DPO -22.91 +1.16 60.50
Multi-Obj -24.53 -0.46 52.00
Note: Due to the difficulties processing leaderboard submissions, all above numbers reflect the

results of local evaluation scripts.
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Model Leaderboard Submissions
SFT gng_sft_final_instruction_following_1749537926
DPO gng_dpo_final_instruction_following_1749537965
Multi-Obj gng_mutliobj_instruction_following_1749538006

Note: We also submitted

.jsons via Gradescope as we were awaiting leaderboard scores

The SFT model won 194 out of 400 response comparisons, yielding a win rate of 48.50%. While
close to the Qwen2.5’s baseline performance, this highlights the need for more targeted optimization.
We also observed signs of overfitting in "best" epochs, seen through qualitative analysis that shows
the model’s shift towards question and answer-style responses indicative of the Smoltalk dataset.

The DPO model won 242 out of 400 response comparisons, yielding an increased win rate of 60.50%
over Qwen2.5. This gain over the baseline SFT model this optimization was trained on shows that the
model was able to generally produce responses that were more preferred by Nemotron. Though this
optimization was done with a single epoch and a small number of batches (3000, with a batch size
of two), result shows that even a modest amount of optimization via DPO was able to significantly
improve the percieved helpfulness of the model on the instruction finetuning task.

The multi-objective model shows a modest increase in wins over Qwen2.5, with 208 wins out of
400 comparisons for a win rate of 52.00%. While the multi-objective model slightly outperforms
SFT, its gains are less pronounced than those achieved by DPO. This outcome suggests that, although
optimizing for multiple distinct criteria like helpfulness and fluency can promote more diverse and
engaging responses, our current approach may not have fully leveraged the potential of multi-objective
reinforcement learning. Limitations such as a small number of reward dimensions and a simple
scalarized loss function likely contributed to the model’s relatively underwhelming performance. In
addition, it is possible that the selected reward models do not align perfectly with Nemotron’s scoring
preferences, leading this method to incentivize outputs that are misaligned with desired target outputs.

5.2 Qualitative Analysis

5.2.1 Examples

One sample result with a prompt from the held out test set and the corresponding responses from
each model:

• Prompt: "How is augmented reality being used to enhance museum experiences and engage
visitors with interactive exhibits?"

• SFT Model response: "Augmented reality (AR) is being used to significantly enhance
museum experiences by creating immersive and interactive exhibits that blur the lines
between the physical and digital worlds. These AR experiences can be used to bring exhibits
to life, allowing visitors to explore and interact with the information in a more engaging and
meaningful way. For instance, virtual tours of historical artifacts can be augmented with
3D models and descriptions, providing visitors with a more personalized and interactive
experience... This can be especially useful for museums that want to reach a wider audience,
or for museums that want to create interactive exhibits that can be accessed from a variety
of devices., AR is being used to create immersive and interactive exhibits that can enhance
the museum experience and engage visitors in meaningful ways. By bringing exhibits to
life in a more interactive and dynamic way, museums can create a more memorable and
impactful experience for visitors.: Is there any current technology being developed that can
handle large amounts of data at very high speeds that would be able to support immersive
experiences?, there are several technologies currently being developed that can handle large
amounts of data at very high speeds and support immersive experiences. Some of these
technologies include high-definition cameras, 4K video recorders, and sensors that can
collect and"

• DPO Model response: "Augmented reality (AR) is being integrated into museum experi-
ences to create immersive, interactive, and engaging experiences for visitors. One way AR
is being used is through augmented tours, where visitors can scan virtual exhibits to see
3D reconstructions, hear historical recordings, or see virtual artifacts in a more immersive
environment. For example, a museum might use AR to bring ancient civilizations to life,



CS224R Project Final Report

allowing visitors to explore ancient ruins and learn about historical events through interactive
AR experiences... This personalized approach to museum visits helps visitors to engage
more deeply with the content and culture of the institution they visit.: What are some of the
benefits of incorporating augmented reality into museum experiences?augmented reality
(AR) into museum experiences can bring numerous benefits to visitors and the museum
itself. Some of the key benefits include:accessibility and"

• Multi-objective Model response: "Augmented reality (AR) technology is revolutionizing
the way museums experience visitors. AR allows visitors to immerse themselves in inter-
active exhibits by overlaying digital content onto the physical space. This technique can
be applied to various exhibits, from historical artifacts to contemporary art installations.
For instance, museums can create immersive 3D models of ancient artifacts, providing
visitors with a more authentic and engaging experience... Augmented reality (AR) brings a
treasure trove of possibilities to the historical exhibit world, making it more accessible and
enjoyable for younger audiences. One approach is to create immersive, interactive exhibits
that transport visitors to specific eras and locations. For instance, museums can use AR to
create an immersive environment where visitors can engage with historical artifacts, hear
stories, and even taste the flavors of different periods. This can be achieved through AR
glasses or mobile devices, allowing visitors to immerse themselves in the exhibit.strategy is
to incorporate AR into virtual tours, allowing younger visitors to explore historical events
and cultural heritage sites in entirely new ways. This can include AR-driven historical
recreations, where visitors can step into historical settings, interact with artifacts, and even
participate in hands-on activities. AR can also be used to create interactive storytelling,
where visitors can explore historical events and cultural heritage sites through AR-generated
narratives, complete with audio"

Sentences have been reduced in length. We were unable to set a lower token limit for responses when
we ran the evaluating code.

5.2.2 Insight

The SFT model gives a broad but detailed answer. It touches on key uses of AR in museums like
interactivity and personalization. However, repeats itself unnecessarily and is verbose, with phrases
like “interactive and immersive” used multiple times. Additionally, its shift into a QA format
mid-response reflects overfitting to instruction-following datasets like Smoltalk.

The DPO response is clear, focused, and well-structured. It stays tightly aligned with the prompt,
offering concrete examples like AR tours and virtual reconstructions that enhance visitor engagement.
The follow-up answer is concise and directly addresses the question about AR benefits.

The multi-objective model shines with creativity and vivid descriptions, including unique elements
like “tasting the flavors of different periods” and immersive storytelling. It expands the educational
and emotional impact of AR in museums, especially for younger visitors. The grammar occasionally
falters (“museums experience visitors”), and the structure is a bit scattered, jumping between ideas
without clear transitions.

6 Discussion

6.1 Implications

Our findings highlight key trade-offs between traditional and multi-objective fine-tuning methods for
instruction-following models. DPO demonstrates that even a relatively small number of preference
optimization steps can yield significant gains in reward model scores and preferred output quality.
This suggests DPO remains a strong default method for improving response helpfulness and alignment
under limited resource constraints.

However, the multi-objective approach shows promise for capturing richer response qualities. While
our model only showed modest quantitative improvements, qualitative inspection revealed a more
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dynamic and engaging response style. That said, our performance may have been constrained by the
limited number of reward objectives used—namely, helpfulness and fluency. Reducing the set of
tracked qualities to just two dimensions may have introduced blind spots, where the model failed to
capture other important attributes like factuality, coherence, or politeness. The lack of broader multi-
faceted feedback could lead to instability or inconsistent alignment across varied prompts. Future
work could address this by integrating additional reward heads and exploring how the dimensionality
of supervision affects generalization, trade-offs, and controllability. We also highlight the potential
implementation of other reinforcment learning methods with our reward heads.

6.2 Limitations

Although we worked extensively with the intent to implement our extension through DPO, we
encountered substantial issues with our design process. We believe that these issues are derived
from DPO’s reliance on pairwise preference between responses, rather than supporting multiple
independent reward signals directly.

Looking at DPO’s loss function:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
we can see that this method uses the log-likelihood difference between the preferred and less preferred
responses under the current policy to directly optimize with human preferences. DPO cannot easily
utilize multi-objective rewards (in our case, helpfulness and fluency) without collapsing them into a
singular scalar beforehand. However, this defeats the purpose of multi-objective optimization in the
first place, as this obscures how individual objectives contribute to the model’s learning.

Thus, due to these limitations and the constraints of a ten-week class, we opted to implement a
simpler scalarized reward aggregation method.

6.3 Future Work

In continuing our analysis of methods that may improve upon baseline Qwen2.5 performance on
the instruction following task, we plan to further explore two main alternatives that could support
multi-objective preference optimization: Reward-Weighted Likelihood Optimization (RLOO), and
Generalized Preference Optimization (GRPO).

6.3.1 RLOO

Instead of using preferences between outputs, RLOO operates directly on scalar reward scores
assigned to individual generated responses.

The RLOO objective updates the model by weighting the log-likelihood gradient with the scalar
reward:

∇θLRLOO = −Ex,y∼πθ
[R(x, y)∇θ log πθ(y | x)]

This is generalizable to any R(x, y) which are scalarized functions of multiple reward components of
any number. For example, a linear combination of helpfulness and fluency might look like so:

R(x, y) = α · rhelpfulness(x, y) + (1− α) · rfluency(x, y)

Therefore, RLOO is better-suited for multi-objective reinforcement learning settings than DPO, as it
supports continuous-values reward signals and does not require preference data.

6.3.2 GRPO

GRPO is a framework that extends the core ideas of DPO to multi-objective reward settings. While
DPO assumes access to binary preferences or scalar values over outputs, GRPO is designed to handle
multiple reward signals when modeling preference.
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Here, each response is evaluated by a reward vector:

r⃗(x, y) = [r1(x, y), r2(x, y), . . . , rk(x, y)] ∈ Rk,

where each ri(x, y) represents the reward for a specific objective—in our case, helpfulness or fluency.
Those vectors are then transformed into scalar scores through a learned preference function, such as
using a neural network:

f(r⃗) = w⊤ · ϕ(r⃗).
Next, GRPO compares two responses in a contrastive manner akin to DPO:

LGRPO = −E(x,y+,y−)∼D
[
log σ

(
f(r⃗(x, y+))− f(r⃗(x, y−))

)]
,

Therefore, GRPO is better able to utilize multi-objective rewards in its computation than DPO.

7 Conclusion

Our project explored improving instruction-following behavior in Qwen2.5-0.5B by utilizing a multi-
objective reinforcement learning mechanism, optimizing for helpfulness and fluency. Starting from
supervised fine-tuning and DPO, we introduced a scalarized reward aggregation method to support
this task. While our approach provided modest improvements, it demonstrated that optimizing
for multiple behavioral criteria can produce more nuanced and coherent responses. With future
advancements in our work, in particular through RLOO or GRPO, we hope to see even greater
improvements. In all, these results show the potential of multi-objective methods for advancing
instruction-following capabilities in LLMs.

8 Team Contributions

Gabrielle Belanger: Implemented the DPO training pipeline, helped in writing the evaluation script
used across all models, and contributed significantly to the writing and organization of the final report
and poster.

George Dimopoulos: Contributed to the implementation of the multi-objective extension
(w/ Nahome). Contributed to the final report’s sections concerning the project extension, discussion,
and conclusion. Contributed to filling out the project poster.

Nahome Hagos: Developed training scripts for the SFT and multi-objective (w/ George)
models, helped in writing the evaluation script used across all models, ran most experiments on his
local instance, and contributed to portions of the final report.

These breakdowns map on fairly well to initial projected work breakdown, with slight adjustments do
to schedule alignment.
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