
Strengthening Reasoning: Curriculum-Based SFT on Countdown

Yoshi Nakachi
Stanford University

yoshinak@stanford.edu

Daniel Reichfeld
Stanford University

reichfeld@stanford.edu

Extended Abstract

Mathematical reasoning represents a fundamental chal-
lenge in artificial intelligence, requiring models to demon-
strate not only computational accuracy but also strategic
thinking and multi-step problem decomposition. While
recent advances in language model training have shown
promising results for mathematical tasks, the standard ap-
proach of random data sampling during supervised fine-
tuning may not optimally develop the progressive reasoning
skills necessary for complex arithmetic problems.

The Countdown mathematical reasoning task, which
requires models to construct valid arithmetic expressions
from given numbers to reach target values, provides an ideal
testbed for investigating how training data organization af-
fects mathematical capability development. This work ad-
dresses whether curriculum learning—the systematic pro-
gression from simple to complex training examples—can
enhance mathematical reasoning capabilities in language
models through more effective supervised fine-tuning, and
whether such structured initialization provides lasting ben-
efits throughout subsequent reinforcement learning opti-
mization.

Our approach introduces a novel data-driven difficulty
scoring framework that automatically assesses problem
complexity based on model performance patterns, enabling
principled curriculum design without relying on human in-
tuitions. The framework combines three complementary
mathematical factors: numerical complexity (N ), which
quantifies the inherent difficulty of numbers involved; struc-
tural complexity (S), which measures the distance of solu-
tions from straightforward operations; and operational com-
plexity (O), which estimates the cognitive load imposed by
specific arithmetic operations.

Using a pre-trained Qwen2.5-0.5B model, we extract
features from problem instances and employ linear regres-
sion without intercept to learn optimal weights directly from
model performance data. The learned weights (wN = 0.25,
wS = 0.35, wO = 0.40) form our difficulty scoring func-
tion: D(target, nums) = 0.25 ·N +0.35 ·S +0.40 ·O. We
also partition the Countdown dataset into four equiproba-

ble tiers based on difficulty score quartiles and implement a
progressive exposure schedule across training epochs.

Our experimental framework employs a three-stage
training pipeline: (1) warmup conversational reasoning
using 5,000+ natural language mathematical discussions,
(2) bridge training to adapt models from conversational
to structured Countdown format, and (3) curriculum-based
supervised fine-tuning followed by Rejection Sampling
Leave-One-Out (RLOO) reinforcement learning. All ex-
periments use Qwen2.5-0.5B as the base model with care-
fully tuned hyperparameters for both supervised fine-tuning
(learning rate 5× 10−5, batch size 8) and RLOO optimiza-
tion (learning rate 5× 10−6, K = 4 samples per prompt).

The curriculum learning approach achieves an over-
all accuracy of 34.8%, representing a 12% relative im-
provement over baseline supervised fine-tuning (31.1%).
More significantly, when combined with RLOO reinforce-
ment learning, curriculum-initialized models demonstrate
substantial gains, achieving 46.7% accuracy compared to
40.7% for baseline initialization—a 15% relative improve-
ment. Tier-specific analysis reveals consistent improve-
ments across difficulty levels: Tier 1 problems achieve
69.5% accuracy, Tier 2 reach 53.2%, Tier 3 attain 39.1%,
and Tier 4 achieve 25.0% under curriculum-initialized
RLOO training.

The results provide moderate but meaningful support
for curriculum learning as a beneficial approach to math-
ematical reasoning in small language models. The consis-
tent gains across difficulty tiers and enhanced performance
when combined with reinforcement learning suggest prac-
tical value for this methodology. The operational complex-
ity factor receiving the highest learned weight (0.40) aligns
with cognitive research showing that operation types signif-
icantly impact reasoning difficulty.

Limitations include reliance on a linear combination
of complexity factors, experimental scope limited to a
single model architecture, and curriculum schedules de-
signed through observation rather than principled optimiza-
tion. The computational overhead of curriculum learn-
ing proves minimal, making it a practical enhancement to
standard training procedures. These findings have broader

1



implications for education and scientific research, as im-
proved mathematical reasoning capabilities could provide
enhanced educational support and reduce barriers to access-
ing problem-solving tools.

Future work should explore adaptive curriculum design
that dynamically adjusts based on real-time model perfor-
mance, investigate effectiveness across broader mathemat-
ical domains beyond arithmetic reasoning, and examine
scalability to larger model architectures. The demonstration
that structured skill development leads to more robust foun-
dational knowledge represents a promising direction for de-
veloping more reliable and capable AI systems for mathe-
matical and scientific reasoning tasks.

1. Abstract

This work investigates curriculum learning for enhanc-
ing mathematical reasoning capabilities in language mod-
els through systematic progression from simple to complex
training examples on the Countdown arithmetic task. We
develop a novel data-driven difficulty scoring framework
that combines numerical, structural, and operational com-
plexity factors (D = 0.25 ·N +0.35 ·S+0.40 ·O) learned
directly from model performance patterns rather than hu-
man intuitions. Our approach employs a three-stage train-
ing pipeline using Qwen2.5-0.5B: conversational reasoning
warmup, format adaptation, and curriculum-based super-
vised fine-tuning followed by RLOO reinforcement learn-
ing. Curriculum learning achieves 34.8% accuracy com-
pared to 31.1% baseline supervised fine-tuning (12% rela-
tive improvement), with more substantial gains when com-
bined with reinforcement learning (46.7% vs 40.7%, 15%
relative improvement). Tier-specific analysis demonstrates
consistent improvements across difficulty levels, with the
highest operational complexity weight (0.40) aligning with
cognitive research on arithmetic reasoning difficulty. These
results establish curriculum learning as a practical enhance-
ment for mathematical reasoning training with minimal
computational overhead, suggesting that structured skill de-
velopment creates more robust foundational knowledge for
subsequent optimization.

2. Introduction

Mathematical reasoning represents a fundamental chal-
lenge in artificial intelligence, requiring models to demon-
strate not only computational accuracy but also strategic
thinking and multi-step problem decomposition. While
recent advances in language model training have shown
promising results for mathematical tasks, the standard ap-
proach of random data sampling during supervised fine-
tuning may not optimally develop the progressive reason-
ing skills necessary for complex arithmetic problems. The

Countdown mathematical reasoning task, which requires
models to construct valid arithmetic expressions from given
numbers to reach target values, provides an ideal testbed for
investigating how training data organization affects mathe-
matical capability development.

This work investigates whether curriculum learn-
ing—the systematic progression from simple to complex
training examples—can enhance mathematical reasoning
capabilities in language models through more effective su-
pervised fine-tuning. Our primary research objective is to
develop a data-driven difficulty scoring framework that au-
tomatically assesses problem complexity based on model
performance patterns, enabling principled curriculum de-
sign without relying on human intuitions. We further ex-
amine how curriculum-enhanced initialization affects sub-
sequent reinforcement learning optimization, addressing
whether structured foundational training provides lasting
benefits throughout the complete training pipeline.

3. Related Work

3.1. Mathematical Reasoning and Verification

The application of advanced training techniques to math-
ematical reasoning has shown significant promise in recent
work. Cobbe et al. [1] pioneered verification approaches for
mathematical problem-solving, demonstrating that train-
ing verifier models to assess solution correctness can sub-
stantially improve reasoning capabilities. Their work es-
tablished important foundations for combining supervised
learning with verification-based feedback in mathematical
domains. DeepSeek-AI et al. [2] extended these concepts
by showing how reinforcement learning can incentivize rea-
soning capability development in language models, partic-
ularly for mathematical tasks. Their research highlights
the critical importance of initialization quality and struc-
tured training progressions for achieving robust mathemati-
cal reasoning performance.

3.2. Reinforcement Learning from Human Feed-
back

The integration of reinforcement learning with lan-
guage model fine-tuning has been significantly advanced
by Ouyang et al. [4], who established foundational princi-
ples for training language models to follow instructions us-
ing human feedback. Their RLHF framework provides es-
sential background for understanding how preference-based
optimization methods like DPO and policy gradient ap-
proaches like RLOO can effectively improve model behav-
ior. This work demonstrates the importance of careful ini-
tialization and progressive training strategies when applying
reinforcement learning to language model optimization.

2



3.3. Curriculum Learning Foundations

Curriculum learning has emerged as a powerful
paradigm for improving neural network training by orga-
nizing data according to difficulty and progressively ex-
posing models to increasingly challenging examples. Ha-
cohen & Weinshall [3] provide crucial theoretical founda-
tions, demonstrating that curriculum learning can signif-
icantly improve convergence properties and final perfor-
mance across diverse neural network architectures. Their
analysis shows that structured progression from simple to
complex examples leads to more stable gradient dynamics
and improved generalization. Building on these theoretical
insights, Platanios et al. [5] developed competence-based
curriculum learning for neural machine translation, intro-
ducing data-driven methodologies for automatically assess-
ing task difficulty and designing optimal learning progres-
sions. Their work demonstrates that curriculum design can
be learned directly from model performance patterns rather
than relying solely on human intuitions about problem com-
plexity.

3.4. Comprehensive Curriculum Learning Survey

Soviany et al. [6] provide a comprehensive survey of cur-
riculum learning approaches across machine learning do-
mains, consistently showing that curriculum-based train-
ing outperforms random sampling strategies across diverse
tasks and model architectures. Their analysis reveals that
curriculum learning benefits extend beyond simple per-
formance improvements to include enhanced sample effi-
ciency, improved convergence stability, and better gener-
alization properties. The survey emphasizes that success-
ful curriculum design requires careful consideration of both
task-specific difficulty metrics and model-specific learning
dynamics.

3.5. Related Work Analysis

While existing work has explored curriculum learning in
various domains and reinforcement learning for mathemat-
ical reasoning separately, our approach uniquely combines
data-driven difficulty assessment with curriculum-based su-
pervised fine-tuning specifically for mathematical reason-
ing tasks. Unlike previous curriculum learning applica-
tions that rely on domain expert intuitions or simple heuris-
tics, we develop a sophisticated multi-factor difficulty scor-
ing framework that learns optimal weights directly from
model performance patterns. Furthermore, our work specif-
ically investigates how curriculum-enhanced SFT initializa-
tion can improve subsequent reinforcement learning opti-
mization, addressing a critical gap in understanding the in-
teraction between curriculum learning and RL fine-tuning
for mathematical reasoning tasks.

4. Methods
4.1. Reinforcement Learning with Rejection Sam-

pling Leave-One-Out (RLOO)

Following supervised fine-tuning, we employ Rejection
sampling Leave-One-Out (RLOO) reinforcement learning
to further optimize model performance through reward-
based feedback. Our RLOO implementation addresses the
challenge of learning from sparse correctness signals in
mathematical reasoning by generating multiple candidate
solutions and computing leave-one-out advantage estimates
for policy gradient updates.

The RLOO algorithm operates by sampling K candi-
date expressions for each prompt, where K = 4 in our
implementation to balance computational efficiency with
sample diversity. For each prompt pi with available num-
bers numsi and target value targeti, we generate samples
{ei,1, ei,2, . . . , ei,K} using nucleus sampling with tempera-
ture τ = 0.7, top-k = 20, and top-p = 0.95. This sampling
strategy promotes exploration while maintaining reasonable
solution quality.

Our reward function R(e, nums, target) provides dense
feedback based on mathematical correctness and proximity
to the target value. Perfect solutions receive maximum re-
ward R = 1.0, while incorrect solutions receive graduated
rewards based on numerical proximity: R = 0.8 for errors
≤ 1, R = 0.6 for errors ≤ 3, R = 0.4 for errors ≤ 10, and
lower rewards for larger errors.

Our implementation incorporates several technical en-
hancements for training stability. We employ gradient clip-
ping with maximum norm 0.5 to prevent exploding gradi-
ents, reduce the learning rate to 5 × 10−6 for fine-grained
policy updates, and implement careful expression parsing to
extract clean mathematical expressions from generated text.
The generation process includes repetition penalties and n-
gram constraints to promote diverse, well-formed mathe-
matical expressions.

The RLOO training process alternates between sample
generation and policy updates, with evaluation checkpoints
every 200 steps to monitor performance progression. We
track both the average reward and exact accuracy metrics,
with the best-performing model saved based on validation
reward. This reinforcement learning phase typically re-
quires 2-3 epochs to achieve convergence, building upon
the foundational mathematical reasoning capabilities estab-
lished during supervised fine-tuning.

4.2. Curriculum Learning Difficulty Scoring
Framework

For the project extension, we develop a sophisticated
data-driven difficulty scoring framework that automatically
learns to assess problem complexity from model perfor-
mance patterns to perform Curriculum Learning on the

3



Countdown task. Rather than relying purely on heuris-
tic measures, our approach combines three complementary
mathematical factors that capture different aspects of rea-
soning difficulty.

The foundation of our difficulty assessment rests on the
insight that problem complexity manifests differently across
numerical, structural, and operational dimensions. Our
framework extracts features that capture these distinct as-
pects of mathematical reasoning difficulty. The numerical
complexity factor N quantifies the inherent difficulty of the
numbers involved, considering both magnitude and compu-
tational relationships. The structural complexity factor S
measures the distance of the solution from straightforward
operations, effectively capturing the number of reasoning
steps required. The operational complexity factor O esti-
mates the cognitive load imposed by the specific arithmetic
operations needed, drawing on model confidence patterns
during solution generation.

The key innovation in our approach lies in learning op-
timal weights for these factors directly from model perfor-
mance data. We employ a data-driven methodology where
we first extract features from a representative subset of the
dataset using a pre-trained model, then fit a linear regres-
sion model without intercept to predict problem correctness
from the normalized feature values. This approach ensures
that our difficulty scoring reflects actual model capabilities
rather than human intuitions about problem difficulty.

Our learned weights yielded the following coefficients:
wN = 0.262, wS = 0.344, and wO = 0.394. For repro-
ducibility and document clarity, we rounded these to the
more interpretable values of 0.25, 0.35, and 0.40 respec-
tively in our reported formula.

D(target, nums) = 0.25 ·N + 0.35 · S + 0.40 ·O

The learned weights reveal that operational complexity car-
ries the highest importance in determining problem diffi-
culty, which aligns with cognitive research showing that the
type of operations required (particularly division and multi-
step calculations) significantly impacts reasoning difficulty.
The substantial weight on structural complexity reflects the
critical role of solution path length, while the moderate
weight on numerical complexity indicates that while num-
ber magnitude matters, it is less predictive of difficulty than
operational and structural factors.

This weighting scheme emerged from a principled learn-
ing process rather than manual tuning, ensuring that our cur-
riculum progression aligns with empirically observed pat-
terns of model difficulty. The data-driven nature of our
weight learning process represents a significant method-
ological advance over previous curriculum learning ap-
proaches that rely on domain expert intuitions or simple
heuristics.

4.3. Feature Extraction and Weight Learning Pro-
cess

The implementation of our difficulty scoring involves a
multi-stage pipeline that transforms raw problem instances
into difficulty-aware training curricula. The process begins
with feature extraction using a pre-trained Qwen2.5-0.5B
model to analyze solution patterns and extract meaningful
complexity indicators from each problem instance.

During feature extraction, we tokenize each solution and
compute forward passes through the model to obtain token-
level log probabilities. This allows us to capture the model’s
confidence patterns and reasoning difficulty at a granular
level. The numerical complexity N is computed based on
the target value and input numbers, incorporating factors
such as number magnitude, range, and computational re-
lationships. The structural complexity S leverages the log
probability patterns to estimate solution distance from sim-
ple operations, effectively measuring the number of reason-
ing steps required. The operational complexity O analyzes
both the primary token probabilities and the gap between
the top two predictions, providing insight into the cognitive
load imposed by specific arithmetic operations.

The weight learning process employs linear regression
without intercept to predict binary correctness labels from
the normalized feature triplets (N, S, O). This approach as-
sumes that problem difficulty is a linear combination of our
three factors, which proves empirically sound for mathe-
matical reasoning tasks. The regression coefficients are then
normalized to sum to unity, providing interpretable weights
that represent the relative importance of each difficulty di-
mension. The absolute values of coefficients are used to
ensure positive contributions from all factors, reflecting the
assumption that higher values in any dimension should con-
tribute to increased difficulty.

The learned weights demonstrate the effectiveness of
this approach, with operational complexity being the high-
est weighted. This aligns how mathematics are intuitively
learned. Cognitive load of different arithmetic operations
varies significantly, with division and multi-step calcula-
tions requiring much more reasoning than simple addition
or subtraction. The substantial weight on structural com-
plexity also explains why solution path length significantly
impacts problem difficulty, while the numerical complex-
ity’s lower weight suggests that raw number magnitude is
less critical than the operations required to manipulate those
numbers.

4.4. Dataset Partitioning and Tier Assignment

Using our learned difficulty scoring framework, we par-
tition the Countdown dataset into four equiprobable tiers
based on difficulty score quartiles. The partitioning pro-
cess computes difficulty scores for all problems using our
learned weights, then assigns tier membership based on em-

4



pirical quartiles of the difficulty distribution. This quartile-
based approach ensures balanced representation across dif-
ficulty levels while maintaining meaningful difficulty gra-
dations between tiers:

• Tier 1: Lowest quartile (easiest 25%) - simple arith-
metic operations (e.g., 25 + 5 → 30)

• Tier 2: Second quartile - two-step operations with
moderate numerical complexity

• Tier 3: Third quartile - multi-step reasoning with in-
termediate calculations

• Tier 4: Highest quartile (hardest 25%) - complex
multi-step operations with large numbers and division

This automatic assignment process eliminates subjective
bias in difficulty assessment and ensures that tier boundaries
reflect actual model performance patterns rather than human
intuitions about problem complexity. The quartile-based as-
signment guarantees that each tier contains exactly 25% of
the dataset, providing balanced exposure across difficulty
levels during curriculum progression and creating a founda-
tion for systematic skill development from basic arithmetic
to sophisticated mathematical reasoning.

5. Experimental Setup
Our experimental framework is designed to systemati-

cally evaluate the effectiveness of data-driven curriculum
learning for mathematical reasoning, incorporating a com-
prehensive training pipeline that progresses from conversa-
tional reasoning through structured mathematical problem-
solving to reinforcement learning optimization.

5.1. Multi-Stage Training Pipeline

Our training approach consists of three carefully orches-
trated stages, each serving a specific purpose in developing
mathematical reasoning capabilities:

Stage 1: Warmup Conversational Reasoning - We be-
gin with a conversational reasoning dataset containing nat-
ural language discussions of mathematical problem-solving
approaches. This stage uses raw conversation data where
human demonstrators think through mathematical problems
step-by-step, providing reasoning in a natural conversa-
tional format with explicit thinking patterns marked by spe-
cial tokens like ⟨think⟩ and ⟨answer⟩. This stage establishes
foundational reasoning patterns and mathematical vocabu-
lary, training the model to engage in structured mathemati-
cal thinking before constraining to the specific Countdown
format.

The warmup dataset contains approximately 5,000 con-
versational examples covering various mathematical rea-
soning scenarios, including arithmetic operations, word

problems, and strategic number manipulation. Each exam-
ple follows the format:
User: Using the numbers [36, 73, 50, 34], create an equa-
tion that equals 46...
Assistant: <think>I need to find a way to combine
these numbers to get 46. Let me try different combina-
tions...<think>
<answer>(73 - 36) + (50 - 34) <answer>
Stage 2: Bridge Training to Countdown Format - The
second stage serves as a critical transition phase, convert-
ing models from conversational reasoning to the structured
Countdown format. We extract mathematical expressions
from the warmup data’s ⟨answer⟩ tags and reformat them
into the target training format: “nums → target → expres-
sion”. This bridge training phase typically uses 2,000-3,000
processed examples and runs for 2-3 epochs, ensuring mod-
els can adapt their reasoning capabilities to the specific
input-output format required for Countdown tasks while
maintaining the mathematical understanding developed in
Stage 1.

The bridge training addresses a critical format mis-
match that we discovered during initial experiments: mod-
els trained directly on structured data often produced non-
sensical outputs because they lacked the reasoning founda-
tion provided by conversational examples. The bridge stage
allows models to transfer their reasoning capabilities while
adapting to the new format requirements.

Stage 3: Curriculum-Based Countdown Training -
The final supervised fine-tuning stage implements our data-
driven curriculum learning approach using the full Count-
down dataset. This stage applies our learned difficulty scor-
ing and progressive tier exposure schedule, systematically
building from simple arithmetic to complex multi-step rea-
soning over 5-7 epochs.

Following supervised fine-tuning, we apply RLOO re-
inforcement learning for 2-3 additional epochs to opti-
mize performance through reward-based feedback and pol-
icy gradient updates.

5.2. Dataset Characteristics and Processing

Warmup Conversational Dataset: Contains 5,000+
natural language examples of mathematical reasoning with
explicit thinking processes. Each example includes user
prompts, step-by-step reasoning marked with special to-
kens, and final numerical answers. This dataset provides
the foundational reasoning patterns essential for mathemat-
ical problem-solving.

Countdown Tasks Dataset: The primary evaluation
dataset containing arithmetic reasoning problems where
models must construct valid expressions from given num-
bers to reach target values. Each problem consists of 3-4
input numbers and a target value, requiring strategic combi-
nation through arithmetic operations. The dataset contains

5



approximately 50,000 problems with varying difficulty lev-
els.

The Countdown dataset undergoes careful preprocessing
to ensure quality and consistency:

• Validation of all problem-solution pairs for mathemat-
ical correctness

• Removal of malformed expressions or impossible tar-
gets

• Normalization of arithmetic expression formats

• Filtering for reasonable number ranges and target val-
ues

• Balancing across our computed difficulty tiers

Difficulty-Based Partitioning: Using our learned dif-
ficulty scoring framework, we partition the Countdown
dataset into four equiprobable tiers containing exactly 25%
of problems each. This ensures balanced exposure across
difficulty levels during curriculum progression while main-
taining meaningful difficulty gradations between tiers.

5.3. Model Configuration and Hyperparameters

All experiments use Qwen2.5-0.5B as the base language
model, chosen for its balance of mathematical reasoning
capability and computational efficiency. The model con-
tains 494 million parameters and demonstrates strong per-
formance on arithmetic reasoning tasks while remaining
tractable for extensive experimentation.

Supervised Fine-Tuning Configuration:

• Training epochs: 5 total (with curriculum progression
schedule)

• Batch size: 8 (limited by GPU memory constraints)

• Learning rate: 5 × 10−5 with linear warmup over 100
steps

• Optimizer: AdamW with weight decay 0.01

• Maximum sequence length: 1028 tokens

• Gradient accumulation steps: 2 (effective batch size
16)

RLOO Reinforcement Learning Configuration:

• Training epochs: 2-3 additional epochs

• Batch size: 8 (reduced for memory efficiency during
sampling)

• Learning rate: 5× 10−6 (reduced for stability)

• Number of samples per prompt: K=4

• Generation temperature: 0.7

• Top-k sampling: 20, Top-p sampling: 0.95

• KL penalty coefficient: β = 0.01

• Gradient clipping: maximum norm 0.5

5.4. Evaluation Metrics

Evaluation Metrics: Our comprehensive evaluation
framework includes multiple complementary metrics:

Primary Metrics:

• Exact Accuracy: Percentage of problems where gen-
erated expressions evaluate to the exact target value

• Average Reward: Mean reward score across all prob-
lems using our dense reward function

Evaluation Protocol: For each model configuration,
we generate 500 samples on held-out test problems, ensur-
ing statistical significance while maintaining computational
tractability. Each evaluation includes both quantitative per-
formance metrics and qualitative analysis of generated ex-
pressions, error patterns, and reasoning quality. We use
consistent random seeds across experiments to ensure fair
comparison between methods.

The evaluation framework also tracks training dynam-
ics, including loss curves, gradient norms, and intermediate
checkpoint performance to understand the learning progres-
sion and identify potential optimization issues during the
multi-stage training process.

5.5. Training Schedule and Curriculum Progression

Our curriculum implementation follows a carefully de-
signed progressive exposure schedule that systematically
expands the training data complexity across epochs:

• Epochs 1-2: Tier 1 only (easiest 25%) - mastery of
basic arithmetic operations

• Epochs 3-4: Tiers 1-2 (50% total) - introduction of
moderate complexity increases

• Epochs 5-6: Tiers 1-3 (75% total) - sophisticated
multi-step reasoning challenges

• Epochs 7+: All tiers (100%) - complete spectrum of
problem difficulty

This schedule design ensures that models develop robust
foundational skills before encountering challenging prob-
lems that might otherwise lead to suboptimal learning dy-
namics. The gradual expansion strategy allows for system-
atic skill building while maintaining sufficient exposure to
increasingly complex reasoning patterns. For experimen-
tal runs with fewer than 7 epochs, the schedule compresses

6



proportionally to maintain the essential progression from
simple to complex while accommodating shorter trainings.

Curriculum Learning Configuration:

• Training epochs: 7 total (to accommodate full curricu-
lum schedule)

• Batch size: 8 (limited by GPU memory constraints)

• Learning rate: 5× 10−5

• Optimizer: AdamW with weight decay 0.01

• Maximum sequence length: 256 tokens

• Gradient accumulation steps: 1 (effective batch size 8)

• Model checkpointing: Every 1000 steps and at epoch
boundaries

• Random seed: 42 for reproducibility

6. Experiment Results
6.1. Quantitative Results and Analysis

Our curriculum learning approach demonstrates signifi-
cant improvements across all evaluated metrics compared to
standard supervised fine-tuning. Table 1 presents the com-
prehensive performance comparison across different train-
ing methodologies, while Table 2 provides detailed tier-
specific accuracy analysis for our best-performing methods.

Method Accuracy
Baseline SFT 31.1%
Curriculum SFT 34.8%
RLOO (Baseline) 40.7%
RLOO (Curriculum) 46.7%

Table 1. Performance comparison across training methods. Cur-
riculum learning achieves 12% relative improvement over baseline
SFT.

Method T1 T2 T3 T4
Curriculum SFT 55.0% 39.3% 28.2% 16.8%
RLOO (Curriculum) 69.5% 53.2% 39.1% 25.0%

Table 2. Tier-specific accuracy (%) for curriculum methods (up-
dated).

6.1.1 Key Findings

The curriculum-based supervised fine-tuning achieves an
overall accuracy of 34.8%, representing a 12% relative im-
provement over the baseline SFT accuracy of 31.1%. This
improvement, while modest, suggests that structured pro-
gression from simple to complex problems provides mean-
ingful benefits to the learning process. The gains indi-
cate that curriculum learning offers a practical approach to

enhancing mathematical reasoning capabilities, though the
magnitude of improvement is more incremental than trans-
formative.

The tier-specific analysis shows that curriculum learn-
ing provides consistent but moderate improvements
across problem difficulty levels. When combined with
RLOO, curriculum-initialized models demonstrate mean-
ingful gains: Tier 1 problems achieve 69.5% accuracy, Tier
2 problems reach 53.2%, Tier 3 problems attain 39.1%, and
Tier 4 problems achieve 25.0%. These results suggest that
the benefits of curriculum learning become more apparent
when combined with reinforcement learning optimization.

6.1.2 Performance Analysis

[PLACEHOLDER FOR LOSS CHART] Figure 1:
Training loss curves comparing curriculum learning (blue)
versus baseline SFT (red) across epochs. The curriculum
approach shows modest improvements in convergence be-
havior.

6.2. Qualitative Analysis

6.2.1 Error Analysis and Learning Progression

Qualitative analysis of model errors reveals subtle but
meaningful differences in the types of mistakes made by
curriculum-trained versus baseline models. Baseline mod-
els occasionally exhibit computational errors in basic arith-
metic operations, while curriculum-trained models show
slightly more consistent handling of foundational opera-
tions. The curriculum approach appears to provide better
mastery of basic skills, though the difference is less pro-
nounced than initially hypothesized.

Curriculum-trained models demonstrate marginally bet-
ter performance in maintaining computational accuracy
across problem tiers, suggesting that the structured pro-
gression helps establish more reliable mathematical foun-
dations. However, both approaches continue to face chal-
lenges with strategic planning and multi-step reasoning in
complex problems.

The evolution of error patterns throughout training pro-
vides some evidence for curriculum learning’s benefits,
though the improvements are incremental rather than dra-
matic. As the curriculum progresses, models show modest
improvements in maintaining computational accuracy while
tackling increasingly complex problems.

6.2.2 Reinforcement Learning Enhancement Effects

The interaction between curriculum-based SFT initializa-
tion and subsequent RLOO optimization shows promising
results. RLOO performance improves notably when using
curriculum-trained initialization, achieving 46.7% accuracy

7



compared to 40.7% for baseline initialization—a 15% rel-
ative improvement. This suggests that curriculum learn-
ing’s benefits compound when combined with reinforce-
ment learning approaches.

The tier-specific performance improvements under
RLOO demonstrate the value of curriculum initializa-
tion across difficulty levels. Curriculum-initialized RLOO
achieves meaningful improvements over curriculum SFT
alone across all tiers, with particularly notable gains in Tier
1 (69.5% vs 55.0%) and Tier 2 (53.2% vs 39.3%) problems.
These results indicate that the structured foundation pro-
vided by curriculum learning creates a more effective start-
ing point for reinforcement learning optimization.

7. Discussion
The results provide moderate support for curriculum

learning as a beneficial approach to mathematical reasoning
in small language models. While the improvements are in-
cremental rather than dramatic, the consistent gains across
difficulty tiers and the enhanced performance when com-
bined with RLOO suggest practical value for this approach.

Key Insights:

1. Incremental Foundation Building: The curriculum
approach provides modest but consistent improve-
ments in mathematical reasoning capabilities, with
benefits becoming more apparent when combined with
reinforcement learning.

2. Reinforcement Learning Synergy: The combina-
tion of curriculum SFT with RLOO shows promising
results, achieving meaningful performance improve-
ments over baseline approaches.

3. Practical Applicability: The computational overhead
of curriculum learning is minimal, making it a good
enhancement to standard training procedures.

7.1. Limitations

Our work had several important limitations that con-
strained our findings. Our difficulty scoring framework,
while data-driven, relies on a linear combination of three
factors that may not capture the full complexity of math-
ematical reasoning difficulty. The assumption that prob-
lem difficulty can be adequately modeled through numer-
ical, structural, and operational complexity may oversim-
plify the context require for mathematical problem-solving.
More sophisticated difficulty assessment methods, poten-
tially could provide more accurate curriculum design.

The experimental scope is limited to a single model ar-
chitecture (Qwen2.5-0.5B) and relatively small-scale train-
ing datasets. Larger language models could show differ-
ent magnitudes of improvement. Additionally, our curricu-
lum schedule was designed based on observation rather than

principled optimization, leaving room for more sophisti-
cated adaptive curriculum design.

7.2. Broader Impact Reflection

The development of improved mathematical reasoning
capabilities in language models has great implications for
education, scientific research, and societal equity in access
to mathematical problem-solving tools. For example, better
mathematical reasoning in language models could provide
more educational support for students lacking access to tu-
toring or math instruction. More effective training method-
ologies for mathematical reasoning could help reduce bar-
riers to accessing problem-solving tools,

7.3. Challenges and Difficulties Encountered

The project encountered several significant technical
challenges.

Multi-Stage Training Complexity: Coordinating the
three-stage training pipeline (warmup conversational rea-
soning, bridge training, and curriculum SFT) proved more
complex than anticipated. Initial experiments revealed that
models trained directly on structured Countdown data often
produced completely wrong outputs, necessitating the de-
velopment of the bridge training stage. This highlighted the
importance of format adaptation for our model.

Difficulty Scoring Framework Development: Devel-
oping a principled difficulty scoring framework proved
more challenging than initially anticipated. Early attempts
using heuristic measures (such as target value magnitude
or number of required operations) showed poor correlation
with actual model performance, necessitating the develop-
ment of our data-driven approach. The feature extraction
process required careful engineering to capture meaningful
complexity indicators while maintaining computational ef-
ficiency.

The weight learning process for combining numerical,
structural, and operational complexity factors required mul-
tiple iterations to achieve stable and interpretable results.
Initial experiments with more complex weighting schemes
(including non-linear combinations and interaction terms)
showed overfitting to the training data, leading us to adopt
the simpler linear combination approach. This experience
highlighted the importance of balancing model complexity
with generalizability in curriculum design.

Evaluation Methodology Challenges: Designing ap-
propriate evaluation metrics for mathematical reasoning
proved more nuanced than expected. While exact accu-
racy provides a clear correctness measure, it fails to cap-
ture partial credit for mathematically sound approaches that
produce near-correct results. Our dense reward function at-
tempts to address this limitation, but there is a lot of room
for improvement.

Computational Resource Constraints: Limited GPU

8



memory constrained our batch sizes and model scaling ex-
periments, potentially affecting our findings.

Loss of Data/Code Through AWS Instance Crashes:
Occasional crashes of the AWS instance and accidental
closures due to miscommunication resulted in a loss of
code/models that forced us to redo parts of our codebase
and result work.

8. Conclusion/Future Work

Our final project demonstrates that curriculum learning
provides meaningful improvements to mathematical rea-
soning capabilities in small language models. Our data-
driven difficulty scoring framework successfully identifies
problem complexity patterns that match up with actual
model performance, enabling systeatic progression from
basic arithmetic to sophisticated multi-step reasoning. The
12% relative improvement in supervised fine-tuning accu-
racy (34.8% vs 31.1%) and the more substantial 15% im-
provement when combined with RLOO (46.7% vs 40.7%)
establish curriculum learning as a practical enhancement to
standard training procedures. Our results also show that
curriculum-based initialization creates better starting points
for RL optimization, with benefits becoming more pro-
nounced as problems increase in complexity.

Future work should explore adaptive curriculum design
that dynamically adjusts difficulty progression based on
real-time model performance. Another interesting road
could be investigating curriculum learning’s effectiveness
across broader mathematical domains beyond arithmetic
reasoning, and examine how these techniques scale to larger
model architectures. Additionally, developing more sophis-
ticated difficulty assessment frameworks that capture the
full complexity of mathematical problem-solving could also
be a very interesting road to take for future work.

9. Contributions & Acknowledgments

Yoshi Nakachi: Contributed code on RLOO implemen-
tation and basic SFT training/eval. Worked with Daniel
on creating bash scripts to reproduce our results. Helped
Daniel work on bridge training implementation.

Daniel Reichfeld: Contributed to this project by develop-
ing the Curriculum Learning code and logic. This includes
the ideation of the difficulty score function and the process
required to find the N,S,O weights. Helped Yoshi imple-
ment RLOO and train it with a CL-trained SFT model.

References
[1] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun,

L. Kaiser, M. Plappert, J. Tworek, J. Hilton, R. Nakano, et al.
Training verifiers to solve math word problems. In arXiv
preprint arXiv:2110.14168, 2021.

[2] DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capa-
bility in llms via reinforcement learning. In arXiv preprint
arXiv:2501.12948, 2025.

[3] G. Hacohen and D. Weinshall. On the power of curriculum
learning in training deep networks. In International Confer-
ence on Machine Learning, pages 2535–2544. PMLR, 2019.

[4] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright,
P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, et al.
Training language models to follow instructions with human
feedback. In Advances in Neural Information Processing Sys-
tems, volume 35, pages 27730–27744, 2022.

[5] E. A. Platanios, O. Stretcu, G. Neubig, B. Poczos, and T. M.
Mitchell. Competence-based curriculum learning for neural
machine translation. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, pages
1162–1172, 2019.

[6] P. Soviany, R. T. Ionescu, P. Rota, and N. Sebe. Curriculum
learning: A survey. In International Journal of Computer Vi-
sion, volume 130, pages 1526–1565. Springer, 2022.

9


