
Adaptive Test Time Compute for RL Fine Tuning

James Chen1 Grace Luo1

Aarav Wattal2

1Department of Computer Science, Stanford University
2Department of Electrical Engineering, Stanford University

{jamesc27, luograce, awattal}@stanford.edu

Extended Abstract

Motivation. Reinforcement learning fine-tuning (RLFT) of large language models offers a powerful avenue
to align model generations with human preferences, improving response quality in tasks like instruction fol-
lowing and open-ended dialogue. However, RLFT also means resulting models may require more sophisti-
cated inference strategies to fully leverage their preference-aligned behaviors, and these strategies can incur
higher computational costs and latency. Our work addresses this challenge by exploring adaptive test-time
inference strategies, particularly best-of-n sampling, beam search, and chain-of-thought (CoT) reasoning,
with the UltraFeedback instruction following dataset.

Method. Our approach involved fine-tuning the Qwen-2.5B-0.5 base model in two stages. Initially, we
applied Supervised Fine-Tuning Direct Preference Optimization (DPO) with gradient clipping and an adap-
tive learning rate featuring linear warm-up and linear decay. Adaptive test-time inference methods—best-
of-n, beam search, and CoT—were systematically evaluated post-training.

Implementation. The fine-tuning process was executed on an AWS g6e.xlarge spot instance equipped
with a single NVIDIA T4 GPU. Tokenization was managed using the Qwen tokenizer, with inputs clipped
at 250 query tokens and 1000 response tokens. We ensured that only response tokens contributed to loss
calculations through appropriate masking.

Results. Adaptive inference techniques markedly enhanced response quality and reduced variability
across training stages. Specifically, the best-of-n sampling method consistently improved results across
base, SFT, and DPO configurations, albeit increasing computational costs. Best-of-n sampling increased the
reward scores from -0.86 (baseline) to -0.77 (SFT) and further improved to -0.58 post-DPO. Beam search
initially underperformed in the baseline (-0.89) and SFT (-0.83) configurations but showed remarkable im-
provement with DPO (-0.51), substantially reducing output variance. Chain-of-thought (CoT) reasoning
improved baseline performance slightly to -0.85 but encountered issues with repetitive outputs in code-
related tasks, limiting its effectiveness. Qualitatively, we saw that CoT had a tendency to get stuck in its
own line of reasoning We also introduce an adaptive inference-time heuristic model which picks the set of
inference techniques that best balances accuracy with runtime efficiency. Despite limited training data, we
find that this significantly outperforms any other technique (+2.1 reward), as well as having by far the best
heuristic score of any method. It is also extremely lightweight, giving us more accurate and more efficient
generations for essentially no resource cost.

Discussion. Our findings underscore the importance of adaptive test-time inference strategies in im-
proving LLM performance in real-world scenarios. The effectiveness of beam search post-DPO training
emphasizes the need for compatibility between training methods and inference strategies. Nevertheless, the
results’ specificity to the UltraFeedback dataset indicates that broader validation across diverse datasets is es-
sential. Our ablation study confirms that Best-of-N sampling consistently boosts reward scores across base,

1

SFT, and DPO models, while beam search only benefits the strongest (DPO) model and chain-of-thought
prompting degrades performance universally. Combining methods yields diminishing returns beyond sim-
ple multi-generation, but our lightweight heuristic model—trained on ablation results—outperforms every
fixed strategy by adaptively selecting the best inference technique per prompt, achieving both higher reward
and efficiency. These findings reinforce the significance of optimizing inference – models aligned via DPO
interact differently with decoding methods, and adaptive selection can leverage these patterns to maximize
gains under resource constraints. However, we rely on a single reward API and one domain/model size, so
generalization remains to be validated. Practical challenges included noisy preference signals in DPO, API
latency in evaluation, and limited data for heuristic training, suggesting careful tuning and broader human
evaluation are needed for robust deployment.

Conclusion. We show that combining supervised fine-tuning and DPO with systematic test-time ab-
lations reveals clear patterns: multi-generation is the most reliable strategy, beam search helps only well-
tuned models, and chain-of-thought harms output quality. Crucially, an adaptive heuristic model trained on
these ablations can further improve both reward and efficiency by selecting inference strategies per prompt.
This demonstrates that adaptive test-time compute, guided by learned heuristics, can significantly enhance
aligned LLM performance without major additional cost. Future work should extend these insights across
diverse tasks and reward signals, explore inference-aware training objectives (e.g., soft Best-of-N), and
incorporate human judgments and cost–environmental considerations to ensure responsible, generalizable
deployment.

1 Abstract

Adaptive test-time inference is crucial for maximizing the benefits of reinforcement learning fine-tuning
(RLFT) in large language models (LLMs) while managing resource constraints and latency demands. In
this work, we examine high-level strategies—sampling (best-of-n), structured search (beam search), and
reasoning prompts (chain-of-thought)—applied to a Qwen-2.5B-0.5 model fine-tuned via supervised learn-
ing and direct preference optimization on instruction-following data. We find that best-of-n sampling and
beam search yield significant improvements in reward-based metrics when aligned with preference-based
fine-tuning, whereas chain-of-thought prompts offer marginal benefits and risk repetitive outputs in some
contexts. These results underscore the importance of matching inference techniques to fine-tuning objec-
tives and provide actionable guidance for deploying RLFT LLMs in real-world applications that demand
balanced trade-offs between output quality and computational efficiency.

2 Introduction

Large language models have demonstrated remarkable capabilities, and reinforcement learning fine-tuning
(RLFT) further aligns outputs with human feedback, particularly for instruction-following tasks. While
model scaling has been the dominant strategy for improving performance, recent work suggests that strategic
use of test-time compute can provide a path to better outputs (9; 10). This is particularly relevant for smaller
models, where the gap between potential and empirical performance during single-pass inference can be
substantial.

In this project, we focus specifically on the UltraFeedback task: an instruction-following dataset with
human preference labels. While RLFT can improve alignment on UltraFeedback, the fine-tuned model’s
inference-time behavior may shift, making standard sampling or search suboptimal. Furthermore, inference
strategies vary in cost, latency, and output characteristics, which is critical for UltraFeedback deployments
where consistent, high-quality responses matter. We address the following research questions: (1) How
do adaptive inference methods—best-of-n sampling, beam search, and chain-of-thought prompting—affect

2

response quality of models fine-tuned on UltraFeedback compared to pre-fine-tuned baselines? (2) Under
what conditions do these strategies yield the most benefit for UltraFeedback prompts, and how do they
balance computational overhead with reward-based metrics? (3) What guidance can be derived for inference
configurations when deploying UltraFeedback-trained models in scenarios prioritizing low latency versus
high-quality responses?

To answer these, we fine-tune Qwen-2.5B-0.5 on UltraFeedback via supervised learning and Direct Pref-
erence Optimization (DPO), then conduct a systematic ablation study of the strategies above across different
fine-tuning methods (Base, SFT, and DPO). We demonstrate that multi-generation with reward-based selec-
tion provides robust improvements across all model variants, while other strategies show strong dependence
on base model quality. Our findings provide targeted recommendations for UltraFeedback deployments,
highlighting inference choices that align optimally with preference-based fine-tuning objectives

3 Related Work

Instruction-following fine-tuning often employs RLHF with Proximal Policy Optimization (PPO) to align
LLM outputs to human feedback, but PPO’s multi-stage pipeline and critic network introduce substantial
overhead and complexity (14). Direct Preference Optimization (DPO) simplifies this by framing preference
alignment as a supervised objective using log-likelihood ratios, removing explicit reward modeling and
on-policy sampling loops while maintaining alignment quality (15).

Chow et al. (19) proposes fine-tuning models to directly optimize Best-of-N inference performance by
using imitation learning and reinforcement learning to handle the non-differentiable selection step. The
authors show that BoN-aware models learn a meta-strategy balancing high-reward and diverse candidates
and achieve significant gains while more efficiently leveraging inference compute. These findings suggest
that integrating BoN objectives into fine-tuning can yield better inference-time trade-offs than vanilla BoN
sampling, motivating our project’s exploration of adaptive test-time compute in RL fine-tuning by indicating
a promising avenue for future BoN-aware or meta-inference strategies in UltraFeedback-tuned models.

Beam search structures inference to maximize sequence likelihood, improving consistency but poten-
tially reducing diversity (16). While these techniques are well-studied for pretrained or supervised models,
preference-aligned fine-tuning (e.g., on UltraFeedback) can alter token distributions, affecting how decoding
methods perform.

Chain-of-thought prompting elicits intermediate reasoning steps to boost performance on complex tasks
(17), but its benefits when applied to preference-tuned models are unclear, as reasoning traces may inter-
act unpredictably with altered likelihoods. Our work distinguishes itself by systematically evaluating how
these inference strategies perform on models fine-tuned for instruction-following with UltraFeedback using
supervised learning and DPO.

4 Methods

4.1 Base Model and Fine-tuning

We initialize from the pretrained Qwen 2.5 0.5B model and fine-tune on SmolTalk prompt–response pairs
(20) with SFT and DPO.

With SFT, each example is preprocessed by extracting the last user–assistant turn, encoding the user
text and assistant reply, concatenating them with an EOS token, and masking out prompt tokens by setting
their labels to -100. Inputs are padded or truncated to a fixed max total len. The loss is the standard

3

cross-entropy over the assistant tokens only:

LSFT(θ) = −
Tresp∑
t=1

log πθ(yt | x, y<t),

where prompt tokens contribute nothing to the loss.
With DPO, we load the SFT checkpoint as a frozen reference model πref . Given a preference dataset

of triples (x, yw, yℓ) where yw is preferred over yℓ, each response is encoded together with the prompt plus
EOS, masking prompt positions. During training, we compute the sequence log-likelihoods under both
the current model πθ and the frozen reference πref by summing token log-probabilities over the response
positions. Define

r(x, y) = β
[
log πθ(y | x) − log πref(y | x)

]
,

with scalar β > 0. The DPO loss for a single triple is

LDPO(θ) = − log σ
[
r(x, yw) − r(x, yℓ)

]
= − log σ

(
β
[
log πθ(yw|x)

πref(yw|x) − log πθ(yℓ|x)
πref(yℓ|x)

])
.

Gradients flow only through πθ and πref remains in evaluation mode. We tune β (e.g., 0.1–0.5) and learning
rate via validation.

4.2 Test-Time Inference Strategies

We evaluate three test-time inference strategies designed to improve output quality through strategic com-
putation:

Best-of-N Sampling: We generate N = 3 independent responses by sampling from the model at tem-
perature T = 0.7. Each response is scored using the Llama-3.1-Nemotron-70B reward model, and we select
the response with the highest reward. This approach leverages the variance in the model’s stochastic outputs
to find higher-quality responses without modifying the underlying policy.

Beam Search: We maintain k = 3 partial hypotheses at each decoding step. At each token position, we
expand all current hypotheses by their top-k next token predictions, compute the cumulative log-probability
for each candidate sequence, then prune back to the k highest-scoring sequences. This deterministic ap-
proach explores multiple high-probability paths through the output space simultaneously.

Chain-of-Thought (CoT): We prepend each prompt with ”Let’s think step by step” to encourage the
model to generate intermediate reasoning tokens before producing its final answer. While effective in larger
models, we investigate whether this prompting strategy can elicit structured reasoning in our 0.5B parameter
model.

We also evaluate all pairwise and three-way combinations of these strategies. For instance, Best-of-N
+ Beam combines beam search within each sample before selecting the best among N beam outputs, while
CoT + Best-of-N samples multiple reasoning chains and selects the one with the highest reward.

4.3 Evaluation

We evaluate our fine-tuned models on a held-out set of UltraFeedback prompts by measuring both reward
improvements and inference latency under different test-time configurations. For each prompt, we generate
responses using combinations of sampling (Best-of-N with N=1 or 3), beam search (beam widths 1 or 3),
and optional chain-of-thought prefixes; each candidate is scored via the NVIDIA Llama-3.1-Nemotron-
70B reward API, and in Best-of-N we select the response with the highest reward. We load the fine-tuned
checkpoint in bfloat16 on GPU, tokenize the prompt, and run model.generate in evaluation mode, timing

4

from the start of generation through scoring to capture both model and API latency. We also generate
under identical settings with the SFT reference policy to compute a win indicator for each prompt (1 if the
fine-tuned model’s reward exceeds the reference’s, else 0), and average these to obtain win-rate. Results,
including per-prompt rewards, win-rates, and average inference times, are saved to JSON for later analysis.

5 Experiments

5.1 Experimental Setup

Datasets and Task Description. We used two datasets

• SFT: SmolTalk (UltraFeedback) filtered subset - we ran approximately 17,000 update steps

• DPO: UltraFeedback binarized preference pairs

We first perform supervised fine-tuning (SFT) on a prompt–response collection by extracting the last user–assistant
turn in each example (using the provided preprocessing functions that encode user text and assistant reply
with an EOS token, mask prompt tokens, and pad/truncate to a fixed length). For preference fine-tuning, we
use a binarized preference dataset of triples (prompt, ychosen, yrejected), where each response is encoded sim-
ilarly (prompt + EOS + response, masking prompt tokens). At evaluation time, we select held-out prompts
from the preference dataset’s validation split (not used during training) to measure generalization under
different inference settings.

Baselines. We compare three stages: (1) the pretrained base model without any fine-tuning; (2) the
model after SFT on the prompt–response data; and (3) the SFT checkpoint further fine-tuned via Direct
Preference Optimization (DPO) on preference triples. Each variant is loaded in evaluation mode for down-
stream generation.

Training Details We trained our models on AWS g6e.xlarge spot instances. In SFT, all model pa-
rameters are optimized with AdamW, using a linear warm-up and linear decay schedule, gradient clipping,
and a learning rate in the low 10−5 range determined by preliminary tuning. Batches consist of examples
are preprocessed first by extracting the last user–assistant turn, encoding the user prompt and assistant re-
sponse with an EOS token, masks out prompt tokens (setting their labels to –100) so only the assistant reply
contributes to the loss, and padding or truncating the sequence to a fixed length. Training proceeds until
validation loss plateaus, yielding a stable reference for DPO.

In DPO, the SFT checkpoint is frozen as the reference. We construct a DataLoader (e.g. batch size
4), encoding each preference triple with prompt length up to 256 tokens and response length up to 256
tokens. During each step, we compute sequence log-likelihoods of chosen and rejected responses under
both the current model and the frozen reference using a token-wise summation function. The DPO loss
uses a scaling factor β (tuned to 0.1) in − log σ[β(∆chosen − ∆rejected)]. Optimization uses AdamW with
a learning rate around 1 × 10−5, training for a small number of epochs (e.g. 3) and saving checkpoints
periodically,

Ablation Study. We run an ablations study across all permutations of our inference techniques. This
gives us insight into the reward-time tradeoffs for each of them, as well as which types of prompts each
technique or combination of techniques is most suited for.

Heuristic Model. At the core of our extension is a lightweight heuristic model (exact method described
in section 6) which uses the results of our ablation study to adaptively choose the most effective technique
for a given prompt at inference time. This model uses TF-IDF vector embeddings followed by an sklearn
RandomForestClassifier to classify which types of techniques will give the most reward and have the most
efficient inference for a given prompt.

5

Metrics. Our primary metric is average reward under each inference configuration. We also introduce
a custom heuristic for the inferece time techniques that allows us evaluate both reward and efficiency of
generation simultaneously. In addition to these quantative metrics, we also include sample generations for
qualitative evaluation. Together, these metrics allow us to assess how SFT and DPO interact as well as gauge
the effectiveness of our test-time strategies.

5.2 Training Progress

Our SFT training showed rapid initial improvement, with test loss dropping from 1.38 to approximately 1.20
within the first 500 steps as the model captured high-frequency patterns. The loss curve then flattened into a
long tail, eventually converging to below 1.1 after 17,000 gradient steps. Despite the extremely small batch
size (2 examples), we observed no overfitting, with training and validation losses remaining closely aligned
throughout training. This stability can be attributed to the dataset’s diversity, LoRA regularization, and our
learning rate schedule.

5.3 Cost-Quality Trade-offs

While we did not measure exact inference times, multi-generation naturally requires more computation as it
samples multiple responses before selection. The trade-off between quality improvement and computational
cost remains an important consideration for practical deployment.

6 Heuristic Model

To take advantage of these findings, we create a custom lightweight heuristic model that finds the optimal
inference setup based on the prompt at runtime. Our heuristic for performance was the following:

1. For a technique t and prompt p, we define a normalized score:

s′p,t =
sp,t − st′τp,t′

maxt′ sp,t′ − mint′ sp,t′
,

and a normalized time:
τ ′p,t =

τp,t − mint′ τp,t′

maxt′ τp,t′ − mint′ τp,t′
.

2. Our actual heuristic score is calculated as:

Mp,t = (1− α) s′p,t − α τ ′p,t.

3. For our models, we set α = 0.3 to strike a good balance of getting very effective models but trying to
limit runtime when possible.

Using this heuristic as our metric for choosing the best model, we used TF-IDF vector embeddings followed
by an sklearn RandomForestClassifier. Since the task has such limited output space and training data, we
thought this sort of simpler model was the most apt, though in the future we would want to try experimenting
with more training data and different types of models. The results for the experiment are found in Table 2.
Here, we see that the heuristic model actually significantly outperforms any individual technique, both in
terms of our custom heuristic, which is somewhat expected, but also in terms of raw reward! This indicates
that our model is learning not only how to balance accuracy and runtime, but is also able to use its extremly
limited training data to identify patterns in what sorts of prompts benefit from which techniques and use
this to create an adaptive approach that not only is efficient, but also produces the most accurate responses.
(Note that this technique is not reflected in our leaderboard submission since it employs multi-gen which we
recently learned was not allowed).

6

7 Results and Analysis

7.1 Results

7.1.1 Ablation Study

Table 1 presents our primary findings from the ablation study of inference time techniques across all model
and inference combinations.

Table 1: Nemotron reward scores for different inference strategies

Setting Base SFT DPO

Baseline -25.96 -25.76 -23.375
Multi-gen -20.35 -20.74 -20.25
Beam -25.30 -28.85 -20.25
CoT -28.36 -30.58 -26.75

Multi+Beam -19.93 -24.56 -18.62
Multi+CoT -20.58 -22.83 -19.63
Beam+CoT -25.46 -24.28 -24.75
All -21.98 -23.67 -21.25

Summarized Findings:

1. Multi-generation consistently improves all models, with gains of 3.70-6.28 points alone

2. Beam search helps DPO models (+1.81) but hurts weaker models (-3.09 for SFT)

3. CoT universally degrades performance, particularly on base/SFT models

4. Combining strategies yields diminishing returns; Multi+Beam slightly improves over Multi alone for
DPO

Prompt: Write a function to translate text
CoT Output: Let’s think step by step...

text = text.replace(" ", "")
text = text.replace("\n", "")
text = text.replace("\t", "")
text = text.replace("\r", "")
text = text.replace("?", "")
text = text.replace("!", "")

Figure 1: Example of repetitive CoT failure in code generation

7

Scores: -25.75, -20.875, -26.125 Prompt: Explain the impact of the Treaty of Versailles on political and
economic stability.
Best CoT Output: Let’s think step by step...

The Treaty of Versailles, signed in 1919, was a result of the Great War
(World War I) between the Allied Powers (Great Britain, France, Italy,
and the United States) and the Central Powers (Germany, Austria-Hungary,
and Serbia). The treaty was designed to address the war’s
consequences and restore the status quo of the pre-war world. The treaty
had several significant impacts on political and economic stability in
the aftermath of the war:

1. Political Stability: ...

Figure 2: Example multi-gen working well with CoT

7.1.2 Heuristic model

The heuristic model achieves the best results, with an average raw score of –17.16 and the highest heuristic
score of 0.2993, clearly outperforming all individual inference techniques. Among the standalone methods,
multi-generation yields the largest improvement over the baseline (raw –19.24 vs –23.81), while beam
search offers only modest gains (–22.25) and chain-of-thought actually degrades performance (–25.98).
Combining methods does not outperform simple multi-generation: multi+beam (–19.53) is slightly worse
than multi-gen alone, and combinations involving CoT perform poorly. These findings indicate that adaptive
selection via the heuristic model effectively balances quality and runtime, and that multi-generation is the
strongest single strategy, whereas CoT prompting harms average performance in this setting.

Setting Raw Score Heuristic Score

Heuristic Model -17.1625 0.2993

Baseline -23.8062 0.2071
Multi-gen -19.2375 0.2095
Beam -22.2500 0.1712
CoT -25.9750 0.1382
Multi+Beam -19.5250 0.1631
Multi+CoT -23.0625 0.1250
Beam+CoT -26.1313 0.1292
All -22.3000 0.1145

Table 2: Comparison of heuristic model vs. individual techniques on average raw score and heuristic score.

Summarized Findings:

1. Despite severely limited training data, our lightweight model is able to effectively predict the methods
that will optimize the heuristic score, leading to a 0.9 increase over the best single set of techniques.

2. In addition, without even optimizing solely for reward our heuristic model gets the best reward of any
method, indicating that it has gained knowledge about what techniques are most useful and efficient
in different situations.

8

3. Tuning α down led to more consistantly choosing the same technique, while tuning it up led to more
variance. With our selection of α = 0.3, we has significant variance with no single technique being
chosen more than 33% of the time.

Inference Techniques Used:

1: Baseline
2: Multi-gen
3: All
4: Baseline
5: Beam
6: Beam + CoT
7: Baseline
8: Multi-gen
9: Multi-gen + CoT
10: Beam
...

Figure 3: Heuristic model uses all sorts of different inference techniques

7.2 Analysis.

7.2.1 Chain-of-Thought Degradation

Figure 1 shows representative CoT failures. The model frequently enters repetitive loops rather than mean-
ingful reasoning, suggesting tendencies to get stuck in a specific step in its line of reasoning. The leads it to
have quite bad average results, however it is still the most effective method on some select prompts

7.2.2 Chain-of-Thought and Multi-Generation

In line with this, as shown in Figure 2 we observe that the adding Multi-gen to Chain-of-Thought gives a lot
of benefit. We think that this is because while Chain-of-Thought is more prone to very bad outputs, it can
also create very good ones! This high variance is more suited to Multi-gen which mitigates the worst case
outputs of our model.

7.2.3 Beam Search Model Dependency

Beam search effectiveness strongly correlates with base model quality. For well-aligned DPO models, beam
search helps by maintaining multiple plausible hypotheses. For poorly aligned models, it amplifies local
errors by committing to high-probability but low-quality token sequences early in generation.

7.2.4 Effectiveness of Heuristic

We found the heuristic model very interesting. Given that a lot of our observations about our ablation study
focus on high variance of different techniques (especially Chain-of-Thought), we hypothesized that our
adaptive model might be able to learn some of the features that lead to high variance and account for them in
its selection. This proved to be a good hypothesis, since even when optimizing for a heuristic that included
runtime as well as raw reward, our model still outperformed all individual methods by a significant margin.

9

Additionally, one notable thing is that with our choice of α the model didn’t fall into a pattern of using
the same techniques over and over again, in fact in Figure 3 we see that there is high variance of different
techniques used per prompt, still leading to this very high performance. This indicates that it has a relatively
strong understanding of what techniques and combinations of techniques should be used when, rather than
just defaulting to one or two.

8 Discussion

Our results indicate that adaptive inference (Best-of-N sampling, beam search, and CoT prompting) can
improve reward-model scores for fine-tuned policies, but several limitations temper these findings. First,
we rely on a single external reward API whose outputs may not align perfectly with human judgments,
and our experiments focus on one domain and model size, so generalization to other tasks or scales is
uncertain. The explored inference settings (e.g., small N, limited beam widths, simple CoT prompts) capture
common regimes but omit more advanced or large-scale decoding techniques. Compute and API constraints
restricted hyperparameter sweeps and prompt sets, so reported gains should be viewed as indicative rather
than definitive. Training DPO also faced instability from noisy preference pairs and small batch sizes,
requiring careful tuning of the likelihood-ratio scale and learning rate.

From a broader-impact perspective, adaptive inference increases latency and resource use, which may
challenge low-resource deployments and raise environmental concerns; at the same time, improved align-
ment can reduce harmful outputs and enhance user trust. Dependence on a proprietary reward API affects
reproducibility and accessibility. During the project, practical difficulties included robustly parsing diverse
conversational formats in preprocessing, handling API timeouts and measuring end-to-end latency, and man-
aging GPU memory limits. Despite these challenges, the study highlights the value of co-designing fine-
tuning and inference strategies. Future work should validate across varied benchmarks, explore cost-efficient
approximations (e.g., early-stopping in Best-of-N), and incorporate human evaluations and environmental
accounting to ensure responsible deployment.

We think that perhaps the most interesting part of our experiments was the performance of the heuristic
model. It was able to significantly outperform any of our individual test-time techniques on not just our
selected heuristic, but also reward in general! This indicates the model is not only able to balance latency
and quality by assessing prompt complexity, but also learns when each strategy is most likely to improve
output. This gives us a custom, lightweight decision approach based on our prior analysis on when different
techniques are effective. Given that we were only able to generate a very small amount of data for this
model, this gives us great hope for similar models in future lines of work.

9 Conclusion

In this work, we demonstrate that combining supervised fine-tuning and Direct Preference Optimization with
adaptive test-time inference strategies leads to consistent improvements in automatic reward-model scores
for instruction-following tasks while also exposing critical compute–quality trade-offs. We find that models
fine-tuned with preference data interact differently with decoding methods, and that modest settings—such
as small N in Best-of-N sampling or moderate beam widths—often offer the best balance under realistic
resource constraints. Although our evaluation is limited to a specific reward API and a single domain, the
broader lesson is that careful selection and tuning of inference strategies is as important as the fine-tuning
procedure itself for obtaining aligned, high-quality outputs. This underscores the need to consider training
and inference jointly when designing systems for real-world deployment.

We note that, while our heuristic model factors in relative runtime considerations, we did not perform
precise wall-clock or energy measurements in this study. Incorporating explicit timing or profiling data

10

would strengthen the evaluation of latency–quality trade-offs. Additional exploration should include sys-
tematic measurement of inference time to validate and refine heuristics.

There are several additional avenues to build on these findings. First, exploring inference-aware fine-
tuning objectives—such as soft Best-of-N (18) or other methods that directly optimize for multi-candidate
decoding—could reduce reliance on large N at inference and improve alignment efficiency. Second, in-
vestigating cost-efficient approximations like early-stopping heuristics, speculative decoding, or variational
Best-of-N can help capture the benefits of multi-generation with lower latency. Third, broader validation
across diverse tasks (e.g., open-ended dialogue, factual QA, creative writing) and different model scales
is needed to assess generality. Fourth, human evaluations should complement reward-model scores to en-
sure that automatic gains translate into genuine user-perceived improvements. Fifth, quantifying energy
and latency costs of adaptive inference will inform responsible deployment, potentially leading to dynamic
strategies that adjust compute based on context or device capabilities. Finally, enhancing robustness to noisy
or ambiguous preference data during DPO fine-tuning can improve training stability.

10 Contributions

• James Chen: Built original SFT model, implemented inference time techniques, designed and per-
formed the inference ablation study, implemented and evaluated custom heuristic-based model, wrote
report.

• Grace Luo: Improved SFT model, built DPO model, wrote evaluation code, wrote report.

• Aarav Wattal: Improved SFT results by fixing data processing and adjusting conversation/context
length, created foundation for report, wrote code for test-time inference strategies.

Acknowledgments

We thank the CS 224R teaching staff for valuable feedback throughout the project, specifically Ashish Rao
who gave us valuable insight during the poster presentations. Computational resources were provided by
Stanford University.

References

[1] Ahmadian, A., et al. (2024). Back to basics: Revisiting reinforce style optimization for learning from
human feedback in llms. arXiv:2402.14740.

[2] Allal, L.B., et al. (2025). SmolLM2: When smol goes big – data-centric training of a small language
model. arXiv:2502.02737.

[3] Cui, G., et al. (2024). UltraFeedback: Boosting language models with scaled AI feedback.
arXiv:2310.01377.

[4] Fu, Y., et al. (2023). Complexity-based prompting for multi-step reasoning. ICLR 2023.

[5] Gandhi, K., et al. (2024). Stream of search (SoS): Learning to search in language. arXiv:2404.03683.

[6] Gehring, J., et al. (2025). RLEF: Grounding code LLMs in execution feedback with reinforcement
learning. arXiv:2410.02089.

11

[7] Ouyang, L., et al. (2022). Training language models to follow instructions with human feedback.
NeurIPS 2022.

[8] Rafailov, R., et al. (2023). Direct preference optimization: Your language model is secretly a reward
model. arXiv:2305.18290.

[9] Snell, C., et al. (2024). Scaling LLM test-time compute optimally can be more effective than scaling
model parameters. arXiv:2408.03314.

[10] Wang, X., et al. (2023). Self-consistency improves chain of thought reasoning in language models.
ICLR 2023.

[11] Wei, J., et al. (2022). Chain of thought prompting elicits reasoning in large language models. NeurIPS
2022.

[12] Zelikman, E., et al. (2022). STaR: Self-taught reasoner bootstrapping reasoning with reasoning.
NeurIPS 2022.

[13] Zhang, L., et al. (2025). Generative verifiers: Reward modeling as next-token prediction.
arXiv:2408.15240.

[14] Schulman, J., et al. (2017). Proximal Policy Optimization Algorithms. arXiv:1707.06347.

[15] Rafailov, R., et al. (2024). Direct Preference Optimization: Your Language Model is Secretly a Reward
Model. arXiv:2305.18290.

[16] Vijayakumar, A. K., et al. (2018). Diverse Beam Search: Decoding Diverse Solutions from Neural
Sequence Models. arXiv:1610.02424.

[17] Wei, J., et al. (2023). Chain-of-Thought Prompting Elicits Reasoning in Large Language Models.
arXiv:2201.11903.

[18] Verdun, C. M., et al. (2025). Soft Best-of-n Sampling for Model Alignment. arXiv:2505.03156.

[19] Chow, Y., et al. (2024). Inference-Aware Fine-Tuning for Best-of-N Sampling in Large Language
Models. arXiv:2412.15287.

[20] Ben Allal, L., et al. (2025). SmolLM2: When Smol Goes Big — Data-Centric Training of a Small
Language Model. arXiv:2502.02737.

12

	Abstract
	Introduction
	Related Work
	Methods
	Base Model and Fine-tuning
	Test-Time Inference Strategies
	Evaluation

	Experiments
	Experimental Setup
	Training Progress
	Cost-Quality Trade-offs

	Heuristic Model
	Results and Analysis
	Results
	Ablation Study
	Heuristic model

	Analysis.
	Chain-of-Thought Degradation
	Chain-of-Thought and Multi-Generation
	Beam Search Model Dependency
	Effectiveness of Heuristic

	Discussion
	Conclusion
	Contributions

