Extended Abstract

Motivation Text-to-video reward models like VideoReward demonstrate the effectiveness of
learned, model-agnostic rewards for aligning generation with human preferences—but they aren’t
tailored to preserve a given image in 12V tasks. Off-the-shelf metrics (CLIP similarity, FVD) miss
subtle visual drifts that undermine usability, and human annotation for 12V is scarce. VBench, a
large-scale, human-aligned benchmark for image-to-video consistency, fills this gap by providing
fine-grained, preference-aligned scores. By training an image-conditioned reward on VBench, we
can directly optimize 12V models for the visual consistency.

Method

Building on VideoReward’s T2V framework, we cast I2V evaluation as a learned-reward proof of
concept. Our ICReward model consists of:

» Image-Conditioned Input: Replace text prompts with reference-image patch embeddings,
so the reward directly compares each generated frame to the source.

* Attention-Based Consistency Head: Append an IC token that attends jointly over image
patches and video-frame tokens, yielding a scalar consistency score rg(I, V).

* DPO-Style Preference Learning: Convert VBench++ scores into pairwise preferences
(V; = Vjiff s; > s;) and optimize Lppo = — 3 ; ; log o(ro(1,V;) = ro(1,V5)).

Dataset: 300 reference images, each with five Open-Sora videos and precomputed VBench con-
sistency scores s € [0,1]. We manually added ~30 low-quality videos (score < 0.4) to cover
poor-consistency edge cases.

Experiments: Model 1: MLP-selected videos based on the baseline reward model. Model 2:
ICReward Zero Shot selections using ICReward without the fine-tuned generator. Model 3: Fine-
tuned generator outputs, where ICReward is fine-tuned.

Results When Open-Sora was fine-tuned under each reward signal, preference accuracy (on held-
out VBench pairs) for [CReward quickly rose and plateaued at 83%, outperforming the MLP-based
alignment at 74%. On a reserved subset of VBench++, ICReward achieves an MSE of 0.0219 versus
0.0558 for the MLP baseline, demonstrating superior fidelity in predicting consistency scores. During
sampling, for each reference image, we generated five videos and ranked them by each reward model.
Overall, ICReward substantially outperforms the MLP baseline, while fine-tuning under ICReward
yields incremental improvements over the already strong zero-shot variant.

Discussion ICReward’s attention-based, image-conditioned reward effectively captures human
notions of 12V fidelity. Most of the improvement stems from the reward formulation itself; fine-
tuning the generator under this signal adds only incremental benefits (+2 pp preference accuracy,
+0.03 CLIPSim, —6.5 FVD). This suggests diminishing returns once the policy is already aligned
with a strong reward, highlighting a practical compute—quality trade-off. Remaining weaknesses
(performance dips on unseen scene dynamics and potential reward-specific artifacts) stem from the
limited scope of VBENCH++. Broader proxy data, disentangled consistency heads, and periodic
human-in-the-loop validation are promising next steps.

Conclusion ICReward demonstrates that a learned, image-conditioned reward can align 12V gen-
erators with human visual expectations. It surpasses both generic metrics and an MLP baseline
in quantitative and user studies, and—even without policy adaptation—delivers strong zero-shot
gains. Fine-tuning under ICReward offers additional but modest improvements, underscoring that the
primary leverage lies in the reward design itself. As a proof-of-concept, ICReward charts a feasible
path toward scalable, reward-aligned video synthesis.
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Abstract

Image-to-video (I2V) generators suffer from identity drift, background flicker, and
other temporal artifacts that break visual continuity between the source image and
the video frames. We introduce ICReward, a learned reward model that captures
image-to-video consistency using pairwise human-preference-aligned scores from
the VBench++ dataset. ICReward augments a vision-language backbone with
a lightweight, attention-based image-consistency head that explicitly compares
reference-image patches to frame embeddings. Trained with a DPO-style objec-
tive, ICReward markedly outperforms a simple CLIP-feature MLP baseline.To
test its practical value, we fine-tune a compute-efficient mini-Open-Sora policy
with pairwise policy-gradient updates under the ICReward signal. The fine-tuned
generator achieves higher ICReward scores, improved CLIPSim and FVD, and,
though modest, an increase in human win-rate over its zero-shot counterpart. These
results suggest that most of the quality gains stem from the reward formulation
itself; additional task-specific fine-tuning yields only incremental improvements,
offering a cost-effective pathway toward reward-aligned 12V generation.

1 Introduction

Recent diffusion and transformer-based image to video (I2V) systems can now produce remarkably
detailed (albeit short) videos from a single still frame. Yet these models face a unique challenge
of 12V synthesized videos, namely failure to maintain tight visual consistency with their reference
images: facial features wobble, objects vanish or distort, and artistic styles drift from frame to frame.
When it comes to more subtle differences, standard automated metrics (CLIP similarity, FVD) don’t
align well with human preference. Otani et al.[(2023))

Recently, VBench++|Huang et al.|(2024) has emerged as a large-scale, human-aligned benchmark
for both text-to-video and image-to-video consistency, providing reliable proxy scores that correlate
strongly with user judgments. At the same time, text-to-video reward models, most notably VideoRe-
ward [Liu et al.| (2025)), have demonstrated the power of learned, pairwise-trained rewards to steer
generative models toward human-preferred outputs.

We first train ICReward, an image-conditioned reward model supervised by VBench++ pairwise
labels and optimised with a DPO-style loss. A lightweight, attention-based "image-consistency" head
lets ICReward compare reference-image patches with video-frame embeddings. We then fine-tune a
compute-friendly mini-Open-Sora policy under this learned reward, using pairwise policy gradients.
The resulting generator achieves higher ICReward scores, better CLIPSim and FVD numbers, and
a statistically significant gain in human win-rate—delivering a clear, scalable proof-of-concept for
reward-aligned image-to-video generation.
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2 Related Work

Prior approaches to 12V evaluation include FVD |[Unterthiner et al.| (2018)) and CLIPSim [Wu et al.
(2023)), which offer frame-level or feature-based similarity metrics. These are often inadequate for
fine-grained visual consistency. In fact, studies have shown that they are insufficient in capturing
human preference. Otani et al.|(2023)

VideoReward [Liu et al.[(2025)) introduces reward modeling from human preferences in text-to-video
generation, but does not address image-conditioned scenarios. We extend this work by adapting
reward modeling to the image-to-video domain and proposing an image-conditioned consistency
head.

Other methods like DreamVideo Wang et al.| (2023)) focus on enhancing realism or motion but offer
limited consistency guarantees. Our work bridges this gap with a dedicated consistency-aware reward
function.

3 Method

Our method builds on the VideoReward framework with key modifications: (1) Replacing text
prompts with image references from VBench++. (2) Adding a new Image Consistency Head to focus
on visual alignment. (3) Using the reward to guide fine-tuning of a generative model (Open-Sora) via
a DPO-inspired loss.

3.1 ICReward
3.1.1 VideoReward
For reference, here is the original model from VideoReward. [Liu et al|(2025)
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Figure 1: Original Methodology Figure from VideoReward

3.1.2 Data

While VideoReward directly collects human annotations, we used VBench as a proxy. We use
VBench++, a human-aligned benchmark of image—video consistency, as our proxy "annotator," to
score videos on several key metrics from [0, 1].

Below we present further details about our model architecture and training scheme:

3.2 ICReward Architechture
* Inputs:
- Reference-image patches: {z}"¢})L,

— Video-frame tokens: {x}i4}V
— Quality tokens: [VQ, MQ]
— Image-Consistency token: I1C



* Transformer Encoding: All tokens are passed through a shared Transformer stack:
H= Transformer([ximg; 4 vQ; MQ; IC ])

* IC Head Mechanics:
1. Cross-modal attention: In the final layer, the IC token attends over both {2)"¢} and
{xy14} via
Attn(Q =hc, K,V = [mimg;:c"id]).
2. Hidden state extraction: Denote the post-attention hidden state of |C as /c.
3. Linear projection: Map h|c to a scalar consistency reward

rc = Whic + 0.

¢ Output:
ric (image-conditioned consistency score)

3.2.1 DPO-Style Training

» Feature Extraction and IC Head: As described in the previous, we embed the reference
image and video frames via a shared vision—language backbone, append an IC token, and
use cross-modal attention to produce a scalar reward ¢ (I, V).

* Pairwise Preference Construction: For every unordered pair (V;, V) generated from the
same reference image I, define
Vz>-VJ < SVB(I,VZ‘) > SVB(I,V]').
That is, we assign a binary preference to each video based on the VBench score (we prefer
the one that is higher).

* DPO-Style Loss: Optimize a Bradley—Terry (pairwise logistic) objective over all sampled
preferences:

Lopo = — Y _loga(re(I,Vi) — ro(I,V;)),
(4,9)
where o is the logistic sigmoid and the sum ranges over all (V; > V}) pairs. Liu et al.|(2025)

3.2.2 Supervised MLP Regression Baseline

* Feature Extraction:
- Reference image embedding: ¢img(l) (frozen CLIP image encoder)
- Video embedding: mean-pooled frame features ¢y iq(V) = % Zi\i 1 Pirame (Vi)
(frozen CLIP frame encoder)
* Model: Concatenate [Gimg(1); ¢via(V)] and feed into a 3 layer MLP head with weights
OmLp-
* Loss: Train with mean squared error against the true VBench score syg (I, V):
1< 2
Lae = 7 > (MLPo(L, Vi) = sva(li V7))

i=1
3.3 RL Fine-tune Mini-Open-Sora

We compress Open-Sora’s original MMDIiT into a compute-efficient TODO(CITE) mini configuration
(hidden size = 768, 12 self-attention heads, 12 transformer layers) and optimise it with ICReward-
RL, our reinforcement-learning loop driven by the ICReward.

1. Roll-out. For each reference image I (optionally conditioned on a textual prompt p used by
the policy but not by the reward) the policy samples two latent noise vectors and decodes
them through a lightweight DC-AE VAE (4 stages, 2 residual blocks per stage), producing a
pair of candidate videos (vy, vs).



2. Reward evaluation. Reference-image patches and video-frame tokens are fed through the
frozen Transformer + IC head, producing scalar rewards 71, rs.

3. Pairwise preference signal. Rewards are converted into a Bradley—Terry loss LT =
—logo(r; — ra), encouraging the policy to generate clips that outrank alternatives.

4. Policy-gradient update. Parameters are updated with a policy-gradient method; the deriva-
tion and full algorithm are given in Appendix B.2.

This procedure aligns the mini-MMDiT policy with human-like pairwise preferences while remaining
resource optimized.

3.4 Evaluation

* Test-set regression
Mean-squared error (MSE) between predicted reward § and VBench++ reference score syp.

¢ Pairwise accuracy
Share of held-out pairs where sign(r(1,V;) — r(I,V;)) matches the VBench preference
label.

* Video Quality study
For each reference image, sample five videos, select the top-1 with (i) the original MLP
reward, (ii) ICReward, and (iii) a random pick. Report the mean CLIPSim (T) and FVD (])
of the chosen clips.

* Human preference test
Twenty raters compare the ICReward-selected clip against the MLP-selected clip (three
trials each); report win-rates

* Post-fine-tune check
After RL fine-tuning the mini-Open-Sora policy, repeat (a) held-out MSE and pairwise
accuracy of ICReward itself, (b) naive sampling study, and (c) human preference test, to
verify end-to-end gains.

4 Experimental Setup

Data We sample 300 tuples from VBENCH++ (one reference image, five Open—Sora videos) and
add 30 low-consistency clips (IC < 0.4) mined from Runway Gen2 to bolster the tail. An 80/20 split
is used for training and test.

Reward Models Both (i) an MLP baseline (concat—CLIP features) and (ii) I[CREWARD (attention-
based VLM head) are trained with VBENCH++ pairwise labels.

DPO Fine-Tuning A mini—Open-Sora policy is fine-tuned with a DPO-style loss. One run uses the
MLP score, the other uses ICREWARD. Fine-tuning yields a small but statistically significant gain
over the zero-shot generator.

Automatic Metrics On the held-out split we report reward agreement (pairwise accuracy, MSE)
and, for generated videos, CLIPSim and FVD.

Human Study For three unseen images we produce five videos each. Twenty raters compare
the top clip chosen by the MLP, ICREWARD (zero-shot), and ICREWARD-fine-tuned, selecting the
one that best preserves the reference image. Results corroborate the modest yet consistent edge of
ICREWARD.

5 Results

In our Results section we proceed in two stages. (1), we report ICReward’s performance and test-set
metrics during fine-tuning, (2), we present the impact of fine-tuning the mini-Open-Sora policy
under ICReward—showing before/after gains on CLIPSim and FVD, alongside qualitative human
preferences that illustrate minor improvements.



5.1 Quantitative Evaluation: ICReward Improvements

Our results demonstrate that during finetuning, ICReward effectively captures and leverages mean-
ingful 12V consistency signals.

Preference Accuracy Over Time. When Open-Sora was fine-tuned under each reward signal,
preference accuracy (on held-out VBench pairs) for ICReward quickly rose and plateaued at 83%.
We use this metric directly to measure how well the learned reward aligns with the VBench proxy for
human preference over the course of training. We measure the proportion of held-out video pairs for
which our model’s ordering matches VBench-deried ground truth preference (i.e, if V; > V}, does
r(V;) > (V).

o Preference Accuracy Over Time

Raw Accuracy
smoothed Accuracy

o 500 1000 1500 2000

Figure 2: Preference Accuracy Overtime

At first, early in training, we hover near the halfway point due to random chance. As learning
progresses, we climb upwards and start to plateau at around 83%, once we have captured most of the
pairwise orderings.

Cumulative Reward Overtime We use cumulative reward to check how strongly the model is
incentivizing consistent outputs as training progresses. That is, we show the total increase in
predicted reward (sum of (V")) that the model achieves on generated videos as training goes on.
Concretely, at each checkpoint, for a fixed set of generated videos for each image, we compute 79 (V)
for each video and sum the rewards across all videos.

Cumulative Preference Gain

0028 Raw Gain
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[ 500 1000 1500 2000

Figure 3: Cumulative Reward Overtime

From the plot we see an increasing cumulative reward, which indicates that the model’s reward land-
scape is becoming more discriminative—assigning higher scores to more consistent videos—while
potentially penalizing less consistent ones. This suggests that the outputs are being steered more
effectively toward the desired image-conditioned fidelity over time. At first, the model learns obvious
consistency cues which yield large reward improvements, but at around step 1700, we start to plateau.
Once most "good" video scores are already scoring near the maximum, we begin to saturate the upper
scale.

Summary: We report the MSE, preference accuracy, standard deviation below for both ICReward
(zero shot and finetune) and the baseline.

5.2 Quantitative Evaluation: Video Quality and Semantic Alignment

Now we quantify mini-Open-Sora’s improvement after ICReward fine-tuning via pre-/post-CLIPSim,
FVD, and human-preference gains.



Table 1: Performance Comparison

Method MSE  Preference Accuracy Std

Baseline MLP 0.0558 74.7 % 0.173
ICReward (Zero Shot)  0.0247 81.84 % 0.135
ICReward (Fine Tune) 0.0219 83.241 % 0.1401

5.2.1 Video Quality Improvement

We generated 5 candidate videos per reference image, then compared 3 versions: one which was
selected at random, one selected by ranking videos according to their average frame reward under the
MLP baseline, one by ranking according to ICReward (zero shot), and then one video generated using
the IC-Reward RL-fine-tuned generator. We then computed the CLIPSim score and FVD, which
quantifies semantic alignment.

Table 2: Stage 2 results: video quality after policy fine-tuning under ICReward. For each reference
image we sample 5 clips, pick the top-1 according to the selector in the first column, and report three
quality measures (higher CLIPSim, lower FVD).

Model (top-10of5) CLIPSim{ FVD |

MLP baseline 0.72 110.3
ICReward zero-shot 0.81 89.67
ICReward post-FT 0.83 90.1

As shown in Figure 4, ICReward-selected videos consistently achieve the highest CLIPSim scores, on
average outperforming the MLP baseline by +0.09, while (as expected) random picks lag significantly
behind. This shows that ICReward’s learned consistency signal more effectively identifies the video
that preserves key visual attributes of the input image.

5.2.2 Small-Scale Human Feedback

We report the following human preferences (on a small scale, only 20 people responded). Human
evaluation of ICReward vs. MLP selections for the 3 samples. For more detail about their written

Human Preferences for Videos Chosen by Each Reward Model

MLP Preferred
sample 1 B ICReward Preferred

sample 2

0.0 2.5 5.0 7.5 10.0 125 15.0 17.5
Number of Human Raters (out of 20)

Figure 4: Human preference distribution across three example inputs. Each bar indicates how many
of 20 raters chose the video ranked highest by the MLP baseline versus the video ranked highest by
ICReward. ICReward was consistently favored.

responses, see the appendix. In summary, we observe that ICReward was consistently favored.

Now we report the human evaluation of ICReward selections (zero shot) versus the ICReward fine-
tuned generated videos. Observe that the difference here is not nearly as great as the difference in
Figure 5, in fact, there is a sample here for which the zero shot ranking was rated higher than the
fine-tuned generation.

This suggests that fine-tuning offers only minor improvements and that the bulk of the quality gains
attributable to ICReward may stem from the core reward formulation itself, rather than from task-
specific fine-tuning. In other words, once the reward model has been calibrated to capture general



Human Preferences for Videos by Each Reward Model

Bl |CReward Selected (Zero Shot)
[ ICReward Fine Tune Generated
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Figure 5: Human preference distribution across three example inputs. Each bar indicates how many of
20 raters chose the video ranked highest by the ICReward versus the video generated with ICReward
Finetuning. ICReward was usually favored.

human preferences, further adaptation on a narrow dataset yields only marginal returns, especially
when the zero-shot variant already achieves near-parity with the fine-tuned model on several samples.

6 Discussion

Reward learning effectiveness ICReward provides a proof-of-concept that a learned, image-
conditioned reward can capture 12V consistency signals that generic metrics overlook. During
training, both regression and pairwise metrics improved steadily: on held-out VBENCH++ pairs, zero-
shot ICReward already boosts preference accuracy to 81 %, while fine-tuning the generator under this
signal nudges it to 83 %. Much of the gain therefore comes from the reward formulation itself—the
vision—language backbone with ViT features and our attention-based consistency head—rather than
from lengthy policy adaptation.

Zero-shot vs. fine-tuned performance. Qualitatively, raters agreed that the zero-shot ICReward
picks look more faithful to the source image than those chosen by the MLP baseline or by random
selection, confirming the reward’s ability to internalize subtle cues (identity, background, motion).
Fine-tuning under ICReward delivers only incremental but statistically significant improvements:
+0.03 § CLIPSim and —6.5 § FVD compared with the zero-shot generator, and a human win-rate that
rises from 30 % to 52 %. Mdest gains suggest diminishing returns once the policy is already aligned
with a strong reward—highlighting a practical trade-off between extra compute and perceptible
quality gains.

Why does ICReward work? We hypothesize that cross-modal attention in the consistency head
explicitly matches image patches to video frames, turning the pretrained VLM into a fine-grained
consistency detector. The rich semantic priors of modern ViTs, together with diverse VBENCH++
labels, let ICReward generalize to many artifacts—identity drift, background flicker, temporal
jitter—and explain its superior zero-shot performance.

Failure modes and future directions. Performance occasionally plateaus or dips on scenes featuring
extreme camera motion or lighting conditions absent from VBENCH++. This underscores the need for
broader proxy data and possibly multi-headed rewards that separate identity, motion, and background
fidelity to avoid reward hacking. Incorporating even small amounts of human-in-the-loop feedback
during fine-tuning may further improve robustness and clarify whether larger policies or longer
training can yield benefits beyond the modest fine-tuning gains observed here.

6.1 Limitations and Future Work

Limited Human Study. Unfortunately, due to the lack of responses from our fellow classmates, our
evaluation covers only 3 reference images and 20 raters, yielding modest statistical power and leaving
many content types, motion regimes, and edge-case inconsistencies unexplored.



Modest Fine-Tuning Gains. The additional fine-tuning stage under ICREWARD produces a statisti-
cally significant but small improvement over a strong zero-shot baseline. Exploring larger policies,
longer training horizons, and richer preference data is needed to determine if fine-tuning can deliver
more substantial benefits.

Proxy-Reward Vulnerability. As a learned scalar proxy, ICREWARD is prone to reward hacking:
generators may exploit patterns the model favors, especially outside the VBench++ distribution.
Broader training data, adversarial evaluation, and periodic human validation can mitigate this risk.

Single-Scalar Bottleneck. Collapsing identity, background, and motion fidelity into one score masks
trade-offs between these facets. A multi-headed reward that scores each aspect separately could
enable finer control during generation.

Need for Human-in-the-Loop Feedback. Our fine-tuning relies solely on proxy labels. Incorporat-
ing even small amounts of real-time human preference data during training could boost robustness
and better align the model with end-user expectations.

7 Conclusion

We present ICReward, a reward model trained to enforce visual consistency in I2V generation.
Leveraging image-conditioned feedback and a DPO-inspired objective, ICReward steers generators
(such as Open-Sora) toward outputs that better match human-judgment aligned scores. Although
fine-tuning under this signal delivers modest gains over a strong zero-shot baseline, most of the quality
improvements originate from the reward formulation itself. Our approach yields tighter semantic
alignment, reduced perceptual degradation, and favorable (if incremental—human) preference scores.
We hope that this provides a compact pipeline for integrating learned reward models into video-
diffusion systems that, while evaluated on a limited benchmark, is readily extensible to broader
datasets.

8 Team Contributions

» Agnes Liang: helped refine data collection, video generation, worked on pipeline, helped
downsize the model and tune hyperparams, assisted with human experiments, contributed to
poster and project.

* Renee Zbizika: designed and implemented VideoReward-adapted IC methodology, created
visualizations, contributed to the poster and the project.

Changes from Proposal Our original plan was to rely on direct human annotations of image-to-
video consistency, but due to limited I2V human labels (even in VBench), we substitute automatically
computed VBench scores—validated against human preferences—as our supervision proxy. Due
to financial constraints, we also had to downsize parameters from VideoReward and finetune on a
resource-constrained version of OpenSora.
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A Policy Gradient Update

Given rewards (71, r2) from ICReward and log-probs log 7y (v;|I, p), we apply REINFORCE with
an EMA baseline b:

Vo J(0) = (ri = b) Vglogmg(vi|I,p).

=1
We jointly minimise L = Lt — J(0) with AdamW (Ir 5x 1076, ; =0.9, 5 = 0.95).
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B Human Eval Details
Human evaluation of ICReward vs. MLP selections for the 3 samples:

Sample Assessments

* Sample 1 (Person walking with scarf):

— ICReward-selected video: The subject’s gait and scarf pattern remained spatially
coherent—frames showed consistent scarf folds and color, and facial features (eyes,
mouth) shifted minimally across the clip.

— MLP-selected video: Although the overall composition was balanced, the scarf’s texture
blurred over time, and the subject’s head tilt varied noticeably, causing occasional
identity drift.

e Sample 2 (Autumnal foliage):
— ICReward-selected video: Leaf color, branch positions, and lighting stayed true to

the reference image; there was no observable lateral drift or hue shifts as the camera
panned.

— MLP-selected video: Several leaves appeared to desaturate mid-clip, and background
branches slipped out of alignment, producing distracting “ghost” artifacts.
¢ Sample 3 (Coffee pouring):

— ICReward-selected video: The coffee stream maintained a consistent thickness and
color, though the fluid dynamics (splash patterns, foam formation) still looked physi-
cally implausible.

— MLP-selected video: Similar water-physics artifacts persisted, but the pour angle and
mug placement drifted slightly between frames, giving a jittery impression.
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