
Extended Abstract
Motivation When kidney transplant patients have a family or friend willing to donate with whom
they’re incompatible, Kidney Paired Donation (KPD) programs seek to match patient-donor pairs with
one another. Matching pairs that arrive and depart over time introduces a complex trade-off between
matching as soon as possible and waiting for potentially better future matches. Traditional approaches
either simplify the matching decision criteria or optimize offline; a recent Approximate Dynamic
Programming (ADP) algorithm improves on this but still models the policy with approximated basis
functions, rather than leveraging the complexity of neural networks. This paper sharpens the problem
by modeling KPD as a granular discrete-time Markov Decision Process on a time-bound compatibility
graph and asks: can we leverage a Deep Q Network algorithm with a Graph Neural Network model to
learn a policy that can maximize match volume and optimize for such complex (or even counteractive)
objectives as fairness?

Method We discretize time into fine-grained steps and represent the evolving registry as a graph
whose nodes are patient–donor pairs (with medical and demographic attributes) and whose edges
indicate feasible transplants. We implement a Double Deep Q-Network (DDQN) whose Q-function
is parameterized by a Graph Neural Network (GNN), allowing the policy to reason over complex
relational features. At each timestep, the agent selects at most one edge to realize as a match. We
first compare the performance of DDQN to that of the ADP algorithm on the same dataset. Then
three reward functions are explored – pure match-count efficiency, a group-fairness penalty based on
deviation from a target demographic distribution, and a weighted combination of the two – to explore
the trade-off between efficiency and fairness.

Implementation Using a synthetically generated KPD dataset calibrated to real UNOS and National
Kidney Registry statistics, the first experiments compare DDQN to the state-of-the-art ADP algorithm
over a range of explored hyperparameters. Each simulation episode spans 50 or 100 discretized
timesteps, though we experimented with up to 300 timesteps to probe stability. The GNN encoder
uses two message-passing layers with hidden dimension 256 and edge embedding size 32. The
DDQN agent employs a replay buffer of size 10 000, a batch size of 256, a learning rate of 1e-3,
discount factor γ = 0.99, and an ϵ-greedy schedule decaying from 1.0 to 0.05 over 50 episodes.
Every 100 timesteps we update a target network. With these settings, we compared the performance
(match rate over episodes) of the DDQN algorithm to that of the ADP algorithm sampling 50 graph
states per iteration. Then to experiment with fairness, we used the same efficiency reward (re), a pure
feature-distribution reward (rf ), and a mixed reward (rm with we = wf = 0.5) over 20 timesteps
per episode and 50 episodes and compared the match rate, reward, and loss for each reward function.

Results Against our simulated ADP baseline of You and Vossen (2024) which samples 50 graph
states per iteration and solves a reduced LP with basis functions—the DDQN policy achieves an
average match rate of 0.20 (≈ 9.5 matches per 50-step episode), compared to ADP’s 0.18 (≈ 8.3
matches). Learning curves show DDQN’s per-episode match rate fluctuating within ±0.02 of its mean,
indicating limited policy learning; loss remains roughly constant at 0.11 MSE. In fairness experiments,
match rates rose slightly to 0.12 and 0.122 respectively versus 0.044 under pure efficiency. However,
the MSE loss under rf and rm climbed to 0.93 and 1.16, suggesting unstable Q-value estimation
when balancing more complex reward terms. Reward traces for rf and rm(Figure 5) exhibit high
volatility—up to ±30% of the mean, underscoring sparse feedback for fairness objectives.

Discussion & Conclusion The competitiveness of an untrained DDQN against ADP suggests deep
RL holds promise for dynamic KPD, but failure of the model to learn reveals challenges: sparse and
imbalanced rewards, large state–action spaces, and computational burdens for dataset and model
complexity. The paper highlights the need for richer experience reuse, refined reward shaping, and
perhaps curriculum learning or hierarchical modeling to spur convergence.
We experimented with using a DDQN algorithm with a GNN model to solve the complex MDP
of KPD matching. We found that the baseline performance of the algorithm is at level with the
current KPD matching ADP algorithm, but the agent failed to learn under the conditions we set. We
also experimented with group fairness-informed reward functions, and similarly found comparable
baseline match rates across reward functions but no learning, rendering our analysis of the efficiency-
fairness tradeoff inconclusive. While the proposed framework opens avenues for balancing efficiency
and group fairness, realizing its potential will require both algorithmic innovations to accelerate
learning and careful policy-maker guidance to set fair but practical target distributions.
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Abstract

This paper seeks to address the problem of dynamic matching for Kidney Paired
Donation (KPD) by leveraging deep reinforcement learning to train a policy that de-
cides which matches to make and when. We characterize the problem as a Markov
Decision Problem (MDP), modeling the state of the KPD market as a time-bound
graph whose nodes are patient-donor pairs and edges are feasible matches, and the
action space as the match made, if any, at each discretized timestep. We then apply
a Double Deep Q Network (DDQN) algorithm to train a Graph Neural Network
(GNN) policy to solve this MDP. We first train the model with a reward function that
maximizes matches made over time ("efficiency"), and compare the performance
of our DDQN to that of the recent successful Approximate Dynamic Programming
(ADP) algorithm devised by You and Vossen (2024). We then train the model
with a reward function that maximizes group fairness across a given feature of the
patient-donor pair, as well as a reward function that combines the efficiency and
fairness objectives, and compare the performance of our algorithm to explore the
tradeoff between efficiency and fairness in KPD matching. Our findings, while
demonstrating that DDQN performs at least as well as ADP, remain inconclusive,
which leads us to understand the complexity of this MDP and conjecture ways to
improve our model.

1 Introduction

When a patient needing an organ donation has a relative or friend who is willing to donate, but the
donor’s organ is not the right match for the patient, the patient-donor pair often seek to undergo a
paired exchange. About 1 in 5 living kidney donations in 2021 were paired donation exchanges, while
the vast majority of the rest of living donations are direct, and only a small percentage altruistic (a
donor without a patient) Garg et al. (2024). There is still much work to be done in improving paired
organ exchanges, from better understanding compatibility and success probabilities to optimizing
algorithms to maximize metrics such as matches over time or fairness of matches to various groups
of patients and donors. This paper is concerned with the latter, optimizing matching algorithms.
The pool of patient-donor pairs that are waiting to be matched can be modeled as a graph, whose
nodes are each one such patient-donor pair and edges are feasible matches, possibly weighted by their
level of suitability. Each node is described by the various necessary medical information about the
donor and patient, as well as relevant demographic and socioeconomic information, for the purpose
of our fairness objective. This graph is modeled over time, pairs entering the graph as they arrive and
leaving the graph when either a match is made or a patient becomes no longer eligible. Furthermore,
the state of each node (i.e. illness development, eligibility) is updated over time. The question of
whom to match and when is a Markov decision problem, yet one that is particularly combinatorially
complex, and whose transition probabilities are uncertain. The question this paper explores is: how
might we leverage reinforcement learning to tackle this challenging MDP and optimize a two-fold
objective, one of maximizing the number of matches and the other of ensuring group fairness across
matches?
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2 Related Work

A longstanding research question in kidney paired donation (KPD) has been how to optimize the
number of matches made over time when patient-donor pairs arrive dynamically. If a certain match is
made at time t, how can we be sure it does not preclude a higher-weighted match at time t + 1?
Prior research typically uses the graph model described in Section 1 to represent the KPD "market."
Because KPD programs explicitly identify potential matches between participants, the state of the
"market" described by this graph model is well-defined. Therefore the matching problem is generally
approached as a complex Markov decision problem (MDP). In their seminal paper addressing this
problem, Akbarpour et al. (2020) highlighted time, as in the choice of when to match, as a "first-order
concern" in this optimization problem, and rather than address the MDP head-on, demonstrate that a
simple delayed-matching algorithm comes relatively close to optimal performance.

Some research has been done in leveraging reinforcement learning to optimize the success
of the matches once they are made, as in the work of Deshpande (2024) and reviewed by Olawade
et al. (2025). The question of using reinforcement learning to solve the MDP of matching
patient-donor nodes, however, has yet to be addressed.

Much work has been done to address the question of fairness in matching problems, both
bipartite and nonbipartite. Sankar et al. (2021) analyze classified maximum matching (CMM) with a
"group fairness" concept that assigns maximal quotas to each subset within a collection of laminar
subsets of the set of "agents" that are feasible matches with some "platform," and proves a good
competitive ratio for offline and online random input arrival models with this constraint. Ma et al.
(2023) and Esmaeili et al. (2023) both incorporate Rawlsian, or maximin fairness, in offline and
online bipartite matching, by seeking to maximize the minimum expected matching rate over all
individuals on one side of the graph. Hosseini et al. (2023) presents deterministic algorithms and
approximation bounds for several concepts of fairness for a partition of one side of the graph into
classes: class envy-freeness, class proportionality, and class maximin share fairness. Finally, the
recent paper Castera et al. (2024) analyzes added loss from incorporating a good survey of fairness
constraints in offline bipartite matching: Shapley fairness, leximin fairness, as well as the group
fairness notions of demographic parity and equal opportunity.

For nonbipartite dynamic kidney exchange, Dickerson and Sandholm (2014) introduced
two notions fairness: (1) prioritizing matches that are more likely to succeed by weighting the utility
of matches by their probability of success and (2) a simple version of group fairness in which patients
either do or do not belong to the "marginalized group," and if they do, their match utilities are
weighted by some constant factor across all members of the group (Gao (2019) later discusses the
tradeoff between these two types of fairness in dynamic matching). More recently, St-Arnaud (2021)
proposed a framework for individual fairness in dynamic kidney matching, which minimizes the Lp

average of the discrepancy of each individual patient’s probability of receiving a match from the
average (compared with the algorithmic fairness definition of individual fairness, this assumes that
all patients are equally worthy of a match), and argues its advantages over Rawlsian fairness, Nash’s
proportional fairness, Shapley value schemes, and group fairness for "hard-to-match" patients.

3 Method

We apply a Double Deep Q Network (DDQN) algorithm to learn a policy for dynamic matching
in the setting of kidney paired donations (KPD). We optimize for the objectives of "efficiency," i.e.
maximizing the total number of matches over time, "fairness," namely satisfying a certain fairness
metric, and the combined objective of both efficiency and fairness. We compare performance to
understand the severity of the fairness-efficiency tradeoff in dynamic KPD matching.

3.1 Dataset
Because UNOS, National Kidney Registry, and similar real KPD datasets are only available via
collaboration requests, for the timeline of this project we used synthetic data. Publicly-available
synthetic KPD datasets exist (Dickerson et al. (2013)) and have been used in various research, but we
found that these datasets were lacking the resolution and features necessary for this project. Therefore
we generated a new synthetic dataset based on statistical data about KPD and distributions of various
features for KPD in recent years (see Appendix A for a review of these statistical distributions).
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Table 1: Performance Comparison
Hyperparameters Default

DDQN Agent learning-rate 1e-3
gamma (discount factor) 0.99
buffer-cap (capacity of replay buffer) 10000
batch-size 64
target-update (frequency) 100 timesteps

GNN Model hidden-dim 64
edge-dim 32

Training Loop num-episodes 50
eps-start (starting ϵ value) 1.0
eps-end (ending ϵ value) 0.05
eps-decay 0.995

Reward Function reward-type simple (re)
feature-name (for rf ) patient-gender
desired-dist (pi for feature i) Male:0.5,Female:0.5
reward-e (we for rm) 0.5
reward-f (wf for rm) 0.5

These data came from National Kidney Registry (2024), Holscher et al. (2018), Flechner et al. (2018),
Stepkowski et al. (2019), and Leeser et al. (2020).
The dataset is set up as follows. The "market" is modeled as a graph. The nodes of this
graph are donor-patient pairs, with non-time-bound features patient-gender, patient-race,
patient-age, patient-blood type, donor-gender, donor-race, donor-age, donor-blood
type, and incompat-reason reason for incompatibility between the donor and patient; and time-
bound features patient-health ("good," "fair," or "poor"), patient-cpra cPRA score, donor
antibodies, and donor antigens. The edges of this graph represent feasible matches.
At each timestep, the environment naturally can cause a new donor-patient pair to enter the "market,"
a donor-patient pair to leave the "market," and/or the time-bound features of any set of nodes to
change. We set the number of timesteps per year to 8000; the more timesteps per year, the closer
this model gets to approaching continuous time. Because each of these changes is atomic, in a
continuous-time MDP we can expect no two events to happen simultaneously. This choice of a large
number of timesteps per year allows us to approximate this phenomenon. In particular, according to
the National Kidney Registry (2024), the average number of patient-donor pair arrivals per day is 10,
so with 8000/365 > 10 timesteps per day, the expected number of arrivals per timestep is less than 1.
We introduced randomness to the data simulation code such that it will generate a distinct dataset
each time. This allows us to train and experiment "different" datasets.

3.2 RL Algorithm

In Section 3.1 we described the state space of our model. The action space is the choice, at each
timestep, of which pair of nodes to match (which feasible-match edge to realize), if any. Transition
probabilities are obscure in this MDP, so deep RL is a promising approach.
The available real datasets for KPD are small, so rather than simulate large datasets when such do
not exist in reality, we decided to leverage off-policy algorithms. The true action space is partly
combinatorial (edge choice) and partly continuous (timing), which poses a challenge for choosing
an RL model. This is why we chose to attempt discretizing time at relatively high resolution so that
the action space would be purely combinatorial. This allows us to apply a Double Deep Q-Network
(DDQN) algorithm to this model, using a Graph Neural Network (GNN) for the policy.
We applied this DDQN with each trajectory defined as a set number of timesteps in which the state of
the graph changes in an online manner according to both the dataset and the actions taken (matches
made) by the algorithm. The tunable hyperparameters of our algorithm are enumerated in Table 1.
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3.3 RL Objectives
We experiment with three different reward functions to optimize for efficiency (match rate), fairness,
and a combination of the two. Because we are using a DDQN, the loss function is the mean-squared-
error between Q-network’s Q values and the target Q values, discounted by some γ ∈ (0, 1).
Our first reward function maximizes the total number of matches over time. For any timestep t, the
efficiency function is defined as

re(t) =

{
1 if a match is made at time t

0 otherwise

Once we have maximized the total number of matches to the best of our ability, we introduce a
group fairness objective. For any node feature, for example patient-gender, donor-race, or
patient-health, let S = {1, ..., n} be the set of types for that feature. Given a desired match
distribution vector p ∈ [0, 1]n over these types (chosen by the policy-maker implementing this
algorithm), we define the group fairness reward function at timestep t to be the mean-squared-error
between p and the per-group match rates at time t:

rf (t) =
1

n

∑
i∈S

(
pi −

# matches of type i by time t

total # of matches by time t

)2

Finally, we define mixed fairness rm as a linear combination of re and rf :

rm(t) = we · re(t) + wf · rf (t)

where we, wf ∈ [0, 1] are weights chosen by the policy-maker such that we + wf = 1.

4 Experimental Setup
We first sought to understand the effectiveness of our DDQN algorithm with respect to the standard
objective of maximizing the rate of matches per patient-donor arrivals. An inherent challenge in
our choice to simulate the dataset is that there are so many extraneous factors that influence KPD
matching, such as physical distance between pairs, human error / cooperation of donation centers,
nondescript medical factors, and so on. For this reason, we found it inappropriate to compare our
findings, namely the match rates achieved by our algorithm, to the match rates that occur in reality.
Instead, we chose to compare our DDQN algorithm’s performance to that of a current algorithm that
has gained traction, the Approximate Dynamic Programming (ADP) approach of You and Vossen You
and Vossen (2024). See Appendix B for a description of the ADP algorithm. We ran both algorithms
on the same dataset parameters and examined their match rates across episodes (for DDQN) and
samples (for ADP). For this comparison, DDQN was run with reward function re to maximize
efficiency.
We then sought to explore the potential of DDQN to optimize for group fairness. We ran the
algorithm using the efficiency reward function re, then the fairness reward function rf over the
patient-gender feature, then the mixed reward function rm, with its rf component over the
same patient-gender feature. We then compared the match rates, reward, and loss of the DDQN
algorithm across these functions.

5 Results
For our first experiment, we ran ADP over trajectories of 20 timesteps per sample for 50 samples,
and we ran DDQN over trajectories of 20 timesteps per episode for 50 episodes, with all other
hyperparameters set to default (as outlined in Table 1). We found the match rates per sample/episode
to be quite variant and unstable, which is to be expected when the arrival rate is λ ≈ 0.46 patient-donor
pairs per timestep, leaving approximately 10 total node arrivals per trajectory.
We then increased the number of timesteps per trajectory, and noticed that at around 300 timesteps
per trajectory the algorithm’s computing time became quite slow, though from any number from
100 timesteps per trajectory and above seemed to yield the same variability in outcomes across
samples/episodes. Increasing the number of timesteps (to 50, then 100, 200, 300, 400) added stability,
but we found that both ADP and DDQN produced results that hovered around the same average value
across samples/episodes. This implied that our DDQN was not learning.
This led us to try altering the num-episodes (from 50 to 100 and 150), learning-rate (1e-3,
1e-4, and 1e-5), the batch-size from 64 to 256, and the GNN Model’s hidden-dim from 64 to
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Table 2: ADP and DDQN Performance Comparison
Algorithm Match rate Matches

ADP 0.18 8.30
DDQN 0.20 9.45

Table 3: DDQN Reward Functions Performance Comparison
Reward function Match rate Reward Loss

re 0.044 0.33 0.11
rf 0.120 5.86 0.93
rm 0.122 9.32 1.16

256 as well. After several trials of tuning these parameters, our most salient results are as shown in
table 2 and figures 1, 2, and 3, under timesteps 100, num-episodes 50, learning-rate 1e-3,
batch-size 256, and hidden-dim 256.
Our next experiment involved running DDQN with three different reward functions: simple (re),
feature-distribution (rf ), and mixed (rm). We ran all three on 20 timesteps per episode for
50 episodes, with learning-rate 1e-3 and batch-size 64. For the fairness reward function rf
we ran the experiment over the distribution of patient-gender with a desired distribution of (0.5
Male, 0.5 Female). We ran the mixed reward function with rf set with the same parameters. The
results can be seen in table 3 and figures 4, 5, and 6.

5.1 Quantitative Evaluation
As detailed in table 2, the average (across 50 samples/episodes) match rates of ADP and DDQN are
0.18 and 0.20, respectively. Though the difference in rates is minor, we still note that DDQN seems
to outperform ADP, even without the model learning and improving across episodes.
In table 3 we see a comparison of the average (across 50 episodes) performance of DDQN with three
different reward functions. We note that, surprisingly, the match rate is higher when the algorithm
uses a reward function that incorporates our fairness metric (rf ) and highest when the reward is mixed
(rm), partly optimizing for efficiency (re) and partly optimizing for fairness (rf ). This goes against
our expectations, as we would imagine that a reward function that purely optimizes for number of
matches would yield the highest rate, that a reward function that purely optimizes for fairness would
detract from the match rate, and a mixed reward function would demonstrate the tradeoff between
the two. Similarly, the average reward value for re is 0.33, much lower than the 5.86 of rf and the
9.32 of rm. What does align slightly better with our hypothesis, though, is the average loss values:
re yields the lowest, at 0.11, while rf and rm are much closer to 1, at 0.93 and 0.16, respectively.

5.2 Qualitative Analysis
Figure 1 shows the match rate per episode for DDQN under these parameters in orange, and the
match rate per sample for ADP with 100 timesteps per sample over 50 samples in pink. Figure 2
shows the raw number of matches (ignoring the varying number of patient-donor pairs per episode)
for DDQN and ADP with these same parameters. Finally, figure 3 depicts the reward per episode for
DDQN under these parameters. As one can see, the DDQN model still did not learn or improve, and
the difference in average performance between ADP and DDQN is minor. Still, we can see that even
without learning, the DDQN policy performs competitively with the ADP algorithm, and its average
match rate is even slightly higher.
The reason DDQN is not learning could be manifold. We consider the possibility that more exten-
sive experimenting with tuning hyperparameters, including more subtle ones such as slowing the
epsilon-decay for the training loop so that the agent continues exploring and gathering data for
longer, tuning various dimensions of the GNN model, or increasing the replay buffer’s capacity to
hold more experiences, may reveal conditions under which the DDQN agent is able to learn and
improve the policy. We also consider that training each episode on a new trajectory might not give
the algorithm enough of an opportunity to specialize its learning. Therefore using the same trajectory
for several episodes may also improve the agent’s learning.
Figure 4 shows the match rate per episode for the simple reward (pink), feature-distribution
reward (orange), and mixed reward (purple). Similarly to our first experiment, the DDQN algo-
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Figure 1: Match rate per episode/sample for DDQN and ADP
with 100 timesteps over 50 episodes/samples.

Figure 2: Number of matches per episode/sample for DDQN and ADP
with 100 timesteps over 50 episodes/samples.

Figure 3: Reward per episode for DDQN with 100 timesteps over 50 episodes.
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rithm does not appear to be learning, so the match rates hover around the same average values
across episodes. Figure 5 shows the reward per episode for each reward function, and we can see
that the simple reward maintains a low stable (if not somewhat decreasing) value, whereas the
feature-distribution and mixed rewards vary widely around higher average values. Finally,
figure 6 depicts the loss per episode for each reward function, and it is noteworthy that the loss for
feature-distribution and mixed rewards is increasing, rather than decreasing.
The lack of growth across match rates and reward suggest the DDQN algorithm is failing to learn.
The increasing loss values for the algorithm under fairness-informed reward functions (rf and rm)
is another surprising result, that indicates that the policy’s predictions are getting worse over time.
We enumerated above several possible causes of this phenomenon. In our experimenting on reward
functions, we also note that the reward functions may provide reward that is too scarce or infrequent,
as well as uneven in scale between re and rf , which might be causing the unexpected disparities
between re and the two fairness-informed reward functions. This suggests the need to re-evaluate the
reward functions, along with increasing the data available to the agent to learn.
One final consideration is that we experimented with group fairness for only one feature,
patient-gender. It is possible that the small number of groups or the choice of uniform dis-
tribution for this feature made it more challenging to achieve productive results and contributed to
our counterintuitive results. In future research, we hope to be able to experiment with group fairness
for each of the patient-donor pair features with a variety of target distributions. Furthermore, we are
curious to experiment with incorporating multi-group fairness into our reward function to achieve
fairness for multiple features at once.

Figure 4: Match rate per episode for DDQN with 20 timesteps over 50 episodes under reward
functions simple, feature-distribution, and mixed.

Figure 5: Reward per episode for DDQN with 20 timesteps over 50 episodes under reward functions
simple, feature-distribution, and mixed.
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Figure 6: Loss per episode for DDQN with 20 timesteps over 50 episodes under reward functions
simple, feature-distribution, and mixed.

6 Discussion

In section 5.2, we discussed the DDQN algorithm’s failure to learn, and considered several factors
that may be contributing to this and ways to address them. Future research should explore these
options. One challenge, however, is that several include increasing the amount of data accessed
by the agent and used in each step of the algorithm; this demands an increased level of computing
power. Yet our state space and action space are quite large; as we also noted in section 5, running
the algorithm on trajectories of 300 timesteps or more requires relatively high computing time. This
suggests a need to try to further optimize the efficiency of the DDQN algorithm or, if need be, trim
the state space and action space as appropriate (for example, when not running a fairness-informed
reward function, we can ignore the demographic features of each patient-donor pair).
Another challenge, as previously mentioned, is the complexity of the real KPD environment in
comparison to the our simulated dataset and trained model, and the many ways in which our data and
model fall short in capturing causalities, dependencies, and relevant information. We don’t know yet
how meaningful each shortcoming will be for the validity of our outcomes, and it will be challenging
to detect these shortcomings, as they will likely be obscured by the ways in which our simulated
datasets convenience the training algorithm and yield success where it may not be due.
We also find it important to highlight that the definition of fairness used in this research attempts to
sway the distributions of matched patients and donors to meet a pre-determined desired distribution.
This prescriptive approach to fairness carries great responsibility for the policymaker implementing
this algorithm, and is liable for abuse if misused. Future research may consider the various conse-
quences of the mismatch between the KPD simulation and model and the real KPD matching market,
as well as the range of implications of policymakers’ choices of desired feature distributions.

7 Conclusion

Our use of a DDQN algorithm with a GNN model to address the dynamic KPD matching problem
presents a promising avenue for leveraging deep reinforcement learning to solve complex online
matching problems with multiple (possibly competing) objectives. Our results showed that DDQN
performs competitively with the recent ADP algorithm developed by You and Vossen (2024). In
our experiments, we did not manage to catalyze learning, so the natural future direction involves
continuing to tune hyperparameters, as well as re-evaluate the design of our reward functions and
the architecture of our model. One particularly challenging issue for future research to address is
the computing overhead of our large state space, action space, and model parameters. Once the
model is able to learn, we can explore fairness for various features, detect subtle tradeoffs, and even
experiment with multi-group fairness over several features. The opportunities to train this model to
achieve different complex objectives are innumerable.

8 Team Contributions

• Odelia Lorch: I completed this work myself.
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A Construction of Dataset
The statistical distributions and rates used to simulate our dataset are primarily from the 2006-2021
UNOS/OPTN database as analyzed in Segev et al. (2023), as well as the National Kidney Registry’s
(NKR) Quarterly Report from August 2024 National Kidney Registry (2024) and the U.S. Transplant
Candidate Self-Reported Health Survey .
We simulated the dataset at each timestep as a randomized graph with a fixed arrival rate λ = 10 pairs
per day (National Kidney Registry (2024)), and departure rate calculated from the median waiting in
the market before leaving (without matching) is ≈ 200 days (National Kidney Registry (2024)), and
the rest of the nodes’ data determined according to the distributions in Table 4.
In table 4, two notable features are incompat-reason and antigens. incompat-reason is
dependent on patient-blood, donor-blood, patient-cpra, and antigens. If patient-blood
and donor-blood are ABO incompatible, the incompat-reason is "ABO." If instead they are
ABO compatible, but patient antibodies (patient-cpra) and donor antigens (antigens) are HLA
incompatible, then the incompat-reason is "HLA." If instead they are HLA compatible, then
they are considered compatible, and incompat-reason is "compatible." This mirrors the logic of
UNOS/OPTN and NKR. For antigens, we found no statistical summary for KPD donor candidates,
so we defined a generic list of common HLA antigens and treated the distribution uniformly.

B Approximate Dynamic Programming Algorithm
The Approximate Dynamic Programming (ADP) algorithm devised by You and Vossen (2024)
represents that patient-donor pairs matching pool as an evolving KPD graph state Gt, where each
Gt encodes the features of each patient–donor pair (for example compatibility, patient medical state,
demographic information), as well as the pool size and composition at decision epoch t.
The algorithm begins by choosing basis functions {ϕj(Gt)}Jj=1 over Gt, and then approximates the
the cost-to-go at time t as:

V̂ (Gt; θ) =

J∑
j=1

θj ϕj(Gt).

where θj are weights to be decided by the linear program. They then formulate an approximate linear
program using the Bellman Inequality to enforce that the estimated value respects dynamic matching
rewards:

min
θ

∑
Gt

µ(Gt) V̂ (Gt; θ)

s.t. V̂ (Gt; θ) ≥ R(Gt,M) + γEGt+1
[V̂ (Gt+1; θ)]

∀Gt, ∀ M ∈ M(Gt).
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Table 4: Statistical Distributions of Patient-Donor Features
Feature Distribution Source

patient-gender Male 61.6 % 2006-2021 UNOS/OPTN Database
Female 38.4 %

patient-race White 72.7 % 2006-2021 UNOS/OPTN Database
Black/African American 12.7 %
Hispanic/Latino 9.5 %
Asian 3.8 %
Other/Unknown 1.3 %

patient-age < 30: 8.5 % 2006-2021 UNOS/OPTN Database
30–44: 29.1 %
45–59: 42.5 %
60–74: 17.1 %
≥ 75: 2.8 %

patient-blood Type O 41.4 % 2006-2021 UNOS/OPTN Database
Type A 28.1 %
Type B 17.5 %
Type AB 13.0 %

donor-gender Male 35.7 % 2006-2021 UNOS/OPTN Database
Female 64.3 %

donor-race White 66.8 % 2006-2021 UNOS/OPTN Database
Black/African American 14.7 %
Hispanic/Latino 10.9 %
Asian 4.2 %
Other/Unknown 3.4 %

patient-age < 30: 11.9 % 2006-2021 UNOS/OPTN Database
30–44: 44.3 %
45–59: 33.5 %
≥ 60: 13.6 %

patient-blood Type O 39.8 % 2006-2021 UNOS/OPTN Database
Type A 31.9 %
Type B 19.2 %
Type AB 9.1 %

incompat-reason ABO blood types incompatible 2006-2021 UNOS/OPTN Database
HLA cPRA-HLA incompatible
compatible otherwise

patient-health Good 50% U.S. Transplant Candidate
Fair 35% Self-Reported Health Survey
Poor 15%

patient-cpra cPRA 0–20 %: 54.9 % 2006-2021 UNOS/OPTN Database
cPRA 21–80 %: 23.5 %
cPRA 81–98 %: 14.2 %
cPRA 99–100 %: 7.5 %

antigens common HLA antigens uniform N/A
(A1, A2, A3, A11, B7,
B8, B27, B44, DR1,
DR4, DR7, DR15, DQ2,
DQ6, DQ8)
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where R(Gt,M) is number of transplants (or weighted matches) executed by matching action M in
graph Gt; M(Gt) is the set of feasible match cycles/chains given Gt; and the transition Gt → Gt+1

models arrivals, exits (matched or ineligible), and updates of patient states.
The algorithm samples graph states and matching actions from the simulated dataset (described in
Section 3.1 and Appendix A). It then selects high-variance or high-impact states (e.g., near capacity
thresholds or with many hard-to-match pairs) to yield a tractable LP capturing key dynamics of
dynamic KPD matching.
The algorithm then solves the reduced LP to obtain θ∗. Then, at each decision epoch t, the policy
returns:

M∗
t = arg max

M∈M(Gt)

{
R(Gt,M) + γEGt+1

[V̂ (Gt+1; θ
∗)]

}
,

executing the cycle M∗
t .

Finally, the algorithm iteratively refines the policy over multiple samples by sampling the distribution
based on observed visitation frequencies and mismatches and updating the basis functions. By
doing so, it can incorporate emergent compatibility patterns, or resample states emphasizing poorly
approximated regions, thus producing a more robust matching policy.
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