
Extended Abstract

Motivation In recent years, deep reinforcement learning (deep RL) techniques have shown remark-
able success at learning complex strategy games. In light of this, we knew we wanted to explore the
application of some of these deep RL techniques to a novel environment. We explored the possibility
for several different games before landing on Choko, a five by five board game played between two
players originating in West Africa and popular in The Gambia (check Section 1.1 for rules). Choko
has a rich history dating back over 200 years. Beyond this, the game incorporates a completely unique
mixed placement and capture phase that makes Choko strategically rich despite its small board size.
As such, we thought that this project would be a perfect opportunity to both teach an agent how to
play Choko using various deep RL techniques (see Section 3) and improve our own skills at the game.

Method We explored two deep RL algorithms to learn the rules of Choko: Deep Q-Learning (DQL)
and Proximal Policy Optimization (PPO). Our final agent combined the actor and critic from our PPO
agent into a pruned tree search. Because Choko is virtually unexplored in the context of deep RL, we
implemented our own OpenAI gym-style environment for the RL agent to play the game, as well as
our own data-loaders to run self-play or fictitious-self-play matches for the purpose of training. We
structured the environment to give a reward of 0.1 per piece captured on the board and a reward of 2
and −2 for winning and losing respectively. We allowed for reward scheduling in the environment so
that capture-rewards could be diminished during the course of training.

Implementation Our DQL agent trained for 200,000 iterations using replay buffers of 20,000
experiences in a standard DQL training loop. All experiences in the replay buffer were generated
from pure self play. We trained our PPO agent using a combined objective function made from three
surrogate objectives. The first is a clipped surrogate loss that used Generalized Advantage Estimation
(GAE) as the measure for actor quality. The second is a smoothed L1 loss surrogate that trains the
critic on bootstrapped target values. The last is an entropy surrogate that encourages exploration in the
actor. We implemented three versions of our PPO agent to tune hyperparameters and incrementally
improve on the previous iterations. The second version (PPO V2) included a frozen-ancestor rollout
policy which diversified the rollout buffer on which the agent trains with games from throughout
the agent’s training cycle, providing the agent with a richer set of experiences. For the third version
(PPO V3), we included extra information in the state space, implemented reward scheduling for
capture-bonuses, and widened the model network. Using PPO V3, we developed a pruned tree search
which queries the agent for the best actions to take at a state and uses the critic at leaf nodes to
evaluate the value of paths, an approach that we call Policy Guided Tree Search (PGTS).

Results The Q-learning agent that we trained was the weakest of all the agents we tried, losing
more matches than it won against all of our PPO agents. All of our PPO agents consistently identified
threats on the board and captured them accordingly. PPO V2 and V3 learned capture strategies which
also defended their positions after the capture was made, demonstrating strategic foresight. Our final
PPO Tree Search, which we are calling Policy Guided Tree Search (PGTS) achieved strong results
against both human players and vanilla minimax agents, outperforming all of our other agents. An
analysis of PGTS’s moves revealed strong forward actions that required long term strategic foresight.

Discussion All of our agents, especially our PPO V2 and V3 agents, learned how to identify
defensive positioning and offensive movement by the end of their training. A look at the probability
distribution of moves in PPO V3 revealed that the most popular moves for the agent tended to all
be strong. At the same time, these agents sometimes struggled at identifying longer term strategic
moves. This is what inspired us to explore PGTS. Our PGTS exhibits strong strategic foresight and
acts far quicker than comparably deep or wide minimax algorithms.

Conclusion On its own, PPO V3 displayed a critical understanding of Choko gameplay and tactical
awareness of offensive strategy. At the same time, the limited model size restricted its long term
strategic foresight. By combining PPO V3 with a short tree search, PGTS displayed remarkably
strong gameplay which outperformed all of the models we tested and consistently challenged human
players.

ChokoZero

Eugene Francisco
Department of Mathematics

Stanford University
eugenef@stanford.edu

Bodo Wirth
Department of Mathematics

Stanford University
bodow@stanford.edu

Naveen Kannan
Department of Mathematics

Stanford University
naveenkc@stanford.edu

Abstract

This project investigates the application of Proximal Policy Optimization (PPO)
to train an agent at learning the two-player board game Choko. Choko is a board
game played on a five-by-five grid in alternating turns between two players. The
game, popular in The Gambia, has a rich history dating back over two hundred
years. While there is an extensive body of research that tackles the use of deep
reinforcement learning (RL) for the purpose of two-player board games like Chess,
Checkers, and Go, Choko presents a unique challenge because of its dynamic
rule set that combines placement phases and capture phases throughout the entire
course of the game. Despite its strategic depth and longstanding history, Choko
has remained virtually unexplored in the context of deep reinforcement learning.
We applied both Deep Q-Learning (DQL) and PPO for the task of learning Choko.
Using the actor and critic from PPO, we implemented a Policy Guided Tree Search
(PGTS) which used the actor’s action choices and the critic’s value estimates to
search for optimal actions. These methods achieved high performing results, with
a search algorithm that acted orders of magnitude faster than minimax agents
with comparable performance and comparable depth. Our ultimate PGTS fairs
competitively against human players and never lost any matches to any of the other
deep RL agents we trained, beating most of them in a majority of matches.

1 Introduction

Deep RL has achieved remarkable success in the realm of two-player, perfect-information games,
establishing itself as the most powerful framework for teaching computers how to play complex
strategic games. Perhaps most famously, DeepMind’s development of AlphaGo, which used deep
neural networks to estimate win probabilities and generate high-value moves, defeated world cham-
pion Go player Lee Sedol in 2016 (Silver et al., 2016). Building on the work of AlphaGo, AlphaZero
developed a unified architecture for training deep RL agents at strategic board games, ultimately
surpassing state-of-the-art performance in Chess, Shogi, and Go, without relying on any human
feedback(Silver et al., 2018). These advances, especially the capabilities of deep RL agents at learning
complex strategic environments only through self-play, made us curious and optimistic about the
applications of these methods to a new board game like Choko.

1.1 Rules of Choko

Choko is played on a 5 by 5 grid between two players in alternating turns. The board begins empty
and each player is given 12 pieces, either blue or red to denote piece ownership. Blue has the first
move and may place any one of their pieces anywhere on the board. Because Blue is the first to move,
Blue receives drop initiative, which means that as long as Blue keeps on placing pieces on the board,
Red is forced to also place a piece on the board. During any one of Blue’s turns, Blue may choose to
move any blue piece on the board, at which point Red is allowed to either place a red piece or move
an existing red piece, and the drop initiative is removed from Blue. Should either player decide to

Stanford CS224R 2025 Final Report

place a piece again, that player receives the drop initiative, forcing the other player to place pieces
until the drop initiative is removed.

Movement is orthogonal and pieces can only be moved to empty spaces. To capture pieces, players
can jump over opponent’s pieces. If, say, Blue is capturing a red piece, Blue’s piece must be directly
adjacent to the intended red capture piece and the landing zone opposite Red’s captured piece must be
clear for the jump. Similarly if Red was capturing a blue piece. After a jump, the player performing
the capture may capture any other opponent’s piece from the board, at which point their turn ends.
Jumps are counted as a type of movement, so they may only be executed if the drop initiative is
removed or by the player who has the drop initiative. Captured pieces are completely eliminated
from the game.

We say the game is in a drop-phase if some player owns the drop initiative, and that the game is in a
capture phase if neither player has the drop initiative. The game ends when one player captures all
the opponents’ pieces, in which case the capturing player wins. The game draws if one player is not
able to move (though we include several extra draw conditions in our implementation so that games
don’t run too long).

1.2 Novelty and Problem Statement

The combination of drop-phases and capture-phases allows for some incredibly unique strategic
positioning. For example, Blue’s piece placement may be vulnerable to captures from Red but as
long as Blue retains the drop initiative, Red won’t be able to capture until Blue moves for the first
time, or one player runs out of pieces to place. In practice, this has the effect of splitting many games
into a drop-phase dominated opening where players compete for defensive positioning and then a
capture-phase dominated end game where players compete in alternating skirmishes.

Through our exploration of various deep RL algorithms applied the game of Choko, we aim to create
an agent capable of not just playing coherently, but of revealing novel, non-obvious strategies that go
beyond the surface level and reveal deeper strategic insight.

2 Related Work

Proximal Policy Optimization (PPO) (Schulman et al., 2017) serves as the primary reinforcement
learning algorithm in our project. We adopt PPO for its stable and efficient on-policy updates, and
use an actor–critic architecture with convolutional encoders suited to Choko’s spatial board layout.
PPO has proven effective across a wide range of tasks, including board games, and provides a
reliable foundation for learning in environments with complex strategic structure. All training data is
generated through self-play, allowing the agent to improve iteratively without expert supervision.

As a value-based comparison, we also implement Deep Q-Learning (DQL), which estimates action
values through temporal-difference updates (Mnih et al., 2015). DQL has seen success in large
discrete action spaces, most notably in Atari games, and offers a contrasting approach to policy-
gradient methods. In our experiments, DQL provides a baseline for learning dynamics in Choko,
particularly during the early drop phases when board control and piece placement dominate.

To improve action selection during evaluation, we were inspired by Monte Carlo Tree Search (MCTS),
using the trained PPO network to supply prior probabilities and value estimates. MCTS has been
central to many of the strongest game-playing systems, including AlphaZero (Silver et al., 2018),
where it complements network guidance with deeper lookahead. As such, we implemented a naive
Policy Guided Tree Search which searches for the optimal action in a set of actor-selected rollouts
(see Section 3.6).

3 Method

3.1 Environment Description

For use in all of our deep RL experiments, we implemented our own custom OpenAI Gym-style
environment for our agent to interact with the board. For both of these experiments, we used the
same state and reward reprentations. Observations st consisted of a flatenned 25 element long vector

2

where each entry represents the state of the corresponding tile on the board (empty, blue, or red). We
gave agents a reward of rt = 0.1 for each piece they captured, and a final reward of rt = 2 if the
agent wins or rt = −2 if the agent loses (and a 0 reward if the agent draws). The draw conditions
were slightly extended in this implementation to include any games which exceed 100 action in total
(50 actions per player). The action space had 2625 elements and as such our action was represented
by an integer at ∈ {0, 1 . . . , 2625}. The first 25 elements of the action space correspond to simple
placements. The next 25 · 4 = 100 elements corresponded to moves. The final 25 · 4 · 25 = 2500
elements correspond to jumps and extra captures.

3.2 DQL Implementation

Our DQL critic network consisted of an input layer of 25 neurons for the board state, three hidden
layers with 64 neurons each, and one output layer with 2625 Q-values corresponding to each action.
We used a Q-learning replay buffer with 20,000 tuples of (st, at,mt, rt, st+5), where mt is a stored
action mask to identify allowable actions for the feedforward step during training. The replay buffer
is initialized before training with self-play experiences, where actions are taken ϵ greedy according to
the outputted Q-values of the critic network. Because of the sparse reward environment, we used a
5-timestep TD gap to populate the replay buffer and allow for rewards to flow farther through the
critic.

After this, the critic is trained with standard DQL training cycles for 200,000 iterations, where we use
a frozen target network Q′

θ to compute the bootstrapped Q-networks that are adjoined to the summed
observed rewards:

1. Sample: sample a single mini-batch of 64 experiences from the replay buffer.

2. Targets: calculate a target yt for each tuple in the mini-batch, computed as

yt = rt +Q′
θ(st+5, at)

where rt is the sum of the previous five rewards, precomputed during experience generation.

3. Gradient Descent: perform one step of gradient descent using the loss function

Lsmooth L1
(yt, Qθ(st, at)),

where Lsmooth L1
is the smooth L1 loss using a standard δ = 1, defined as

Lsmooth L1(x, y) =

{
1
2 (x− y)2 : |x− y| < 1

|x− y| − 1
2 |x− y| ≥ 1

.

4. Rollout: run one game of self-play and add the experiences to the replay-buffer, removing
the oldest experiences to make space. Repeat until completion.

We used a learning rate of 0.001 with the Adam optimizer.

3.3 PPO V1 Implementation

Our actor and critic shared an underlying trunk, which had a 25 dimensional input layer for the state
representation and a 64-neuron hidden layer. From this hidden layer, the actor head splits directly
to the 2625 dimensional output layer of logits. Similarly, the critic head splits directly to the single
dimensional output representing the value V (st) of the input state.

Our PPO training cycle alternated between rollout phases and training phases for 5000 iterations,
where rollout and training phases worked as follows:

1. Rollout Phase: the rollout buffer is emptied if it already contained experiences and then
refilled with self-play experiences from the most recent actor/critic. We used a rollout buffer
of 4096 experiences, where each experience is represented by a tuple (st, at,mt, π

′
t, At, Rt),

where mt are the action masks for the state st, π′
t = πold

θ (at|st) is the probability for the
network which generated this action to take action at at state st, At is the advantage estimate
for this action, and Rt is the bootstrapped estimate for the total rewards starting from this
state and taking this action.

3

The advantage estimates At are calculated recursively after each game finishes. Concretely,
given a trajectory τ = (τ1, τ2, . . . , τT), where each τt represents a tuple (st, at, rt), we
calculate for each t

δt = rt + γV (st+1)− V (st),

which can be thought of as the single step TD estimate of the advantage of the action at time
step t. (Note that we append an extra value for V (sT) = 0). Then, we calculate At as

At = δt + γλAt+1,

which can be thought of as the aggregated weighted-advantages of taking action at at
timestep t.
The returns Rt are calculated by bootstrapping the critic’s value estimate onto the computed
Advantage estimates:

Rt = At + V (st).

2. Training Phase: perform 6 epochs of gradient descent over the whole rollout buffer with
minibatches of 64 experiences. The final objective function that we minimize in these
gradient descent steps is a linear combination of three surrogate objectives. The first of these
is the clipped surrogate objective which is meant to train the actor, defined as

LClip(θ) = Êt

[
min(rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)

]
where rt(θ) =

πθ(at|st)
πold
θ (at|st)

, πold
θ being the probability that the actor in the experience replay

takes action at when given state st. For our critic, we use a standard MSE surrogate objective

LValue(θ) = Ê((Vθ(st)−Rt)
2).

Finally, to encourage exploration, we include an extra surrogate entropy objective

LEntropy(θ) = −Ê(H(πθ(·|st)))

where H(πθ(·|st)) is the entropy of the distribution given by πθ. We combine these three
surrogate losses into a single combined loss for the actor and critic:

L(θ) = LClip(θ) + C1LValue(θ) + C2LEntropy(θ)

where C1 and C2 are tunable hyperparameters. We chose value of C1 = 0.05 and C2 =
0.01.

We note that the output of the actor head πθ(st) of the network is a set of logits of dimension 2625
with one logit per action. To retrieve the action probabilities, we first apply the action mask mt to the
logits and then apply the softmax to this masked result. In this way, we only consider probabilities
for valid actions. Note that the probability distribution over which we calculate the entropy is this
masked distribution. We used the Adam optimizer with a learning rate of 0.0001.

3.4 PPO V2 Implementation

For our second experiment PPO V2, we changed the rollout-phase of the training cycle to diversiy
the kinds of opponents and strategies that the agent sees and trained the agent for 3000 iterations.
Specifically, we initialize an empty list of agents at the start of training and add a frozen version of
the current agent every 500 rollouts, working out to 6 total frozen ancestors that we store by the end
of training. When playing out episodes to fill up the rollout buffer, we randomly sample an opponent
from this list of ancestors and record only the states and actions that correspond to the current agent.
We make sure to alternate the starting position in these turns so that the current agent gets experience
beginning with and without the drop initiative. Additionally, we increased the rollout buffer size to
8192 experiences, we changed the batch size from 64 to 128, and we correspondingly doubled the
number of epochs from 6 to 12.

4

3.5 PPO V3 Implementation

For our last PPO experiment, we changed our reward structure to encourage win-based learning,
we incorporated the drop initiative into our state, and we deepened our actor/critic trunk. This last
experiment trained for 4000 iterations. Specifically, while PPO V1 and V2 incorporated a 0.1 reward
per piece captured, we scheduled the reward given for captures so that on the ith iteration out of 4000,
the capture reward was

max(0, 0.1− 0.05 · (i/4000))
so that rewards for capture would be 0 around half the way through training. We added an extra
hidden layer to the shared actor/critic trunk with 64 neurons. Finally, while the state representation
for V1 and V2 was just the flattened board representation, we appended an extra entry to the state
which represents the drop initiative (none, blue, or red).

3.6 Policy Guided Tree Search

We used the actor and critic from the trained PPO V3 model to implement a naive Policy Guided
Tree Search (PGTS) which searches for the optimal action by selecting paths using the actor and
evaluating paths using the critic. Beginning at the root and considering game states as nodes with
edges representing actions, we repeat the following recursive algorithm

1. Selection:
If: the node we are on is terminal or deeper than a depth of d = 5, then query
the critic for the value of this node (or retrieve the terminal value if the node is
terminal) and return this value.
Else: Query the actor for the top k legal moves to take from this state. For each
of these actions, repeat from 1., storing the returned values from each of the
exploration branches.

2. Return: the action associated with the largest observed value among the explored actions.

Like this, we recursively explore the tree to a depth of d = 5 and use the critic to evaluate the value
of leaf nodes. We implemented a scheduled thinning of the branches with k = 12 in the root node,
k = 6 in the depth 1 nodes, and k = 3 for all subsequent nodes.

4 Results

4.1 Experimental Techniques

Because there is no standardized elo system for scoring Choko players, we tested our agents by
having each agent play against every other agent and recording the win, draw, and loss rate between
different pairs. We also incorporated a non-RL Minimax agent which explored all possible legal
moves at each state to a depth of d = 3 and estimated action value through the number of captures
involved.

While we initially incorporated our own elo system to track the skill levels of these different agents,
the small sample pool meant that elo ratings were highly variable and removed much of the nuance in
the skill differences between agents.

The agent we trained with DQL was the weakest of all the experiments we tried. In twenty matches
against the PPO V1 agent, the DQL agent won 30% of matches and lost 35% of matches, the
remaining 35% being draws. In the same tournament against the PPO V2 agent, the DQL agent
won 20% of games and lost another 50% of games, the remaining 30% being draws. These results
motivated us to pursue a deeper implementation of PPO with V3 and PGTS instead of focusing on the
DQL agent. A list the different win rates between pairs of agents is in Table 1, where the percentages
listed correspond to the percent win rate of the agent in column against the agent in the row.

Every 10 rollouts when training our PPO agents and every 200 gradient steps when training our
DQL agent, we pitted the current agent against a frozen ancestor from 10 iterations (respectively 200
games) ago. We allowed the ancestor to begin the game in the first half of these matches and the
current policy to begin in the other half. These evaluation metrics became the primary way for us to
gauge the performance of the models as they trained.

5

Table 1: Matchup Results, Percent of Column Wins over Row

Method PGTS PPO V3 PPO V2 PPO V1 Minimax
PGTS - 0% 5% 0% 0%
PPO V3 50% - 35% 25% 50%
PPO V2 25% 40% - 20% 65%
PPO V1 30% 40% 35% - 100%
Minimax 15% 0% 0% 0% -

Figure 1: PPO V1 Win Rates and Draw Rates

4.2 Quantitative Evaluation

These head to head matches against frozen ancestors provided us a way to measure if the model was
still improving over time. After 5000 iterations of training our PPO V1 model, which was trained
using only current-policy self play, we noticed that the model’s improvement had slowed substantially.
The win rates and draw rates over time for PPO V1 is included in Figure 1. While win rates stayed
ahead of loss rates throughout training, their steady fall indicated that the policy was learning to draw
against itself instead of improve its current policy.1

We suspected that the descending win rates might be caused by stagnant policy improvements towards
the end of training. Because the agent only sees episodes from self-play rollouts using the most recent
model, we worried that later matches lacked the variety in playstyles needed to push the agent to learn
more complex strategy. These results motivated us to add a more diverse self-play system in PPO
V2 which created rollouts that pitted the current model against a variety of frozen ancestors from
throughout training history. The win rates for PPO V2 in Figure 2 show substantial improvements,
displaying a slight growth in win rate over time against the frozen agent. At the end of training, PPO
V2 won 140% more matches than it lost against its evaluation agent.

While training, we also recorded the proportion of probability ratios rt(θ) that were clipped to
compute the clipped surrogate loss. Higher clip percentages generally indicate that the policy is
changing more between iterations since more probability ratios πθ(a|s)/πθold(a|s) fall outside the
allowable ϵ range. The clip percentages for our PPO V2 experiment were on average higher than
those for our PPO V1 experiment with clip percentages of 3.41% and 4.1% respectively, indicating
greater movement and learning in our policy.

We began our experiment with PPO V3 under the suspicion that the model would do better if we
increased model complexity and appended the drop initiative to the state. Our results from PPO V3
were very strong. Like V2, we saw a steady rise in win rates past around a quarter of the way through
training (see Figure 3), though these curves plateaued around halfway through training. This told us
that our policy was improving, albeit slowly. V3’s loss rates grew as well during training, though

1Note that loss rates are not shown in the figure but are the difference between win and draw rates.

6

Figure 2: PPO V2 Win Rate

Figure 3: PPO V3 Draw and Win Rate

they stayed below V3’s win rates over the course of training demonstrating improvement. At the end
of training, our evaluation showed a 44% win rate and a 42% win rate, suggesting that our agent’s
training was approaching equilibrium and our model’s learning had been saturated.

4.3 Qualitative Analysis

One of the things that most surprised us is how quickly the agents converged to a consistent opening
style. Corners prove to be highly defensive positions since they cannot be captured unless forced to
move. As such, all agents that we trained opened with corner positions and slowly moved inward.

We also noticed how consistently our PPO agent learned to combine capture and defense. Perhaps the
simplest and best example of this is what we call a secure capture. Figure 4 shows a match between
one of the authors (Eugene, playing blue) and the PPO V2 agent (red). In move 12, Red moves B1
to D1 capturing C1. In doing, it is now vulnerable to capture from E1 but the agent recognizes this
and takes E1 using its extra capture, thus completing its secure capture. We tested scenarios like this
across a dozen boards like Figure 3 in various positions and our PPO V2 agent consistently eliminated
threats after committing to a capture. We emphasize that a jump + extra capture are not treated as
separate moves but rather as a single action within the action space.

We were curious at how competent our agent was at executing defensive plays to evade capture. All
of our PPO agents consistently identified direct dangers on the board and acted correspondingly.
Skirmish 1 (Figure 5) shows one scenario where PPO V2 (Red) aptly chooses to evade Blue’s capture
by moving B3 to B4. We saw this behavior consistently throughout all of our PPO agents.

One weakness we noted in our PPO agents was a lack of foresight at combining capture and defense
to defend more than one piece. Shown in Skirmish 2 (Figure 6) is one such example, where PPO V2
plays red and it is red’s move. A2 is under threat from A1. At the same time, D4 has the chance to
take C4. The optimal move then would likely be to move D4 to B4 and then take A1 using the extra

7

Figure 4: PPO V2 (Red) v Human (Blue), Move 12

Figure 5: Skirmish 1

capture. This optimal move shows up as the fourth most probable move in PPO V3’s policy, with a
percent play of only 1%. The optimal move does not even show up in PPO V2’s actor. Instead, the
most probable move according to both policies is to move D4 to B4 and capture C2 (illustrated in
Skirmish 2, Figure 6 as well) with a 79% probability.

Once we applied PGTS to PPO V3, this lack of longer term strategic awareness disappeared. PGTS
identified the optimal move in Skirmish 2 (Figure 6) despite it only appearing with a 1% chance in
the underlying policy. This is particularly important because both the optimal and less optimal moves
(middle and right in Figure 5) result in the same number of captured pieces, the only difference being
the value assigned to those states from the critic, demonstrating a nuanced and accurate valuation of
board states by the critic. In general, PGTS could consistently identify how to leverage captures so
that its position after the capture was not compromised.

Perhaps the best example of the longer term strategic thinking of PGTS comes from Move 22 in a
match between PGTS (red) and our non-RL minimax benchmark (blue), shown in Figure 7. The
clear move is A3 to C3, but there are several strong choices for the extra capture. After this move,
B4 is threatened by both A4 and B5. One candidate capture would be to remove one of these pieces,
though this doesn’t remove the threat altogether. Instead, PGTS chooses to capture E3, sacrificing
B4 but forking E2 into a guaranteed capture. The move, which requires deep and critical strategic
foresight, demonstrated the strong potential of this combined PPO/tree-search model.

Figure 6: Skirmish 2. Left to right: pre-move, ideal-move, PPO V2-move.

8

Figure 7: PGTS v Minimax Agent, Move 22

5 Discussion and Conclusion

On its own, our strongest PPO agent (PPO V3) showed critical understanding of the game environment
and a strong tactical awareness of how to capture safely. At the same time, the model lacked longer
term strategic foresight. Standard minimax tree searches benefit from their power to look ahead and
see possible actions but are weak in regimes where the action space is so large. PGTS leverages
the benefits of both worlds, creating a skilled policy for evaluating strong short term candidates and
evaluating those options using a strong board critic.

One other benefit that PGTS provided when compared to out minimax baseline was the speed at
which it could search through board states because of the actor’s action pruning. Our PGTS algorithm
could search up to 7 layers deep in the search tree in the same time (around 3 seconds) that the original
minimax agent took to search just 3 layers. At the same time, PGTS required only moderate levels of
compute and represented a relatively small model, taking 23 hours to train on a 2021 Apple M1 Pro
GPU for a model with 180,738 trainable parameters. In this sense, PGTS offered us a relatively quick
way to train a small yet powerful model for Choko. Finally, all of the authors were most impressed
with how much Choko strategy they learned along the way while working on this project.

Our original intention when we began this project was to make an agent who could act with long term
strategic foresight in non-trivial ways and we feel strongly that PGTS is such an agent. For future work,
it would be interesting to consider larger models for the underlying trunk in the PPO implementation
since these models might be able to absorb more of the experiences from the environment. Along
these lines, our PPO V2 and V3 implementations both used a form of fictitious self play to diversify
the experiences on which the model trains; in the future, a more diverse selection of opponents
in this buffer could perhaps speed up training by giving the model a richer set of strategies in the
environment.

6 Team Contributions
• Eugene Francisco: Proximal Policy Optimization implementation and Policy Guided Tree

Search implementation.
• Bodo Wirth: Deep Q-learning implementation, round-robin tournaments, all of the poster.
• Naveen Kannan: Gym Environment, Policy Guided Tree Search implementation (with

Eugene), and Minimax baseline.

All other work, like game analyses and writeups, were spread between all members.

Changes from Proposal We originally intended to only pursue PPO but we ended up extending
out implementation with Policy Guided Tree Search. We dropped the temporal embedding extension.
We explored the additional DQL experiment, though this ultimately proved far less successful than
PPO in the end.

References
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, and et al. 2015. Human-level Control through

Deep Reinforcement Learning. Nature 518, 7540 (2015), 529–533.

9

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal
Policy Optimization Algorithms. In arXiv preprint arXiv:1707.06347.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. 2016. Mastering the Game of
Go with Deep Neural Networks and Tree Search. Nature 529, 7587 (2016), 484–489.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. 2018. A
General Reinforcement Learning Algorithm that Masters Chess, Shogi, and Go through Self-Play.
Science 362, 6419 (2018), 1140–1144.

10

	Introduction
	Rules of Choko
	Novelty and Problem Statement

	Related Work
	Method
	Environment Description
	DQL Implementation
	PPO V1 Implementation
	PPO V2 Implementation
	PPO V3 Implementation
	Policy Guided Tree Search

	Results
	Experimental Techniques
	Quantitative Evaluation
	Qualitative Analysis

	Discussion and Conclusion
	Team Contributions

