Extended Abstract

Motivation Vision-based code generation addresses the practical need to convert visual program-
ming interfaces, code screenshots, and handwritten sketches into functional code. While previous
approaches using supervised learning or sparse reward signals from unit tests haven’t effectively
handled real-world visual variations like different fonts and formatting styles, and traditional rein-
forcement learning methods like PPO require computationally expensive separate value function
models, our work applies Group Relative Policy Optimization (GRPO) to achieve efficient vision-to-
code generation that maintains computational efficiency while improving functional correctness for
practical deployment.

Method We employ GRPO, a novel reinforcement learning approach proposed by DeepSeekMath
that samples multiple outputs for each training example and calculates advantages based on relative
performance within each group, eliminating the need for a separate value function model used in
PPO. To evaluate GRPO’s effectiveness, we compare against three baselines: zero-shot performance,
supervised fine-tuning (SFT) on successful completions, and SFT followed by Direct Preference
Optimization (DPO) using preference pairs constructed from completion quality rankings. Our
approach uses the GRPO objective function, where the group loss function incorporates clipped
policy ratios and group-wise advantages. We define two primary reward functions: format reward for
syntactic validity verification through AST checking, assigning +1 for valid syntax and O otherwise
and accuracy reward for functional correctness evaluation by executing generated code against
HumanEval test cases, assigning +1 for complete test passage and 0 otherwise. The model is prompted
to generate responses in a structured format with <think> and <answer> sections, encouraging
step-by-step reasoning before code generation.

Implementation Training utilized DeepSpeed ZeRO Stage 3 and Flash Attention 2 across 8 A100
GPUs for 24 hours with hyperparameters 5 = 0.1 (KL penalty) and ¢; = 0.2 (policy clipping). We
compare against three baselines: zero-shot Qwen2.5-VL-3B-Instruct, supervised fine-tuning (SFT) on
successful completions, and SFT+DPO using preference pairs constructed from completion quality
rankings. All methods train on equivalent computational budgets to ensure fair comparison.

Results Our experimental evaluation on the augmented HumanEval dataset demonstrates GRPO’s
superior effectiveness for vision-based code generation. The baseline Qwen2.5-VL-3B-Instruct
model achieves 45% execution success rate in zero-shot vision-to-code generation. SFT improves
performance to 50% primarily by addressing response formatting issues, while SFT+DPO reaches
52% with only marginal gains due to sample inefficiency under equivalent computational budgets.
GRPO achieves the highest performance at 55% success rate, representing a 10 percentage point
improvement over the baseline and demonstrating superior learning efficiency compared to preference-
based methods. Training analysis reveals that GRPO’s execution reward improved by 83% throughout
training (from 0.3 to 0.55), validating the effectiveness of group-based advantage estimation for
navigating the sparse reward landscape of functional code generation from visual inputs.

Discussion Our results demonstrate that GRPO effectively addresses key challenges in vision-based
code generation, achieving a 22% relative improvement over an untrained baseline through group-
based advantage estimation, from 45% to 55%. The superior performance compared to SFT+DPO
validates that relative ranking provides more stable learning signals than preference-based methods
for sparse reward tasks. While the computational efficiency gains over traditional PPO make GRPO
attractive for scaling, the modest absolute performance (55%) highlights the inherent difficulty
of vision-to-code generation and suggests future work should explore more sophisticated reward
functions and larger model architectures.

Conclusion We successfully demonstrated GRPO’s effectiveness for vision-based code generation,
establishing group-based reinforcement learning as a computationally efficient alternative to tradi-
tional methods. Our work reveals that relative ranking approaches provide superior sample efficiency
over preference-based methods in sparse reward environments, offering a practical foundation for
scaling multimodal programming tasks to larger models and real-world deployment scenarios.
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Abstract

Vision-based code generation, which converts visual programming interfaces and
code screenshots into functional code, faces significant challenges in handling
real-world visual variations while maintaining computational efficiency. Tradi-
tional supervised learning approaches struggle with diverse formatting styles, while
reinforcement learning methods like Proximal Policy Optimization (PPO) require
computationally expensive separate value function models. We address these
limitations by applying Group Relative Policy Optimization (GRPO) to vision-to-
code generation, leveraging its ability to calculate advantages based on relative
performance within sample groups without requiring separate value functions.
Our approach employs Qwen2.5-VL-3B-Instruct as the backbone model, training
on augmented HumanEval datasets with diverse visual presentations including
varied fonts, syntax highlighting themes, and formatting styles. We define dual
reward functions for syntactic validity and functional correctness, using structured
prompting with reasoning sections to encourage step-by-step code generation.
Experimental results demonstrate GRPO’s superior effectiveness, achieving 55%
execution success rate compared to 45% for the baseline model, 50% for supervised
fine-tuning, and 52% for SFT+DPO. Our work establishes that group-based rein-
forcement learning can effectively bridge visual understanding and code generation,
providing a computationally efficient foundation for multimodal programming tasks
while revealing important insights about the superior sample efficiency of relative
ranking approaches over preference-based methods in sparse reward environments.

1 Introduction

Vision-based code generation represents a critical challenge with significant practical applications
across software development workflows. In real-world scenarios, developers frequently need to con-
vert visual programming interfaces, screenshots of code snippets, handwritten algorithmic sketches,
or design mockups into functional implementations. This capability is essential for automating
Ul-to-code translation in web development, enabling rapid prototyping from visual designs, assisting
developers with accessibility needs who rely on screen readers, and facilitating code documentation
where images contain algorithmic logic. Additionally, educational platforms could leverage this tech-
nology to automatically generate code solutions from visual programming problems or student-drawn
flowcharts.
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While previous approaches have primarily relied on supervised learning for Ul-to-code translation
Beltramelli (2017) or utilized sparse reward signals from unit-test pass rates |[Shojaee et al.| (2023)),
they have not effectively addressed the need for robust vision-to-code generation that can handle
visual variations such as different fonts, themes, and formatting styles commonly encountered in
real development environments. Traditional reinforcement learning methods like Proximal Policy
Optimization (PPO) (Schulman et al. 2017) require separate value function models, increasing
computational overhead and memory requirements.

Our work addresses these limitations by applying Group Relative Policy Optimization (GRPO),
a recent RL technique with demonstrated success for reasoning-intensive tasks, for fine-tuning
VLMs on vision-to-code problems. GRPO is characterized by the removal of the critic model in
an actor-critic network. Instead, the model itself acts as the policy and generates a set of multiple
potential solutions, and a reward function is employed to evaluate the quality of each response (Shao
et al.,2024). The benefit is two-fold: (1) GRPO is more stable during training because there are
fewer components to manage in the RL training pipeline and (2) GRPO is more compute-efficient to
implement compared to our baselines, which are vanilla foundation models and foundation models
fine-tuned using DPO and PPO. Our central hypothesis is that GRPO’s mechanism of comparing
groups of generated solutions and using relative rankings provides a more stable and effective learning
signal compared to standard RL algorithms, particularly given the sparse nature of execution-based
rewards and the large, complex action space of code generation from noisy visual inputs. We consider
this study successful if GRPO outperforms baselines in this novel setting with statistical significance,
yielding more robust models for visual code understanding and generation, and contributing to
the field of multimodal reasoning with reinforcement learning. If successful, GRPO’s streamlined
architecture without a critic network and its computational efficiency make it especially useful for
researchers and organizations who have limited computational resources but still need to deploy
advanced vision-to-code capabilities for further research or product deployment.

2 Related Work

The problem of translating visual representations into executable code lies at the intersection of
vision—-language modeling and reinforcement learning (RL). Early systems such as Pix2Code (Bel;
tramellil 2017) and Sketch2Code (Microsoft,|2018)) demonstrated that user—interface screenshots or
hand—drawn wireframes can be mapped to HTML via convolutional encoders and autoregressive
decoders, but relied solely on supervised learning. More recent encoder—decoder architectures like
Pix2Struct (Lee et al., 2023)) pretrain vision transformers (ViTs) with text decoders to emit simplified
markup, showing the scalability of vision—text pretraining yet still omitting functional execution
signals.

Functional-correctness rewards for code generation have been extensively studied in text—only settings.
CodeRL (Le et al.| 2022), PPOCoder (Shojaee et al.,|2023)), and StepCoder (Dou et al.,2024) treat
unit-test pass rates as sparse rewards and fine-tune large language models (LLMs) with actor-critic
or PPO, yielding substantial gains on LeetCode benchmarks. However, these methods assume the
prompt is already in textual form.

Combining vision input with RL fine-tuning was explored by Soselia et al.’s ViCT(Soselia et al.,
2023)), which applies an actor-critic objective to match rendered HTML against a screenshot via a
learned visual critic, optimizing layout fidelity rather than semantic correctness.

Traditional policy gradient methods like PPO (Schulman et al.|(2017)) have been applied in language
model fine-tuning (e.g. InstructGPT and RLHF setups), but they typically require training a separate
value function (or critic) to estimate expected reward. This can be computationally expensive,
effectively doubling the number of model forward passes and parameters to train (one for the policy,
one for the value). GRPO, introduced by DeepSeekMath (Shao et al.| [2024), is a is a variant of PPO
that foregoes the need for a learned critic model by using a novel group-based advantage estimation.
The idea is to sample multiple candidate outputs for each input (problem) in a training batch. For
example, in our work, the model generates 8 code solutions for the same visual prompt. These outputs
are then scored by the reward function (in our case, checks for syntax and correctness). Instead of
comparing each output’s reward to a value baseline, GRPO computes relative advantages within the
group of samples: an output with a higher reward than its peers in the group gets a positive advantage,



and vice versa. This relative ranking provides a baseline implicitly (the group’s average performance)
without an explicit value estimator.

GRPO has been extended to visual math reasoning in VL-Rethinker (Wang et al., [2025), where
grouped rollouts and relative ranking of solutions stabilize RL on sparse pass/fail feedback.

Our work is the first to fuse these two lines of research: we feed rendered programming problems to
a ViT-LLM backbone and apply GRPO with an executable reward. Unlike ViCT, our reward is based
on functional correctness, and unlike prior GRPO studies, the task involves generating syntactically
valid, logically coherent code from noisy visual text. This setting demands robustness to font, theme,
and image artifacts while leveraging RL to navigate an expansive action space, which is a gap not
addressed by existing literature. Additionally, we apply other recent research in language modeling
to vision, such as test-time scaling Muennighoff et al.| (2025), where extra test-time compute within a
budget has been shown to force models to double-check their answer and improve performance.

Our GRPO trainer and implementation builds off of the VLM-R1 repository Shen et al.| (2025).

3 Methods

3.1 Data
3.1.1 Dataset Foundation

We base our training data on the HumanEval dataset, which contains 164 Python programming
problems originally designed for evaluating functional correctness of code generation models. Each
problem in HumanEval includes a function signature, docstring with problem description, and a
comprehensive test suite for automatic evaluation. To adapt this text-based dataset for vision-to-code
generation, we convert each programming problem into visual representations by rendering the code
as PNG images.

3.1.2 Visual Rendering and Augmentation

The core innovation in our data preparation involves extensive visual augmentation to ensure model
robustness across diverse visual presentations of code. We systematically vary multiple visual
dimensions to simulate real-world scenarios where developers encounter code in different formats,
editors, and display settings.

Our augmentation strategy encompasses four key dimensions.

Font Size Variations: We render images using font sizes ranging from 10pt to 16pt (specifically
10, 12, 14, and 16pt) to account for different display preferences and accessibility requirements that
developers commonly encounter.

Line Number Display: We generate versions both with and without line numbers enabled, as
different code editors and documentation systems may present code in either format.

Syntax Highlighting Themes: We employ five distinct pygments themes to cover the spectrum
from dark to light color schemes. Two dark themes are included: "monokai" and "github-dark", both
of which are commonly used themes across code editors. Three bright themes, "default", "vs", and
"colorful", are also used.

Font Family Variations: We utilize four different fonts to ensure robustness across typography
choices. Traditional monospace fonts: "Liberation Mono" and "DejaVu Sans Mono" are intended
to mimic the standard integrated development environments, code editors, and terminals. We also
included fonts that are not commonly used for code to allow the model to learn diverse sets of code
formatting. "Lobster" has a bold, condensed script typeface that mimics an informal handwriting and
calligraphy style. "Comic Neue" is a reinterpretation of the famous "Comic Sans" font, a sans serif
font that has a strong handwritten and rounded feel.

This augmentation strategy generates all possible combinations of these visual parameters, resulting
in4 x 2 x 5 x 4 = 160 unique visual variations for each of the 164 HumanEval problems, yielding a
total dataset of 26,240 training samples.



from +yping import List

def has_close_el (i List[float], threshold: float) - bool:
" Check i in given list of numbers, are any two numbers closer to each other than
given threshold
55+ has_close_elements([1.0, 2.0, 3.0],0.5)
False
55> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True

numt

(a) Font size 16, colorful theme, handwritten font, (b) Font size 14, monokai theme, monospace font,
and no line numbers and line numbers

Figure 1: Sample data from the augmentation set

3.1.3 Data Format and Structure

Each training sample follows a structured format designed for multimodal instruction following:

* Image Input: A PNG rendering of the programming problem using pygments’ ImageFor-
matter

» Text Prompt: A standardized instruction "First output the thinking process in <think>
</think> tags and then output the final answer in <answer> </answer> tags. Output the final
answer as ONLY Python code. Include the existing function heading in the Python code. Ex-
ample of well-formatted answer: <answer>import math=2add_two(a):return a+b</answer>"

* Ground Truth: The canonical solution from the original HumanEval dataset

We deliberately replace the original HumanEval text prompts with our standardized instruction to
force the model to rely entirely on visual input for problem comprehension, ensuring authentic
vision-to-code learning rather than memorization of textual patterns. We also provided a one-shot
example for the model to clearly observe the format that is required for the evaluation.

3.1.4 Test Case Integration

For reward computation during GRPO training, we append the complete test suites from HumanEval
to each training sample. These test cases serve as ground truth for our accuracy reward function,
enabling automatic evaluation of functional correctness by executing generated code against the
provided unit tests.

3.1.5 Dataset Split

We partition the augmented dataset using an 80/20 split, allocating 80% of samples for training and
20% for validation. This split maintains the augmentation diversity across both sets, ensuring that
validation accurately reflects model performance across the full range of visual variations encountered
during training.

The resulting dataset provides comprehensive coverage of visual code presentation styles while
maintaining the rigorous functional correctness standards of the original HumanEval benchmark,
creating an ideal foundation for training robust vision-to-code generation models using reinforcement
learning.

3.2 Experimental Setup
3.2.1 Model

We use Qwen2.5-VL-3B-Instruct as our backbone vision-language model, which is parameter-
efficient and supports multimodal inputs, namely for videos, images, and natural language. The
model combines a vision transformer encoder with a large language model decoder, enabling direct
processing of image inputs alongside text prompts. We feed as input our rendered code images
through the model’s vision encoder and a text prompt. The model then generates code solutions
through its autoregressive language decoder.



3.2.2 GRPO Algorithm

Our GRPO implementation follows the algorithm outlined by DeepSeekMath, with specific adapta-
tions for vision-to-code generation. For each training example, we generate 8 candidate solutions
(num_generations = 8), allowing sufficient diversity for group-based advantage estimation. Within
each group of 8 outputs, we compute relative advantages by comparing each solution’s reward against
the group mean, eliminating the need for a separate value function. Finally, to train the model, we
employ the GRPO objective with clipped probability ratios to ensure stable policy updates.

The GRPO algorithm is defined as:
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3.2.3 SFT Algorithm

Our supervised fine-tuning (SFT) baseline provides a straightforward comparison point by training the
model on successful code generations using standard cross-entropy loss. To maintain consistency with
our other training approaches, we construct the SFT dataset using the same completion generation
methodology employed for GRPO. For each training example, we generate up to 10 candidate
completions from the base Qwen2.5-VL-3B-Instruct model and evaluate them using our dual reward
function. We select only the completions that achieve successful task execution (passing all syntax
validation and test cases) to form our positive training dataset. This filtering ensures that the model
learns exclusively from high-quality, functionally correct examples rather than training on a mixture
of successful and failed attempts. The SFT training process optimizes the standard language modeling
objective, maximizing the likelihood of generating the selected successful completions given the
visual programming prompts. This approach establishes a strong supervised learning baseline that
demonstrates the effectiveness of learning from curated positive examples, providing a foundation for
understanding the additional benefits that reinforcement learning methods like GRPO and DPO can
provide through their more sophisticated optimization strategies.

3.2.4 SFT+DPO Algorithm

To ensure fair comparison with GRPO, we implement a DPO training pipeline that maintains
equivalent data quality and training dynamics. Our DPO approach follows a two-stage process:
supervised fine-tuning followed by preference optimization (SFT + DPO).

For preference dataset construction, we generate candidate completions using the same methodology
as GRPO to ensure training equivalence. For each training example, we sample up to 10 completions
from the model and evaluate them using our dual reward function. We then apply a decision tree
approach to construct preference pairs: if at least one completion achieves successful task execution
(passing all test cases), we select the highest-scoring successful completion as the "chosen" response
and the lowest-scoring unsuccessful completion as the "rejected" response. Training examples where
no successful completion is generated within 10 attempts are excluded from the preference dataset to
maintain data quality.

The training process begins with supervised fine-tuning on all successful completions to establish
a strong baseline policy. Subsequently, we apply DPO using the constructed preference pairs,
optimizing the model to prefer functionally correct code generations over incorrect ones. This
SFT+DPO pipeline ensures that our DPO baseline benefits from both the positive examples used in
supervised learning and the contrastive signal provided by preference optimization, creating a robust
comparison point for evaluating GRPO’s effectiveness.



The DPO algorithm is defined as:
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3.2.5 Hyperparameters

We configure our training with method-specific hyperparameters to ensure fair comparison across all
approaches.

We configure our GRPO training with the following key hyperparameters. First, the KL divergence
weight (/3), which controls the penalty for deviating from the initial policy is set to 0.1. The policy
ratio clipping range (e;), which limits the policy ratio to prevent destructive updates is set to 0.2. The
effective minibatch size is set to 16, using 8 generations per example and gradient accumulation of 2.
We use a learning rate of 2e-5 with cosine annealing LR schedule. We train for 2 epochs over the full
augmented dataset, the maximum input prompt length to 1024 tokens and using a temperature of 0.7
for each generation.

For DPO, the preference loss coefficient (/3) is set to 0.1, matching our GRPO setting. We employ
sigmoid loss for preference optimization. Training uses a learning rate of 5e-6 with cosine scheduling,
batch size of 1 per device with gradient accumulation of 8 steps, and 3 training epochs. The maximum
sequence length is set to 2048 tokens.

For SFT, the learning rate is set to le-4 with cosine scheduling, batch size of 1 per device with
gradient accumulation of 8 steps, and 3 training epochs. The maximum sequence length matches
DPO at 2048 tokens.

3.2.6 Reward Functions

We implement two reward functions for GRPO. First, we define the syntax reward (Rgynax) as a binary
reward based on Python AST validation that returns +1 if the generated code parses successfully and
0 for syntax errors or ill-defined code. This reward ensures the model learns to generate syntactically
valid Python code. Second, we define the execution reward (Rexecution) a$ @ binary reward based on
functional correctness that returns +1 if the code passes all HumanEval test cases and 0 if any test
case fails or execution errors occur. We execute the generated code in a sandboxed subprocess with a
5-second timeout.

Then, the we assign equal weight to the two reward functions, so the total reward for each generation
is computed as Ryoa = Rsyntax + Rexecution-

3.2.7 Evaluation

We evaluate model performance on the held-out validation set of the augmented dataset, ensuring
representation across all augmentation dimensions. During evaluation, we generate a single solution
per problem using greedy decoding (temperature = 0) and measure both syntax validity and
execution success rates separately. We track performance across different augmentation categories to
assess robustness.

3.2.8 Baselines

To evaluate the effectiveness of GRPO on the vision-to-code task, we compare our model’s perfor-
mance to zero-shot Qwen2.5-VL-3B-Instruct, a model trained using the SFT algorithm from Section
3.2.3, and a model trained using the SFT+DPO algorithm from Section 3.2.4 on the augmented Hu-
manEval dataset. All methods are trained on an equivalent number of tokens to ensure computational
fairness. We adopt hyperparameters from LlamaFactory (Zheng et al.,|2024)) and maintain consistent



training infrastructure across all approaches. During evaluation, each method uses identical data
augmentation and protocols on the same held-out test set.

We specifically note that we do not use PPO as a baseline. It is considerably more difficult to fairly
compare PPO to our model because it requires a well-defined value model, which we do not have for
the HumanEval dataset.

3.2.9 Training Hardware

We used 8 NVIDIA A100 GPUs in a distributed training configuration and DeepSpeed ZeRO Stage
3 for model sharding across GPUs. We used the Flash Attention 2 kernel for efficient attention
computation and bf16 mixed precision training for reduced memory footprint and faster computation.
Training took approximately 24 hours for each model.

4 Results and Discussion

4.1 Training
41.1 GRPO

Figure 2 shows the training reward progression and standard deviation of our GRPO-based vision-to-
code generation model over 120 training steps. Out of the two reward function metrics, we noticed
that the execution reward exhibited a consistent upward trajectory throughout training. Starting
from approximately 0.3 at the beginning of training, the execution reward progressively increased,
reaching around 0.55 towards the end of the training period on the smoothed reward curve. This
shows an 83% improvement in execution success rate, demonstrating the effectiveness of GRPO
in learning to generate functionally correct code from visual inputs. The standard deviation of the
rewards showed fluctuations in the range of 0.2 to 0.4 throughout training, indicating variability in the
model’s performance across different visual augmentations and problem difficulties. This variability
is reasonable given the diverse nature of our augmented dataset, which includes variations in fonts,
themes, and formatting styles.

Compared to our initial experiments on other vision-language tasks like COCO image captioning,
HumanEval proved to be a considerably more challenging benchmark. The difficulty stems from the
precise nature of code generation, where even minor errors in syntax, logic, or response formatting
can cause complete failure, unlike more forgiving tasks where partial correctness still may result in
positive reward.

train/rewards/python_execution_reward trainfreward_std

0.6 0.4
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(a) Execution reward over steps (b) Standard deviation of reward over steps

Figure 2: Training progression metrics for GRPO-based vision-to-code.

4.1.2 SFT Baseline

For our first baseline, we train a model using the SFT algorithm described in Section 3.2.3. The
supervised fine-tuning baseline demonstrates reasonable convergence characteristics as shown in
Figure 3. The model begins training with a loss of approximately 0.45, exhibiting rapid initial
improvement within the first 10 training steps. Then, we see a consistent decay pattern, stabilizing
around 0.275 after approximately 50 training steps. This represents around a 39% reduction in



loss, indicating effective learning of the mapping between visual code representations and their
corresponding functional implementations.

The training exhibits relatively low variance after the initial convergence phase, with the smoothed
loss curve showing minimal fluctuations between steps 30-55. This suggests that the curated dataset
of successful completions provides a consistent learning signal, which in turn allows the model to
learn consistently from positive examples without the exploration-exploitation challenges inherent in
RL-based approaches.

train/loss
0.45
0.4
0.35
0.3
0.25
train/global_step
10 20 30 40 50

Figure 3: Training loss progression for SFT baseline on vision-to-code generation.

4.1.3 SFT+DPO Baseline

For our second baseline, we train a model using the SFT+DPO algorithm described in Section 3.2.4.
We first use a copy of the SFT baseline model and then fine-tune it using DPO. The chosen rewards
metric, which is shown in Figure 4, represents the model’s implicit reward for preferred (functionally
correct) completions over rejected ones and demonstrates a gradual improvement throughout training.
Starting from approximately -0.03, the reward progressively increases to around +0.01 by the end of
training, representing a shift from initially preferring incorrect completions to correctly distinguishing
between functional and non-functional code.

The training progression exhibits higher variance compared to SFT, with notable spikes reaching up
to 0.05 at certain points. From this, we see that the contrastive nature of preference learning, where
the model must simultaneously learn to prefer correct solutions while actively rejecting incorrect ones,
may lead to slightly more unstable learning patterns. However, the overall positive trend indicates that
the model successfully learns to discriminate between high-quality and low-quality code generations.
The positive final reward value suggests that the preference optimization successfully enhances
the model’s ability to generate functionally correct code beyond what pure supervised fine-tuning
achieves.

4.2 Evaluation

This baseline performance shows that while the model possesses foundational visual code under-
standing, task-specific fine-tuning is necessary for practical deployment.

We evaluate all trained models on the held-out test set of our augmented HumanEval dataset,
generating completions at temperature 0.7. Figure 5 shows the overall execution success rates
across all visual augmentation variations.

The baseline Qwen2.5-VL-3B-Instruct model achieves a 45% success rate using zero-shot vision-to-
code generation, demonstrating reasonable out-of-the-box capability but leaving room for improve-
ment. The supervised fine-tuning model yields noticeable improvement, reaching 50% success rate.
By analyzing the generated outputs for SFT, we find that the primary contribution of SFT lies in
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Figure 4: Chosen rewards progression during DPO training phase.

teaching proper response formatting. The baseline model frequently included unnecessary function
headers in its responses or failed to follow the required output structure, leading to parsing failures
even when the core functional logic was correct. By training exclusively on well-formatted successful
completions, SFT effectively addresses these formatting issues, resulting in a 5-percent improvement
purely from structural corrections. The SFT+DPO approach achieves 52% success rate, representing
a marginal 2 percentage point improvement over SFT alone. GRPO emerges as the most effective
approach, achieving 55% success rate and representing a 10 percentage point improvement over the
baseline.

The difference between DPO and GRPO reveals a limitation of DPO on this downstream task in
that it is less sample-efficient than GRPO when trained under equivalent computational budgets. As
evidenced by the minimal increase in the chosen reward metric during training in Figure 4, DPO
struggles to effectively leverage the preference pairs for substantial performance improvements
within our training setup. The contrastive learning signal, while theoretically sound, may require
considerably more training iterations to achieve meaningful gains in this vision-to-code task. This
superior performance of GRPO validates our hypothesis that group-based advantage estimation
provides more stable and informative learning signals for vision-based code generation. By comparing
multiple generated solutions within each batch, GRPO efficiently explores the solution space and
learns from relative performance differences, leading to more robust policy improvements despite the
sparse reward signal inherent in code execution tasks.

The performance ordering (Baseline < SFT < SFT+DPO < GRPO) across our evaluation demonstrates
that while supervised learning provides valuable formatting improvements, reinforcement learning
approaches are necessary to achieve substantial gains in functional correctness. However, the choice
of RL algorithm matters significantly: GRPO’s group-based approach is more suitable for the high-
variance, sparse-reward nature of vision-to-code generation compared to preference-based methods
like DPO under computational constraints.

Sample generations for the vanilla baseline model, SFT model, SFT+DPO model, and GRPO model
can be found in the Appendix.

4.3 Discussion

4.3.1 Reward Function Analysis

For GRPO, our empirical results revealed differing effectiveness of on our two reward metrics. While
the execution reward showed substantial and consistent improvement throughout training, the syntax
reward remained relatively stagnant for most of the training period. This divergence provides insights
into the nature of each reward component and the challenges in vision-to-code generation. The
stagnation in syntax reward may be due to sensitivity to specific formatting preferences rather than
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Figure 5: Performance of GRPO and baseline models on augmented test set.

general syntactic validity. Our training setup required models to learn nuanced formatting constraints,
such as omitting function headers that were already visible in the image prompt. This requirement
conflicts with typical pre-training patterns where models generate complete function definitions,
suggesting that overwriting these deeply learned patterns requires extended training iterations. Once
models successfully adapted to these formatting conventions, the syntax reward consistently reached
1.0, indicating that syntactic validity itself was not a limiting factor given Qwen2.5-VL’s strong code
generation foundation.

4.3.2 Visual Representation Limitations

Our analysis revealed that models occasionally fail to generate accurate code for edge cases within
functions, particularly when handling complex conditional logic or boundary conditions. This
limitation appears to stem from the lossy nature of visual text representation. When code is rendered
as an image and then processed through vision encoders, subtle but critical details in the problem
specification may be lost or distorted. The image-to-text reconstruction process inherently introduces
noise that can obscure nuanced requirements, leading to functional incorrectness even when the
general problem structure is understood.

This finding highlights a fundamental challenge in vision-based code generation: maintaining
semantic precision through visual encoding. Unlike direct text processing where every character is
preserved exactly, visual representations must balance between capturing the overall structure and
preserving fine-grained details that are often crucial for correct code implementation.

4.3.3 Impact of Data Augmentation

We also ran ablation studies to demonstarte the importance of visual augmentation for generalization.
When trained without our comprehensive augmentation strategy, models showed severe overfitting
despite continued improvement in training rewards. Specifically, models trained on the base 164
HumanEval problems without visual variations plateaued at approximately 50% evaluation accuracy,
compared to 55% with full augmentation.

This difference underscores that training robust vision-to-code generation requires exposure to diverse
visual presentations during training. The model must learn to extract semantic content invariant to
superficial visual changes such as font choices, color schemes, and formatting styles. Without this
augmentation, models memorize specific visual patterns rather than learning the underlying mapping
from visual code representations to functional implementations. Our results validate that comprehen-
sive augmentation across fonts, themes, and formatting styles is essential for developing models that
can handle the visual diversity encountered in real-world code screenshots and documentation.
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5 Conclusion

5.1 Contributions

Our work successfully demonstrates that Group Relative Policy Optimization (GRPO) provides an
effective and computationally efficient approach for vision-based code generation, establishing a
new benchmark for multimodal programming tasks. Through comprehensive experimentation on
an augmented HumanEval dataset with diverse visual presentations, we achieved a 55% execution
success rate—representing a 22% relative improvement over the baseline Qwen2.5-VL-3B-Instruct
model and outperforming both supervised fine-tuning (50%) and preference-based methods (52%).

This research makes several contribution to the intersection of computer vision and code generation.
We applied GRPO to vision-to-code generation to demonstrate that group-based advantage estimation
can effectively navigate the sparse reward landscape inherent in functional code generation from
visual inputs. Second, we developed a comprehensive visual augmentation strategy that ensures
model robustness across diverse real-world code presentations, including variations in fonts, syntax
highlighting themes, and formatting styles. Third, our dual reward function design, combining
syntactic validity through AST checking with functional correctness through test case execution,
provides a robust evaluation framework for vision-based programming tasks.

5.2 Future Work

While our results are promising, the absolute performance of 55% execution success rate highlights
the inherent difficulty of vision-to-code generation and suggests several avenues for future research.
The computational efficiency gains of GRPO over traditional PPO make it particularly attractive for
scaling to larger models and more complex programming tasks.

Following the DeepSeek-R1 approach (DeepSeek-Al et al.| (2025)), implementing SFT before GRPO
could provide a stronger initialization for the policy model. This staged approach might improve
both convergence speed and final performance by first establishing basic vision-to-code capabilities
through supervised learning before applying reinforcement learning optimization.

Developing more sophisticated reward functions that capture code quality metrics beyond functional
correctness, such as efficiency, readability, style adherence, or security considerations, could produce
more practically useful generated code.

Investigating GRPO’s effectiveness with larger vision-language models (7B, 13B+ parameters) and
more complex programming tasks would establish scaling laws and computational trade-offs for
production deployment.

Extending beyond Python to languages like JavaScript, Java, C++, or domain-specific languages (SQL,
HTML/CSS) would demonstrate the generalizability of GRPO for vision-based code generation.
Each language presents unique syntactic and semantic challenges that could reveal the robustness of
the approach.

Moving from rendered code to authentic handwritten sketches, whiteboard algorithms, or mobile app
screenshots would bridge the gap to practical deployment scenarios. This includes handling real-world
noise, perspective distortion, and informal notation styles that developers actually encounter.

6 Team Contributions

* Soham Govande: Running all experiments and devising reward functions
» Taeuk Kang: Creating datasets, experimenting with augmentation hyperpameters, and
writing the paper

* Andrew Shi: Ideating reward functions, training runs for GRPO, and writing the final paper

Changes from Proposal Several significant modifications were made during implementation.
We switched from the originally planned HuggingFaceH4/code_evaluation_prompts dataset to the
HumanEval dataset, which provided more rigorous functional correctness evaluation through compre-
hensive test suites. Our model selection evolved from the proposed Qwen 2.5 5S00M to Qwen2.5-
VL-3B-Instruct, a significantly larger model with native vision capabilities that better suited our
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multimodal requirements. The baseline comparison strategy was refined to include SFT and exclude
PPO since we do not have a value model, while maintaining DPO as planned. We enhanced our
reward function design from a simple execution-based metric to a dual reward system incorporating
both syntactic validity through AST checking and functional correctness through test case execution.
Additionally, we implemented structured prompting with reasoning sections to encourage step-by-step
code generation, and our data augmentation strategy shifted from including Gaussian noise artifacts
to focusing on comprehensive font, theme, and formatting variations that better reflect real-world
visual code presentations.
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A Snippets of generated code

A.1 Baseline (Vanilla)

<answer>
def truncate_number (number: float) -> float:
twnnnt Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
>>> truncate_number (3.5)
0.5
nmmwonnn
return number - int(number)
</answer>

A2 SFT

<think>
To truncate a floating-point number, we need to separate the integer and decimal parts.
In Python, we can use the mod operator to get the decimal part. The integer part can be

obtained by subtracting the decimal part from the original number. Here’s the step-by-step

process:

Subtract the integer part from the original number to get the decimal part.

Use the mod operator (%) to get the decimal part.

Return the decimal part.

Given the function definition:

¢¢‘python

def truncate_number (number: float) -> float:
rennilt Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).

Return the decimal part of the number.

>>> truncate_number(3.5)
0.5
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A3

A4

[

The decimal part of the number 3.5 is 0.5.

</think>

<answer>

def truncate_number (number: float) -> float:
return number - int(number)

</answer>

SFT+DPO

<think>

1. The goal is to isolate the decimal part of a positive float.

2. The decimal part is what remains after removing the whole number (integer) portion.
3. I can obtain the integer part by casting the float to int, which truncates the decimal.
4. Subtracting the integer part from the original number leaves only the decimals.

5. Ensure this works for any positive float, e.g., 3.75 - 3 = 0.75.

6. Consider edge cases: input is already an integer (result should be 0).

</think>

<answer>

return number - int(number)

</answer>

GRPO

<think>

1. In Python, the ‘J‘ operator works with floats, returning the remainder of division.
2. For a positive ‘number‘, ‘number % 1¢ computes ‘number - floor(number)‘, which is
exactly the fractional part.

3. This is more concise than ‘number - int(number)‘ and directly conveys intent.

4. Be aware of minor floating-point precision artifacts inherent to IEEE 754.

5. Therefore, use ‘number % 1¢ to get the decimal part.

</think>

<answer>

return number % 1

</answer>
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