Extended Abstract

Motivation Large-language-model (LLM) alignment pipelines such as RLHF and DPO rely on
millions of preference examples and multi-GPU compute budgets. For resource-constrained set-
tings—e.g. academic labs, edge deployment, or personal agents—scaling laws can break where
models under 1B parameters often become weak during preference optimization. In response, we
ask: Can curriculum learning stabilize and improve Direct Preference Optimization (DPO) when
finetuning a 0.5B-parameter model with limited data and compute?

Method We employ Curriculum DPO (CDPO), a training framework that combines Direct
Preference Optimization (DPO) with a difficulty-aware curriculum scheduler. Starting from a
SmolTalk-supervised policy, we compute the difficulty of each preference pair using a margin-based
score derived from the log-probability difference between preferred and rejected completions under a
frozen reference model. Pairs are ranked from easiest to hardest, and training proceeds by gradually
widening the subset of examples shown to the model according to a schedule P(t). We explore
several scheduling strategies (linear, polynomial, exponential, and staged), and at each step, DPO
is applied to a filtered prefix of the preference dataset. This curriculum-based approach allows the
model to master easier distinctions before being exposed to more challenging comparisons, leading
to improved alignment and generalization.

Implementation We fine-tune Qwen2.5-0.5B using a three-stage pipeline: supervised fine-tuning
(SFT), direct preference optimization (DPO), and curriculum-enhanced DPO (CDPO). SFT is per-
formed on a filtered subset of the SmolTalk dataset using a masked causal LM loss computed only
over response tokens. Training uses a total batch size of 96, sequence length of 1280, and runs for 3
epochs on a single A100 GPU in bfloat16 precision. DPO is then applied using the UltraFeedback
preference dataset, with a LoRA-adapted policy model (0.28% of parameters) trained against a frozen
reference model. To improve alignment, we introduce CDPO: a curriculum-based extension to DPO
that gradually expands the difficulty of training pairs. Difficulty is estimated using a log-probability
margin between preferred and rejected completions under the SFT reference model. Pairs are sorted
offline, and a scheduler (linear, polynomial, exponential, or staged) controls the subset used at each
training step. This enables the model to first learn clear-cut distinctions before tackling harder
preferences, improving both convergence and output quality.

Results We evaluate our models using head-to-head comparisons on the UltraFeedback test set
with GPT-40-mini as the automated judge. Compared to standard DPO, our CDPO-trained model
achieves a higher win rate (57.0% vs. 43.0%), demonstrating improved alignment and generation
quality without requiring additional data or compute. CDPO also shows faster convergence and
more stable training dynamics, reducing the loss more steeply than vanilla DPO while maintaining
response quality.

Discussion Our results suggest that curriculum learning can serve as an effective regularization
mechanism for preference-based alignment in small models. By exposing the model to easier
examples early in training, CDPO improves generalization. Manual inspection reveals that CDPO
produces more coherent, concise, and instruction-faithful responses, particularly on complex or
edge-case prompts. These findings validate our hypothesis that data ordering significantly impacts
training dynamics, especially under resource constraints.

Conclusion We show that Curriculum DPO (CDPO) is a simple extension to Direct Preference
Optimization that leverages difficulty-aware scheduling to improve alignment of small-scale language
models. Despite using only 0.28% tunable parameters and limited data, CDPO outperforms standard
DPO in both win rate and training efficiency. Our work highlights the potential of curriculum learning
as a lightweight tool for improving preference optimization and paves the way for further research in
adaptive and multi-dimensional curricula for LLM alignment.
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Abstract

We explore instruction-following alignment for Qwen2.5-0.5B, a 0.5B-parameter
language model, under constrained compute. Building on Supervised Fine-Tuning
(SFT) and Direct Preference Optimization (DPO), we employ Curriculum-Driven
Preference Optimization (CDPO)—a curriculum-based extension that schedules
preference pairs from easy to hard during training. We utilize a margin-based
confidence score using model logits. Preliminary results show that CDPO achieves
higher win rates than vanilla DPO, without increasing data or compute cost. Our
findings suggest that curriculum learning is a simple yet effective tool for aligning
small LLMs in resource-constrained settings. Our codebase is accesible at https:
//github.com/tnguyen2002/jatMorantest.

1 Introduction

Instruction-tuned language models have become central to building helpful, safe, and aligned Al
assistants. A common pattern is initially applying supervised fine-tuning (SFT) on curated instruction-
following datasets, followed by preference-based optimization to improve alignment with human
feedback. Recent methods such as Direct Preference Optimization (DPO) [Rafailov et al.|(2024) have
demonstrated strong performance while simplifying traditional RLHF pipelines.

In this work, we study how to improve preference optimization through curriculum learning. We
begin by fine-tuning Qwen2.5-0.5B on the SmolTalk dataset, a compact, high-quality corpus of con-
versational instruction data. We then apply DPO using the UltraFeedback dataset[Wang et al.| (2023),
a large-scale collection of preference-labeled assistant completions based on GPT-4 evaluations.

We evaluate both standard DPO and a curriculum-based variant, where preference pairs are introduced
in increasing order of difficulty. Difficulty is estimated using a model-based margin computed from
the SFT reference model. Our curriculum schedules expose the policy model to progressively harder
preference pairs throughout training.

2 Related Work

Alignment Pipelines RLHF pipelines typically combine supervised fine-tuning (SFT) with prefer-
ence optimization methods such as PPO|Ouyang et al.|(2022), Direct Preference Optimization (DPO)
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Rafailov et al.[(2024), and reinforcement learning from Al feedback (RLAIF) Lee et al.|(2024). These
approaches train policies to prefer chosen responses over rejected ones, usually based on human or
model-generated comparisons. DPO in particular avoids the complexity of reward modeling and
policy optimization by framing preference learning as a simple binary classification task between
two completions. However, recent work on small language models has shown that aligning sub-1B
models remains challenging due to unstable training dynamics and limited representation capacity.

Efficient Fine-Tuning and Stabilization. Given the rising interest in parameter-efficient alignment,
LoRA [Hu et al.| (2021) and related adapter-based methods have been widely adopted to reduce
training cost. Several works investigate techniques to stabilize preference learning, including margin
regularization, dynamic difficulty sampling, and reward normalization Wu et al.|(2024). Our work
builds upon these trends by evaluating a simple curriculum scheduler that operates without additional
model calls, while still improving training dynamics and matching full DPO performance.

Curriculum Learning Curriculum learning (CL) can have a large role in improving stability and
sample efficiency in reinforcement learning. [Narvekar et al.|(2020) provide a survey of curriculum
design strategies across RL domains, emphasizing how the ordering of training data by difficulty can
significantly accelerate learning and improve generalization.

In the context of language model alignment, recent work has adapted curriculum strategies to
preference-based reinforcement learning. [Pattnaik et al.[(2024) propose CURRI-DPO, a curriculum
for Direct Preference Optimization (DPO) that ranks training pairs by the margin between preferred
and rejected responses. Training proceeds in stages from easiest to hardest, resulting in improved
alignment across benchmarks such as MT-Bench, WizardLLM, and UltraFeedback. |Li and Zhang
(2025) extend this idea with 2D-CURRI-DPO, introducing a two-dimensional curriculum that
considers both prompt complexity and response separability. Their framework further enhances
generalization by jointly scheduling tasks along both axes of difficulty. Unlike 2D-CURRI-DPO |Li
and Zhang|(2025), we use a static, percentile-based schedule for its simplicity and feasibility under
limited compute. Nonetheless, our results suggest that even lightweight curriculum strategies can
stabilize DPO training and improve downstream alignment, especially when initialized from a strong
supervised base.

3 Method

3.1 Curriculum Learning + DPO (CDPO)
3.1.1 Overall Framework and Difficulty Metrics

Conventional DPO trains on the entire preference set at every step, exposing the model to hard pairs
while it is still struggling to reproduce clear-cut easy distinctions. We introduce a difficulty-aware
scheduler that gradually widens the band of preference pairs presented to the policy. We instantiate
the following difficulty metric:

Margin-based score d,,, (log-prob curriculum). For every prompt = with preferred answer y. and
rejected answer y,., we let a frozen reference model pgef (the SFT checkpoint) score both completions:

ref ref

be = logpg (ye | @), £ = logpl (yr | @)
The absolute margin |¢. — ¢,.| quantifies the confidence gap. We convert it into a difficulty so that

lower values are easier:
dm = - wc - €7| (1)

Offline preprocessing. d,, is computed once before DPO and stored in a pickled dictionary. We
then obtain a permutation 7 that sorts the training indices from easiest to hardest.

3.1.2 Curriculum Scheduler

Let N be the total number of preference pairs and let D = {(z;, yfc), yy), d;)}Y; be the difficulty-

annotated dataset (using either score). During training step ¢ we expose only the easiest prefix
T1:k,» Where ky = | P(t) N | and P(t) € [0, 1] is the coverage schedule. We experimented with four
schedules, and ultimately settled on linear scheduling after seeing benefits in small-scale experiments.
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Figure 1: CDPO pipeline: SFT on SmolTalk produces an instruction-following prior; DPO refines
preferences, while a curriculum scheduler gradually widens the difficulty band presented to the
model.

Algorithm 1 CDPO training loop (margin curriculum)

1: Input: sorted indices 7, schedule P(¢), total steps T
2: fort=0to7 — 1do

3 ke < | P(t) N|

4: Draw mini-batch B; C {n1,..., 7k, }

5 Compute DPO loss using 5B;

6 Update policy parameters with AdamW

7: end for

1. Linear: Py, (t) = fo + % (1 = Bo).

2. Polynomial (quad):  Phoy(t) = Bo + (4)° (1= fo).

eat/T -1

3. Exponential: Py, (t) = 8y + 1
ea —

(1 — ﬂo) with a = 2.
4. Three-stage step: {0-7'/3} Easy 40 %, {T/3—2T/3} Easy+Medium 80 %, {27 /3-T'}
All

Here (3 is the starting data fraction (0.2 in all experiments) and 7" is the total number of optimizer
steps. Because P(t) is evaluated inside the epoch loop (Alg. , the subset can enlarge multiple times
within a single epoch—mimicking a “smooth” curriculum.



3.1.3 Scheduler

Let P(t) € [0, 1] be the target percentile after epoch ¢. We experiment with:

04, t<T/3
Plipear(t) = min(l, 0.4+ 0.61€/T)7 Prree-stage(t) = 0.8, T/3 <t <2T/3
1, otherwise.

At each epoch we filter UltraFeedback pairs with score percentile < P(¢) and run standard DPO.

4 Experimental Setup

4.1 Data

SmolTalk is a collection of high-quality chat responses from GPT-40, adapted for models with less
than 1B parameters ( 460k examples). Ultrafeedback is a preference dataset to study the instruction
following abilities of LLMs. It uses the "chosen" column as the dialogues to model.

4.2 SFT

We fine-tune the Qwen2.5-0.5B model using a causal language modeling objective, computing loss
only on the assistant response portion of each input to avoid optimizing on user instructions. This
aligns with standard instruction-tuning practices and encourages better response generation behavior.

The fine-tuning dataset is a filtered version of SmolTalk, a compact instruction-following dataset. To
improve data quality and reduce noise, we apply aggressive filtering criteria: examples are discarded
if the assistant’s response is empty, excessively short, or improperly formatted. Additionally, we
ensure that each example conforms to a strict conversational format using < |im_start| > and
< |im_end| > delimiters. After filtering, approximately 5,000 high-quality examples remain.

We tokenize each example to a maximum sequence length of 1,280 tokens and apply loss masking to
exclude all prompt tokens from the loss computation. Training is run for 3 epochs using the AdamW
optimizer with a learning rate of 1 x 10~°, linear decay schedule, and 500 warmup steps. We employ
an effective batch size of 96 (batch size = 6, gradient accumulation = 16), with gradient clipping set
to a maximum norm of 1.0 for stability.

Training is conducted on a single NVIDIA A100 (80GB) GPU using bfloat16 precision. Validation is
performed on a held-out set of 100 examples at three points during training (steps 52, 104, 156), and
the checkpoint with the lowest validation loss is selected for downstream evaluation. We monitor
training via wandb and initialize from a previously trained SFT checkpoint to ensure continuity in
conversational instruction tuning.

43 DPO

Following SFT, we apply Direct Preference Optimization (DPO) to further align Qwen2.5-0.5B with
human preferences. DPO uses a dual-model setup: a trainable policy model and a frozen reference
model, with rewards computed via the Bradley-Terry preference model.

We fine-tune on the HuggingFace H4/ultrafeedback_binarizeddataset, applying filtering to
remove examples with missing or malformed completions. Inputs are tokenized to a maximum of
1,024 tokens, and loss is computed only on response tokens to isolate learning to assistant behavior.

Training runs for 3 epochs using AdamW with a learning rate of 5 x 10~°, cosine decay, 10%
warmup, and gradient clipping (max norm = 0.5). We use an effective batch size of 64 (batch size =
8, gradient accumulation = 8) and set the reward scaling parameter 3 to 0.1. Validation is performed
every 500 steps on a held-out preference set.

To enable efficient training, we apply LoRA adapters (rank = 16, o = 32, dropout = 0.1) to all attention
and MLP projections, yielding 1.4M trainable parameters (0.28% of the model). The policy model
is initialized from our best SFT checkpoint; the reference model shares the same weights but remains
frozen.



5 Results

5.1 Quantitative Evaluation

Win Rate Evaluation To evaluate our models, we conduct a head-to-head comparison between
our three models; specifically, we utilize Ultrafeedback’s test split and GPT-40-mini as an automated
judge to compare SFT/SFT + DPO and SFT + CDPO/SFT + DPO responses via our custom prompt
[Al We obtain the following win rates for our model comparisons across 100 samples:

Table 1: Win rates from head-to-head comparisons on the UltraFeedback test set, judged by GPT-40-
mini. Bold indicates the higher win rate.

Comparison SFT Wins SFT+DPO Wins  Ties
SFT vs. SFT+DPO 42.0% 56.0% 2.0%

SFT+CDPO Wins SFT+DPO Wins Ties
SFT+CDPO vs. SFT+DPO 57.0% 43.0% 0.0%

Table [T] summarizes the results of our pairwise model comparisons on the UltraFeedback test set.
Each pair was evaluated in a head-to-head setting, where responses were rated on quality using our
evaluation prompt (Appendix [A)).

The comparison between SFT and SFT+DPO shows a clear improvement from incorporating
preference optimization: SFT+DPO achieves a win rate of 56.0% compared to only 42.0% for SFT,
with 2.0% of cases resulting in a tie. This suggests that even a single stage of preference tuning yields
meaningful gains in response quality, likely due to alignment with desirable generation attributes
(e.g., relevance, clarity, and completeness).

More notably, in the SFT+CDPO vs. SFT+DPO comparison, SFT+CDPO achieves a win rate of
57.0% compared to 43.0% for SFT+DPO, with no ties. This indicates that CDPO further improves
generation quality beyond standard DPO, despite being trained on the same underlying preference
data. These results support our hypothesis that CDPO can help models more effectively learn
distinctions in preference signals.

5.2 Training Dynamics

Figure 2] shows loss curves across our train/eval stages:
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Figure 2: Training and evaluation loss curves for SFT, DPO, and CDPO.

Loss-curve analysis. Figure[2|shows the training and evaluation loss curves for our three fine-tuning
strategies: vanilla SFT (Figs.[cHd), SFT + DPO (Figs.[aHb), and CDPO (Fig. ).

SFT baseline (Figs.[cHd). On the training set, pure SFT slowly reduces its loss from approximately
1.25 to 1.10 over 150 steps, and its evaluation loss falls from 1.17 to 1.12. The relatively
shallow slope and high final loss establish our starting point.

SFT + DPO (Figs.[aHb). Incorporating direct preference optimization lowers the initial loss (= 0.68)
and yields a steeper downward trend: training loss reaches ~ 0.58 after 800 steps, despite
higher per-step variance. Its evaluation loss likewise drops from ~ 0.635 to ~ 0.598,
substantially outperforming the SFT baseline.

CDPO (Fig.[e). Curriculum DPO drives the fastest convergence: within just 200 steps the training
loss plunges from ~ 0.70 to ~ 0.35, with reduced noise toward the end.

In sum, both DPO variants dramatically accelerate and deepen loss minimization compared to
standard SFT, with CDPO achieving the steepest descent in far fewer steps. These optimization gains
mirror the higher head-to-head win rates we observe in TabldI}

5.3 Qualitative Analysis

SFT SFT-only outputs were often verbose or vague, particularly for ambiguous queries. In many
cases, responses lacked precision or contained unnecessary filler text.



SFT + DPO DPO fine-tuning made the model more concise and opinionated. It began prioritizing
clearer arguments and direct responses. However, in complex prompts, hallucinations and overcon-
fidence in incorrect answers occasionally appeared, likely due to noisy preference signals in the
training set.

SFT + Curriculum Learning (CDPO) CDPO yielded responses that were not only concise but
also better aligned with user intent. Manual inspection shows fewer hallucinations and more coherent
answers.

Comparison: SFT vs SFT+DPO Below is a representative example from the UltraFeedback test
set where SFT+DPO outperforms SFT, as judged by GPT-40-mini.

Prompt:

If "A man is reading a book about ancient history." does that mean that "A man is
studying modern science."?

Options:

- yes

- it is not possible to tell

- no

Step by step answer:

— SFT Response —

A man can’t be studying science and ancient history at the same time. The
information in both sentences contradicts each other. Therefore, the answer is
no.

— DPO Response (Winner) —

A man can read books about ancient history without studying modern science. The
context of the sentences doesn’t contradict or provide enough information to
infer they are different subjects.

So, the correct answer is: it is not possible to tell.

Comparison: SFT+CDPO vs SFT+DPO Below is an example from the UltraFeedback test set
where SFT+CDPO outperforms SFT+DPO, as judged by GPT-40-mini.

Prompt:

How can virtual reality technology be integrated with psychological therapies to
create accessible, self-managed interventions for individuals experiencing
chronic stress or anxiety?

— SFT+DPO Response —

Virtual Reality (VR) technology has the potential to revolutionize how we approach
and treat chronic stress and anxiety. By creating immersive environments that
simulate real-world scenarios, VR can help individuals manage their symptoms
in a safe and controlled setting.

One way VR can be integrated is through gamification, which can make therapy more
engaging and enjoyable. For example, therapists could use VR games to teach
mindfulness techniques, encourage relaxation exercises, or provide
opportunities for social interaction. This would allow individuals to practice
these skills in an environment they can control, reducing feelings of
isolation and overwhelm.

Another approach is to use VR as a therapeutic tool for cognitive-behavioral
therapy (CBT), where individuals can explore and confront their negative
thoughts and behaviors through immersive experiences. For instance, therapists
might use VR to simulate different situations, such as a high-stress work




scenario, and then guide patients through CBT exercises designed to challenge
and change those thought patterns.

Additionally, VR could be used to promote physical activity, helping individuals
overcome mental fatigue and improve overall well-being. Patients could wear VR
headsets during physical activities to emhance engagement and motivation. This
could include workouts, yoga, or even adventure-based VR experiences.

Furthermore, VR could be integrated into treatment plans by providing access to
personalized coaching sessions, allowing individuals to receive guidance from
trained therapists who can adjust treatment strategies based on individual
needs and progress.

To ensure accessibility and usability, VR platforms should prioritize inclusivity
and ease of use for all users. This includes features like voice commands,
natural language input, and easy navigation across multiple devices.

Overall, integrating VR technology into psychological therapies offers numerous
benefits for individuals struggling with chronic stress and anxiety. It
creates a safe and controlled space for exploration and growth, while also
promoting practical applications for mental health treatment. As research
continues to inform VR development, it will likely continue to evolve and
expand its reach in the realm of psychological therapies.

— SFT+CDPO Response (Winner) —

Virtual reality (VR) technology has the potential to revolutionize how we approach
and treat chronic stress and anxiety by providing a safe and immersive
environment where individuals can practice mindfulness, relaxation techniques,
and coping strategies in a controlled setting. Here’s how VR can be integrated
into psychological therapies:

1. **Mindfulness-based interventions**: VR meditation sessions can simulate
mindfulness practices, allowing clients to focus on their breath, thoughts,
and sensations without distractionms.

2. *xRelaxation training**: Clients can experience guided relaxation exercises,
such as progressive muscle relaxation or visualization, using VR headsets that
immerse them in calming environments like forests or oceans.

3. **xCognitive-behavioral therapy (CBT)**: VR-based CBT can help individuals
identify and challenge negative thought patterns related to stress and
anxiety, fostering cognitive restructuring and emotional regulation.

4. **Sleep disturbances**: VR sleep therapy simulates realistic sleep scenarios,
helping individuals develop better sleep habits and reduce insomnia symptoms
through personalized guidance.

5. **Anxiety reduction**: VR exposure therapy can provide individuals with repeated
opportunities to confront feared situations, reducing anxiety levels over time.

6. **Self-management**: By practicing these interventions in a controlled
environment, clients can become more confident and adaptable in managing their
own mental health challenges.

To achieve this, therapists can employ various VR technologies, including:

* *xAugmented Reality (AR) and Virtual Reality (VR)**: These technologies allow
clients to interact with digital environments, creating immersive experiences
that mimic real-world interactionms.

* *x*Real-time feedback and analytics**: VR platforms can provide real-time feedback
on client progress, enabling therapists to refine treatment plans and adjust
interventions as needed.

* xxCustomizable modules**: Therapists can design customized modules, tailored to
individual needs and preferences, incorporating specific VR elements, such as
music or ambient sounds, to enhance therapeutic outcomes.

Some examples of successful VR-based interventions include:




* A study published in the Journal of Anxiety Disorders found that VR-assisted
exposure therapy was effective in reducing symptoms of generalized anxiety
disorder in adults.

* Another study demonstrated that VR-induced relaxation helped alleviate symptoms
of post-traumatic stress disorder (PTSD).

* A research paper published in the International Journal of Behavioral Medicine
highlights the benefits of VR-based mindfulness meditation programs for
improving attention and well-being.

By combining VR technology with traditional psychological therapies, clinicians can
create more accessible, evidence-based interventions that promote long-term
healing and resilience in individuals struggling with chronic stress and
anxiety. However, it’s essential to consider factors like accessibility, cost,
and scalability when implementing VR-based interventions into clinical
settings. Nevertheless, the potential benefits far outweigh any potential
drawbacks.

6 Discussion

Limitations Our biggest limitation was time and compute. After the new leaderboard was released,
we regenerated responses using our SFT and SFT+DPO checkpoints. Despite performing very
well on the original leaderboard, we realized we did not meet the performance needed on the new
leaderboard. We decided this was most likely due to SFT being only trained on 10% of the training
data, and DPO only being trained with a 512 token max response length. After the poster we went
and retrained via SFT on the entire dataset, and retrained DPO and CDPO with longer responses.
However, due to a lack of time, we were only able to train CDPO on 10% of the training data.

Curriculum Learning Why does curriculum help? We infer that it helps because of (i) Gradient
signal quality: early exposure to high-margin pairs yields clearer gradients, preventing premature
over-confidence; (ii) Implicit regularization: gradual difficulty acts like a continuation method,
smoothing the loss landscape for small-capacity models.

7 Conclusion

Curriculum Learning Curriculum scheduling is a lightweight yet powerful tool for aligning small
LLMs. Our proposed method improves training stability, accelerates convergence, and achieves
higher win rates than vanilla DPO—without any increase in data and only a small additional one-time
cost for computing difficulties. These results demonstrate that even under tight resource constraints,
strategic data ordering can give you meaningful performance gains.

General Takeaways Our findings support two key lessons: (1) Stability matters—doubling batch
size and applying curriculum learning both reduce loss variance and lower training noise; (2) Data
ordering matters—gradually introducing difficult examples enhances learning dynamics.

Future Directions CDPO opens several promising future directions. First, testing adaptive sched-
ules that dynamically re-rank data as the policy evolves. Second, combining the log probabilities
with heuristics like edit distance and response length to develop a more comprehensive formula
for difficulty. Finally, exploring multi-dimensional curricula that combine prompt complexity with
response separability, building on recent advances such as 2D-Curri-DPO.

8 Team Contributions

* Adam Chun: Implemented SFT and data and evaluation pipelines, did most of the training
because he had the best GPU, always managed to get our loss to go down when things
looked dire

* Tom Nguyen: Led the implementation of DPO, co-implemented CDPO, ran model evalua-
tion and analysis




* Josh Francis: Led the implementation of CDPO, co-implemented DPO, handled leader-
board submissions

Changes from Proposal We originally proposed synthetic-data augmentation for RLHF. We pivoted
to curriculum learning after the milestone, because we thought it might offer better performance
benefits at a lower compute cost.
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A GPT-40-mini Prompt for Win Rate Evaluation

evaluation_prompt = f"""
You are an expert evaluator. Compare the following two responses to the given prompt and determi:

**Prompt : ** {prompt}
x*Response A:*x {response_a}
x*Response B:x* {response_b}

**xEvaluation Criteria:*x*

- Helpfulness and relevance to the prompt
- Accuracy and factual correctness

- Clarity and coherence

- Completeness of the answer

- Overall quality

**xInstructions:*xx*
- Respond with exactly one word: "A" if Response A is better, "B" if Response B is better, or "t:
- Consider the evaluation criteria above

- Be objective and fair in your assessment

**Your evaluation:x"""

B Model Performance on Initial Leaderboard

Table 2: Instruction following milestone leaderboard results. Implementing DPO led to a significant
improvement from 34th place to nearly top 25.

Yayaya
28 Balala
29 feifei
30 labubu

31 June, Zixin, 1

32 Enteryourg \
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34 jatMorant '\ 07950 ) basic o 4 BZAM
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