
Extended Abstract

Motivation Managing Type 1 Diabetes (T1D) is a relentless challenge of balancing insulin against
dynamic factors like diet and exercise, where traditional, reactive adjustments are often insufficient.
This project explores the feasibility of applying offline Reinforcement Learning (RL) to create a more
dynamic and personalized insulin dosing policy. Specifically, we investigate the use of a Decision
Transformer (DT), a model that frames RL as a sequence modeling problem, to learn a dosing strategy
directly from my own personal, multi-modal sensor data from my Continuous Glucose Monitor
(CGM), insulin pump, and smartwatch.

Method To ensure safety, an offline RL approach was chosen, learning exclusively from historical
data sampled into discrete timesteps at 5-minute intervals. These were structured into trajectories
of states, actions, and rewards. The state vector provides a physiological snapshot at each timestep,
including glycemic data (value and trend), insulin on board (IOB), multi-modal activity metrics, and
cyclical temporal features. The continuous action of delivering an insulin bolus was discretized
into 8 categories, including a "no action" category. The reward for each action was defined as the
Time-in-Range (70-180 mg/dL) over the subsequent 3-hour window to teach the model the long-term
consequences of its decisions.

Implementation The core of our implementation is a Decision Transformer model, which utilizes
a GPT-based causal Transformer architecture Chen et al. (2021). Our model uses an embedding
dimension of 128, 3 transformer layers, and 4 attention heads. The state, action, and return-to-
go (RTG) inputs are projected into this embedding space and combined with learned positional
embeddings. The model was trained using the AdamW optimizer and a weighted cross-entropy loss
function. This weighting was essential to combat the severe class imbalance of the "no action" class
and force the model to learn the rare but clinically vital bolus actions.

Results Hyperparameter tuning was crucial; a low learning rate (1× 10−5) and large batch size
(64) were required to guide the model beyond simple behavioral cloning towards a more proactive
policy. Our qualitative analysis, which directly compares the model’s recommended actions against
historical actions for the same event, showed clear instances where the well-tuned model chose to
administer a corrective bolus during a period of rising glucose while the human historically did not.
This demonstrates that the model successfully learned a novel and potentially improved policy rather
than just imitating the training data.

Discussion This project successfully demonstrated that a Decision Transformer can learn a plausible,
proactive dosing policy from real-world data, moving beyond simple behavioral cloning. The primary
limitation, however, is the open-loop nature of our evaluation; because the model’s actions do not
influence the subsequent states it sees in our analysis, we cannot reliably measure their cumulative
impact or generate aggregate quantitative metrics. This underscores the fundamental difficulty of
offline policy evaluation in this domain.

Conclusion This work serves as a successful proof-of-concept for applying Decision Transformers
to personalized T1D management. We developed a complete pipeline and trained a model that learned
a clinically relevant, proactive policy for correcting hyperglycemia. The critical next step for this
research is to perform a closed-loop evaluation by integrating the trained agent with a validated
physiological simulator. This will allow for a robust, quantitative assessment of the policy’s true
clinical impact on glycemic control.
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Abstract

The management of Type 1 Diabetes (T1D) is a relentless challenge where tra-
ditional, reactive strategies are often insufficient. This project investigates the
feasibility of applying an offline Reinforcement Learning (RL) approach, specifi-
cally a Decision Transformer (DT), to learn a personalized insulin dosing policy
from real-world, multi-modal sensor data (CGM, pump, smartwatch). We pro-
cessed historical data into trajectories of states, actions, and returns-to-go and
trained a DT model using a weighted cross-entropy loss function to address the
severe data imbalance of infrequent insulin actions. Our results show that with
careful hyperparameter tuning, the model learns a proactive policy that goes beyond
simple behavioral cloning. In our qualitative analysis, the trained agent correctly
recommended corrective insulin doses during periods of rising blood sugar where
the human historically did not. While this work serves as a successful proof-of-
concept, our open-loop evaluation prevents a quantitative assessment of the policy’s
cumulative impact. This highlights the limitations of purely offline evaluation and
underscores that the critical next step is the integration of the learned policy with a
validated physiological simulator for robust, closed-loop testing.

1 Introduction

The management of Type 1 Diabetes (T1D) is a significant and relentless challenge, requiring
individuals to navigate a complex interplay of factors including insulin dosing, diet, physical activity,
and stress to maintain glycemic control. A particularly difficult aspect of T1D management is the
period following physical exercise, which can induce unpredictable and delayed glucose fluctuations,
elevating the risk of both hypoglycemia and hyperglycemia. Traditional management strategies
often depend on a combination of general guidelines and reactive, trial-and-error adjustments. This
approach can be insufficient due to high individual variability in physiological responses.

To address the need for more dynamic and personalized treatment strategies, this project explores
the application of offline Reinforcement Learning (RL). RL is a paradigm well-suited for sequential
decision-making problems, such as insulin dosing, where actions have delayed and complex conse-
quences on long-term glucose stability. To mitigate the significant safety risks associated with online
RL methods that require direct patient interaction for exploration, this work employs an offline RL
approach, learning exclusively from historical data.

Specifically, we utilize the Decision Transformer (DT) architecture, which reframes offline RL as a
sequence modeling problem Chen et al. (2021). This is potentially advantageous for handling the
noisy, multi-modal time-series data streams generated by modern diabetes technology, including
Continuous Glucose Monitors (CGM), insulin pumps, and smartwatches. While our initial objective
was to focus on the challenging post-exercise period, the scope was revised to develop a general
insulin delivery recommendation model to leverage a larger and more diverse dataset, which is
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crucial for training robust sequence models. The core contribution of this work is the application and
evaluation of the standard Decision Transformer methodology to generate personalized insulin dosing
recommendations from my own integrated sensor data, addressing a clear gap in current research.

2 Related Work

The application of Reinforcement Learning to T1D glucose control has been an active area of research,
though early efforts were primarily conducted within in-silico environments Yau et al. (2023). These
simulation-based studies successfully demonstrated the potential for RL to optimize insulin dosing
policies. However, the direct clinical applicability of these models is limited, as simulators often fail
to capture the full complexity and individual variability of real-world glucose dynamics, especially
concerning the nuanced effects of physical activity and stress. Furthermore, traditional online RL
methods are infeasible for this domain due to the significant safety risks posed by the exploratory
actions required during training. The broader challenges and potential of RL in healthcare have been
surveyed extensively by Yu et al. Yu et al. (2021).

To overcome these safety concerns, research has increasingly shifted towards offline RL, which learns
policies from pre-existing datasets without risky online interaction. Foundational studies by Pajech
et al. Pajech et al. (2022) and Emerson et al. Emerson et al. (2023) have explored offline RL for
personalized glucose control, demonstrating potential improvements in glycemic outcomes like time-
in-range. While promising, this prior work has generally focused on overall glucose management or
specific scenarios like meal responses, with less emphasis on the uniquely challenging post-exercise
physiological state, a period that requires distinct management strategies.

Separately, sequence modeling, particularly with the Transformer architecture, has proven valuable for
T1D management, most notably for glucose prediction tasks using CGM data Li et al. (2024). Building
on this, the Decision Transformer (DT) model proposed by Chen et al. Chen et al. (2021) emerged as
a powerful paradigm that frames offline RL as a conditional sequence modeling task. While other
Transformer-based offline RL algorithms have been evaluated for glucose control Viroonluecha et al.
(2023) and adaptations have been developed for general healthcare decisions Zhang et al. (2023), to
our knowledge, the standard Decision Transformer architecture has not yet been specifically applied
to generate insulin dose recommendations for T1D.

Therefore, a clear gap exists in applying the standard Decision Transformer methodology to the
specific problem of generating insulin dose recommendations for T1D glucose control. This project
addresses this gap by implementing and evaluating a Decision Transformer on a personalized, multi-
modal dataset comprising integrated CGM, insulin pump, and smartwatch data to generate insulin
recommendations.

3 Method and Experimental Setup
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3.1 Data

The dataset for this project was constructed from my own personal, multi-modal sensor data, including
time-series data from a Continuous Glucose Monitor (CGM), an insulin pump, and a Garmin
smartwatch. The raw data streams were integrated, cleaned, and time-aligned to create a unified
historical record. This continuous record was then sampled at regular 5-minute intervals to form
discrete timesteps, which were used to build the final sequences for the model.

State Representation At each timestep t, a state vector st was engineered to provide the model
with a comprehensive view of the current physiological situation. The state vector is composed of
several key components:

• Glycemic Features: The current blood glucose value (mg/dL) and the glucose trend,
calculated as the slope of a linear regression over the preceding 30 minutes of glucose
readings.

• Insulin Features: The current Insulin on Board (IOB), representing the amount of active
insulin from previous boluses still working in the body.

• Activity Features: A set of metrics derived from smartwatch data to capture the context of
physical activity, which significantly impacts insulin sensitivity. These include the duration
and average heart rate of the last completed workout, the time elapsed since the last workout
ended, a binary flag indicating if a workout is currently active, and the total exercise duration
over the last 6 hours.

• Temporal Features: The time of day and day of the week are encoded into four continuous
features using sine and cosine transformations to capture their cyclical nature.

Action Space The model’s action space is discretized into 8 distinct categories to make the decision-
making problem tractable for a classification-based model. The continuous real-world action of
delivering an insulin bolus was binned into several ranges (e.g., 0.1-0.5 IU, 0.5-1.0 IU). A specific
and crucial action, ID 7, was designated as the "no action" case, representing a 5-minute interval
where no bolus was delivered. This is by far the most frequent action in the dataset.

Reward and Trajectory Formulation To train the Decision Transformer, the data was structured
into trajectories of ‘(state, action, reward)‘ tuples. The reward rt for taking an action at at state st
was defined as the percentage of time the glucose level remained within the target range (70-180
mg/dL) over the subsequent 3-hour window. This delayed reward mechanism is designed to teach the
model the long-term consequences of its actions. This is a great fit for the application because both
insulin and carbohydrates can take hours to fully absorb.

From these rewards, the return-to-go (RTG) R̂t was calculated for each timestep, representing the
cumulative sum of all future rewards in that episode (R̂t =

∑T
t′=t rt′ ). These trajectories were then

segmented into fixed-length sequences of 24 timesteps, corresponding to a 2-hour context window,
which serve as the direct input to the Decision Transformer.

Data Splitting The complete set of generated sequences was split by a date into a training set
(80%) and a validation set (20%). This ensures that the model is evaluated on data that occurs later
in time than all of its training data, preventing any look-ahead bias and providing a more realistic
assessment of its generalization performance.

3.2 Model

To address the task of learning an insulin dosing policy from offline data, we employ a Decision
Transformer (DT) architecture, which casts reinforcement learning as a conditional sequence modeling
problem Chen et al. (2021). Unlike traditional RL methods that learn a value function or a policy, the
DT learns to model the entire trajectory of states, actions, and returns. It is conditioned on a desired
outcome, specified by a target return-to-go (RTG), and autoregressively predicts the sequence of
actions that will achieve it. The underlying architecture is a GPT-based causal Transformer.
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Figure 1: Decision Transformer architecture Chen et al. (2021)

Our specific implementation uses an embedding dimension (dmodel) of 128, processed by 3 trans-
former encoder layers. Each layer contains a multi-head self-attention mechanism with 4 heads and a
feedforward network with an inner dimension of 256.

State Encoder The state st is a concatenated vector of multi-modal sensor data, including glycemic
features, current insulin on board (IOB), activity metrics, and temporal features, as detailed in Section
3.1. To process this input, a dedicated state encoder, implemented as a linear layer, projects the
concatenated state vector st into the 128-dimensional model embedding space. Similarly, separate
linear layers are used to encode the scalar return-to-go R̂t and the discrete action at−1 into this same
embedding space.

Learned Positional Embeddings The standard self-attention mechanism in a Transformer is
permutation-invariant. To provide the model with crucial temporal context, we add a learned
positional embedding to each token embedding at every timestep. An embedding layer within the
model maintains a unique, trainable vector for each position index (from 1 up to the context length
of 24). These positional embeddings are initialized randomly and updated via backpropagation,
allowing the model to learn the significance of temporal positioning within a trajectory. The resulting
sequence of summed embeddings is then passed through the Transformer blocks to predict the next
action.

3.3 Training

The Decision Transformer model was trained using the AdamW optimizer Loshchilov and Hutter
(2019), with learning rates explored in the range of 1 × 10−5 to 1 × 10−4. The training process
minimized a weighted cross-entropy loss function. Given the nature of the dataset, where the
“no action” class (ID 7) is overwhelmingly more frequent than any specific bolus action, class
weighting was essential to prevent the model from overfitting to the majority class. The weights were
calculated to be inversely proportional to the frequency of each action class in the training data, which
significantly increases the penalty for misclassifying rare but clinically important bolus actions.

To mitigate overfitting, a dropout rate of 0.1 was applied to the attention and feedforward layers
within the Transformer blocks. The model was trained using batches of 32 or 64 sequences, where
each sequence had a context length of 24 timesteps, corresponding to 2 hours of historical data.

3.4 Evaluation

Given the significant safety risks of testing a new policy on a live subject, all model evaluation was
performed offline using the held-out validation set. Our evaluation strategy combined an initial sanity
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check with a detailed qualitative comparison of the model’s learned policy against the historical
human policy.

L1 Metric Sanity Check In initial experiments on a smaller, over-fitted dataset, we used an L1
loss metric to measure the mean absolute difference between the model’s recommended insulin dose
and the historical dose. Observing a steady decrease in this metric confirmed that the model was
capable of learning from the data and that the training pipeline was functioning correctly, providing a
valuable sanity check before proceeding to more complex evaluations.

Qualitative Policy Comparison To gain an intuitive understanding of the model’s learned behavior,
we performed a direct policy comparison on challenging samples from the validation set. This method
avoids the logical inconsistencies and error accumulation of a multi-step simulation by focusing on
a single question: for a given real-world sequence of states, how would the model’s recommended
actions have differed from the actions actually taken?

The process is as follows: A complete historical trajectory (e.g., 2 hours, or 24 timesteps of states,
actions, and returns) is selected. We feed the entire sequence of historical states into the trained
Decision Transformer in a single forward pass. The model’s output is a corresponding sequence
of recommended actions for each timestep. The resulting visualization directly contrasts the two
action sequences (historical vs. model) on a shared timeline, with the real historical glucose trajectory
providing the necessary clinical context. This allows for a direct, "apples-to-apples" comparison of
the two policies under the exact same conditions.

Limitations and Future Work While this qualitative comparison is robust and interpretable, it is
an open-loop evaluation. The model’s recommended actions at each timestep do not influence the
future states it sees, as it only ever processes the single, fixed historical state sequence. This makes
it impossible to assess the true, cumulative consequences of the model’s policy. Because of this
limitation, generating reliable aggregate quantitative metrics like Time-in-Range from this method is
not feasible.

Therefore, robust quantitative evaluation requires future work to integrate the trained Decision
Transformer policy with a validated, closed-loop physiological simulator, such as the UVA/Padova
T1D simulator. This would allow the model’s actions to dynamically influence the subsequent states,
providing a trustworthy assessment of the policy’s real-world performance potential.
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4 Results

This section details the results from our experimental evaluations, covering both quantitative hyperpa-
rameter tuning and a qualitative analysis of the final model’s learned policy.

4.1 Quantitative Evaluation

A series of experiments were conducted to determine the optimal hyperparameters for training the
Decision Transformer on this dataset.

Learning Rate Learning rate tuning shows the lower learning rate converges to a much lower loss.
As shown in Figure 2, a learning rate of 1× 10−4 (pink) led to a much more stable and lower loss
profile compared to 1× 10−3 (orange). All subsequent experiments utilized the more stable 1× 10−4

or lower learning rates.

Figure 2: Loss for learning rate comparison. lr 1× 10−3 (orange) vs. 1× 10−4 (pink). Batch size 32.
Context 2 hours.

Batch Size Batch size hyperparameter tuning (Figures 3 and 4) hows a lower batch size performs
better in terms of training loss and the L1 metric, as seen in Figures 3 and 4. A batch size of 8 (black)
achieved both a lower final loss and a lower L1 metric compared to a size of 32 (blue). The L1 metric,
which measures the absolute difference between the model’s recommended dose and the historical
dose, suggests that the model trained with a smaller batch size was able to more closely mimic the
patterns in the training data.

Figure 3: Loss for Batch size comparison (black=bs8, blue=bs32). Learning rate=1× 10−4. Context
2 hours.

Context Length Context length tuning (Figure 5) showed that lengths longer than 2 hours (24
timesteps) began to reduce performance on the validation set. This may suggest that for many
general-purpose decisions, more distant history introduces noise rather than valuable signal. However,
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Figure 4: L1 metric compared to historical episode. For Batch size comparison (black=bs8,
blue=bs32). Learning rate=1× 10−4. Context 2 hours.

Figure 5: 6 hours context (pink) vs 2 hours.

further tuning of other hyperparameters and potentially increasing model capacity could reverse this
conclusion, so we leave more extensive exploration of very long context lengths to future work.

4.2 Qualitative Analysis

To evaluate the clinical plausibility of the learned policy, we employed the direct policy comparison
method detailed in the Method section. This analysis revealed that the model’s behavior is highly
sensitive to the training hyperparameters.

Initial experiments using a smaller batch size (8) and a higher learning rate (1× 10−4) resulted in a
policy that perfectly mimicked the historical actions, a phenomenon known as behavioral cloning. As
shown in Figure 6, the model’s recommended actions are identical to the historical actions. While
this leads to a low training loss, it demonstrates a failure to learn a novel or potentially improved
policy beyond simply copying the training data.

In contrast, after adjusting hyperparameters to use a larger batch size (64) and a lower learning rate
(1 × 10−5), the model learned a more nuanced and proactive policy. Figure 7 shows a scenario
where glucose is rising. While the human took no action, the model recommended a series of small
corrective boluses. This demonstrates that with careful tuning, the Decision Transformer is capable
of learning a policy that is not merely a clone of the dataset but a novel strategy that attempts to
proactively correct undesirable trends.

5 Discussion

This project successfully demonstrated the feasibility of applying a Decision Transformer to learn
a personalized insulin dosing policy from real-world, multi-modal sensor data. The key challenge
in training such a model is guiding it to learn a policy that is more effective than the potentially
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Figure 6: With a batch size of 8 and learning rate of 1× 10−4, the model exhibits overfitting behavior,
precisely cloning the historical actions.

suboptimal behavior present in the historical data, rather than simply imitating it. Our results indicate
that this is achievable, but highly sensitive to the choice of training hyperparameters.

The initial quantitative results, particularly the L1 metric, showed that certain hyperparameter settings
(small batch size, high learning rate) excelled at behavioral cloning. While this minimizes training
error, it fails the primary objective of finding a better policy. By adjusting the hyperparameters (larger
batch size, lower learning rate), we were able to train a model that, in qualitative analysis, exhibited
a more desirable, proactive policy. This suggests a trade-off between imitation and optimization
that must be carefully managed. The model’s ability to recommend proactive corrections, as seen in
Figure 7, is a significant success and demonstrates the potential of this approach.

The primary limitation of this work remains the evaluation methodology. Our qualitative analysis is
an open-loop evaluation; we can see that the model recommends a better action, but we cannot see
the causal outcome of that action, as the model’s decisions do not influence the future states it sees.
This prevents the generation of reliable quantitative metrics, such as an improved Time-in-Range.
The second limitation is the use of a single-subject dataset, which means the resulting policy is highly
personalized but not generalizable.

Future work must prioritize closing the evaluation loop. The most critical next step is to integrate
the promising, proactive model with a validated physiological simulator (e.g., the UVA/Padova T1D
simulator). This would allow for robust, closed-loop testing of the policy’s long-term effects on
glycemic control and the generation of trustworthy quantitative metrics.

6 Conclusion

This project explored the application of Decision Transformers for personalized diabetes management,
developing a complete pipeline from raw, multi-modal sensor data to a trained policy model. We
demonstrated that with careful hyperparameter tuning and techniques like weighted loss functions,
it is possible to train a model that goes beyond simple behavioral cloning and learns a proactive
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Figure 7: With a batch size of 64 and learning rate of 1× 10−5, the model learns a more proactive
policy, recommending corrective insulin during a period of rising blood sugar where the historical
user did not.

policy for recommending insulin corrections. The direct policy comparison proved to be a robust
and interpretable method for qualitatively evaluating and understanding the nuanced behavior of the
learned agent.

The main conclusion of this work is that Decision Transformers represent a viable and promising
approach for this offline reinforcement learning problem. However, the project also underscores
the profound difficulty of offline evaluation. While we have successfully trained a model that
appears to make intelligent, proactive decisions, validating the real-world benefit of these decisions
requires a more advanced, closed-loop simulation environment. This work serves as a successful
proof-of-concept and lays the groundwork for future research integrating such learned policies with
physiological simulators to truly assess their clinical potential.

Changes from Proposal The most significant deviation from the initial project proposal was the
expansion of the project’s scope. The original objective was to focus specifically on the challenging
post-exercise period. However, as documented in the project milestone, this narrow focus yielded a
dataset of only 159 sequences, which was insufficient for robustly training a Decision Transformer. To
address this, the objective was revised to develop a general insulin delivery recommendation model,
which allowed for the creation of a substantially larger and more diverse dataset from the available
data. Consequently, the evaluation strategy also evolved. While the stretch goal of integrating a
formal physiological simulator was not reached, this work instead focused on developing a robust
qualitative analysis pipeline to directly compare the model’s learned policy against the historical
policy in a variety of real-world scenarios.
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A Additional Experiments

In additional experiments, unweighted cross entropy loss demonstrated the importance of class
weighting. Without the weighting, the model learns to always select no insulin (the most frequent in
the dataset). See Figures 8 and 9.
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Figure 8: Example with unweighted cross-entropy loss. All of the qualitative examples are similar
because the model learned to always select 0 insulin.

Figure 9: Loss with unweighted cross-entropy loss.
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