Extended Abstract

Motivation In autonomous off-road driving, the vehicle dynamics can vary widely depending
on the terrain underfoot, especially during aggressive maneuvering. The planner must therefore
account for terrain effects to ensure good tracking performance and safety (e.g., to prevent unsafe
skidding or rollover). Terrain effects can be difficult to model with traditional physics, motivating
learned dynamics models. While offering generally improved accuracy, these learned models may
not be globally reliable. Thus, for reliable operation the planner must in turn account for the learned
dynamics model uncertainty.

Method Our approach presents two key components: a vision-conditioned learned dynamics model
and an uncertainty-aware planner. Using images received from on onboard camera, the dynamics
model infers the local terrain and correspondingly modifies the vehicle dynamics. Given a new image,
we apply the pre-trained DINO foundation model to assign general-purpose feature descriptors to
each image patch, and apply a learned neural network to compress to lower-dimensional terrain
latents. For a query state-action pair, we then interpolate to find a terrain latent associated with
the query position and pass this terrain latent to a learned neural network for terrain-conditioned
tire force prediction. We then incorporate the learned dynamics into an uncertainty-aware model
predictive controller. Instead of a single model, we train several models and use the full ensemble for
both dynamics prediction and uncertainty quantification. Specifically, we formulate a probabilistic
framework for model error, using the ensemble sample covariance, and solve the resulting stochastic
model predictive control optimization.

Implementation To learn the vision-conditioned dynamics model, we train using demonstrated
trajectories paired with onboard camera images. We train the dynamics model end-to-end, jointly
learning the terrain latent and tire force predictor models using single-step prediction error for
short trajectory segments. To implement the uncertainty-aware planner, we first solve a certainty-
equivalent optimization problem using the ensemble but ignoring model error. Then, using the
linearized dynamics we derive an optimal linear tracking controller to model closed-loop error
propagation. Lastly, using the ensemble sample covariance and this tracking controller we solve an
uncertainty-aware optimization problem, featuring an additional uncertainty term in the cost.

Results We test our method using a visually realistic simulator fitted to a real room using Gaussian
splatting. This room features visually distinct tiles which we artificially assign different terrain
properties. We evaluate our method’s performance using reference tracking cost and the fraction
of trajectories diverging from the path reference. We compare against a terrain-agnostic baseline
which assumes a single terrain across space as well as an ensemble baseline which uses the ensemble
average for the dynamics model but ignores model uncertainty. Our results show that we improve
significantly in tracking cost and divergence fraction compared to the ensemble baseline. While
our method achieves higher average tracking cost than the terrain-agnostic baseline (due to some
instances of divergence), our median performance is better.

Discussion In addition to quantitative analysis, we present example results visualizing the learned
terrain latents using our model. These latents distinguish the different terrains, qualitatively suggesting
the validity of our vision-conditioned dynamics model. Additionally, we compare the trace of
the ensemble covariance for our uncertainty-aware planner and the uncertainty-agnostic ensemble
baseline. We observe that the trace is reduced using our method, suggesting that the uncertainty-aware
planner prevents the vehicle from reaching regions where the learned ensemble dynamics have high
uncertainty.

Conclusion We developed a prototype approach for off-road autonomous driving. Using a vision-
conditioned learned dynamics model we infer terrain effects, and couple this with an uncertainty-
aware planner to improve reliability by accounting for model error. We test our approach using a
visually realistic simulator and demonstrate improved performance compared to terrain-agnostic and
uncertainty-agnostic baselines.

Uncertainty-Aware Planning for Off-road Autonomous
Driving with Vision-Conditioned Learned Dynamics

Aaron Feldman
Department of Aeronautics and Astronautics
Stanford University
aofeldma@stanford.edu

Abstract

In this project, we develop a prototype approach for off-road autonomous driving
using a learned dynamics model to account for terrain. To identify terrain effects,
we condition the dynamics model on images received from an onboard camera. Our
dynamics model reasons locally about the terrain associated with different image
patches, so our planner can anticipate future dynamics changes ahead of the vehicle.
Since we train the dynamics model using demonstrated trajectories, it may not be
globally reliable. Therefore, we explicitly account for model error, formulating
an uncertainty-aware model predictive control strategy for action planning. To
quantify model uncertainty, we train an ensemble of dynamics models. Using
the ensemble, we derive a probabilistic framework for model error and solve a
stochastic model predictive control problem using the ensemble covariance for
uncertainty quantification. We evaluate our approach in visually realistic simulation
and improve tracking performance compared to terrain-agnostic and uncertainty-
agnostic baselines.

1 Introduction

For effective and safe autonomous off-road driving, the robot must be able to reason about the
effects of terrain on the vehicle dynamics and account for this in its planning |Han et al.| (2024)). For
instance, the robot planner must account for increased slip over a sandy surface, slow down before an
ice patch to prevent skid, or avoid bumps which could cause rollover. However, accurate physical
modeling of the dynamic effects induced by terrain can be challenging, especially when the vehicle
drives aggressively or near performance limits |Djeumou et al. (2023)); Kabzan et al.| (2019). The
vehicle may encounter a wide and continuously varying set of terrains in the real-world and the
associated dynamic effects may be complex. Therefore, rather than predefining physical models for
the terrain, in this project we propose to learn a terrain-conditioned dynamics model from trajectory
data. Using this model, we can predict vehicle state evolution conditioned on the terrain underfoot. To
enable effective planning, this dynamics model should provide insight not only about the immediate
terrain effects but also foresight into upcoming terrain effects ahead of the vehicle. For instance, this
foresight is necessary for the planner to anticipate the effects of an upcoming ice patch and slow down
accordingly. To achieve this foresight with our dynamics model, we propose to condition the learned
dynamics model using image input. Using a forward-facing onboard camera capturing images of the
nearby terrain, our dynamics model learns to associate visual features of the image with terrain effects,
assigning a terrain latent to each pixel patch in the image. By then interpolating these latents based
on a queried position, we can infer the associated terrain underfoot and learn to predict the associated
tire forces. Notably, we learn the terrain-conditioned dynamics model in a single training phase,
jointly learning the terrain latent model and tire force predictor model. By doing so, we can learn
to extract visual information which specifically pertains to dynamics prediction i.e., terrain effects.
Additionally, while our approach relies on trajectory data to learn the vision-conditioned dynamics

Stanford CS224R 2025 Final Report

model, these trajectories do not need to be expert demonstrations. Moreover, because we separately
learn a dynamics model, it can then be used for a wide variety of planning tasks downstream and
possibly new environments with similar terrains.

While this model-based approach offers flexibility, a key challenge is that the learned dynamics
model is imperfect and not reliable across the full state space. Rather, the model is a function of the
trajectory training data, which may cover a limited subset of the possible state, action, and terrain
combinations. For instance, if the trajectory demonstrations come from teleoperation they may not
feature many instances of dramatic acceleration or high speed. As we show in our results, it is critical
to account for the learned dynamics model inaccuracy in planning. Without doing so, the planner
can venture into regimes of poor dynamics prediction, resulting in divergence from the intended
motion. Therefore, to complement our vision-conditioned learned dynamics model, we develop
an uncertainty-aware planner. We adopt a model predictive control (MPC) framework, where we
repeatedly plan actions for a short horizon into the future by online optimizing a tracking cost using
the dynamics model. To account for model uncertainty, instead of using a single model, we train an
ensemble of learned dynamics models. Then, during planning we use the ensemble sample covariance
to estimate model uncertainty and optimize the planning objective in expectation, accounting for
model uncertainty in the cost.

We test our approach in a visually realistic simulator, using a Gaussian splat |Ye et al.| (2024)) to
render realistic camera views of the terrain. We show that our vision-conditioned dynamics model
distinguishes the different terrain types and that our planner improves tracking performance compared
to a terrain-agnostic baseline which assumes a single, global terrain. Furthermore, we demonstrate
that accounting for model uncertainty is critical during planning, as an ablation which plans using the
ensemble average without an additional uncertainty term performs poorly and frequently diverges.

In summary, the key contributions of this work are:

1. From demonstrated trajectories, we learn a vision-conditioned dynamics model to account
for terrain effects during autonomous off-road driving.

2. We incorporate this learned dynamics model into an uncertainty-aware MPC planner which
can anticipate future terrain changes and account for model uncertainty using a model
ensemble.

3. In visually realistic simulation, we show that our approach improves performance over
a terrain-agnostic baseline as well as using an ensemble model but without additional
uncertainty quantification.

2 Related Work

Prior work has shown that visual input can successfully be used to inform planning over varied terrain.
All these works aim to associate visual features with terrain effects, but vary in how they describe the
terrain effects. Some predict an associated cost|Castro et al.|(2023)) or traversability |[Frey et al.| (2023);
Mattamala et al.| (2024), others explicit/interpretable physics parameters (Chen et al.|(2024); [Margolis
et al.| (2023), or learned terrain latent parameters |Gibson et al.|(2024)); Nagabandi et al.| (2018)). Of
this category, most similar to ours is|Gibson et al.| (2024) which also leverages the pre-trained DINO
model (Oquab et al.|(2024) to obtain general-purpose image features. The DINO latents are then
registered to a voxel location and input to a learned dynamics model.

An additional line of work focuses on meta-learning and online adaptation for learned dynamics
models. Meta-learning approaches Harrison et al.| (2018); |[Banerjee et al.| (2020); Richards et al.
(2021} 2022); |0’ Connell et al.| (2022); Lapandic et al.| (2024) seek to learn a base dynamics model
offline which can be quickly adapted online as state transitions are observed. These approaches can
also be combined with vision to improve the base dynamics model Lupu et al.| (2024); [Levy et al.
(2025)). Adaptation can also be framed as learning a dynamics-conditioning latent from a buffer of
the recent state history Djeumou et al.|(2024)); Kumar et al.|(2021). While valuable, meta-learning
and online adaptation are complementary to our work that could serve as valuable extensions. Instead
of reasoning in hindsight from recent transitions or only about the immediate terrain, we focus
on using vision-conditioning so our planner can anticipate future dynamic changes. Furthermore,
we incorporate model uncertainty directly into our planner, anticipating model error in the future
planning horizon rather than focusing on adapting the model online based on observed error.

—— Camera X-axis
—— Camera Y-axis
—— Camera Z-axis

Projection Rays Collected Rollouts

o8
06
0.4
7\, 02z
‘ oo 125

-0.2
-0.4

-0.6
\ 075

050 075 100 125 L50 175 200 2.5 250
x

Figure 1: Visualizing Trajectory Training Data

Lastly, there have been other works using ensembles of learned models for uncertainty-aware
planning/control. Training an ensemble of neural network models and studying their disagreement has
been proposed as a general approach for neural network uncertainty quantification|Lakshminarayanan|
(2017). In model-based reinforcement learning, an ensemble is often used to account for error in
the transition dynamics model [Buckman et al.| (2019)); [Kurutach et al.| (2018). The most similar work
to ours are [Chua et al| (2018); Dyro et al.| (2021) which fit an ensemble of neural network dynamics
models and then uses them for online action planning. They propose to sample transitions from each
model in the ensemble to get a set of possible rollouts (i.e., particles) when optimizing for an action
sequence. In contrast, our proposed approach propagates the dynamics using the ensemble average,
but accounts for stochasticity by appropriately modifying the optimization objective based on the
ensemble sample covariance. explores a similar idea of penalizing the reward based
on ensemble uncertainty for offline reinforcement learning. In contrast with [Yu et al. (2020), our
approach shows how to penalize based on a principled probabilistic framework for model error using
the ensemble, rather than a hyperparameter-weighted heuristic penalty.

3 Method

Our method consists of two key components: the vision-conditioned learned dynamics model and the
uncertainty-aware planner using it.

3.1 Vision-Conditioned Learned Dynamics Model

To learn the vision-conditioned dynamics model we use trajectory data paired with video from the
onboard camera. At each trajectory time, we record the vehicle state X, the action taken Uy, and
current image I; of the terrain ahead of the vehicle. In our case, we generate trajectories using an
expert MPC, which knows the ground-truth physics across terrains in the simulation, and tracks
randomly generated reference paths. However, the trajectory data could come from human operation,
or via a simplified feedback controller. Since the data is used only for dynamics learning, it need
not be optimal. Fig.[I|shows an example trajectory generated in this way, an associated image from
one timestep rendered in the Gaussian splat simulator and its projection onto the ground ahead of the
vehicle, and several trajectories with associated references.

We model the vehicle using a bicycle model Hoffmann et al.| (2007) where state X =
(z,y,,v8, vf,w) consists of the global position p = (z,y) and heading), longitudinal and
lateral speeds in body frame v = (v2,v2), and angular rate w. The commanded action U = (F, 9)

where F is a commanded thrust force and § is the forward steering angle. The vehicle dynamics are

given by

x vB cos(v) — vP sin(v))

Y vF sin(¥) + v} cos(y)

b= “)
P | | 1/m(F, — Fypsin(6) + mo)iw)

v} 1/m(F,, + F,t cos(§) — mvBuw)

w 1/1.(Fyracos(d) — Fyb)

where a, b, m, I, are the vehicle forward/rear axle distances, mass, and moment of inertia. The tire
forces (F, F, I, 5) are a longitudinal force, and two lateral forces at the rear/forward axles. These
tire forces depend on the terrain beneath the vehicle, and have previously been modeled using physics
(e.g., using the slip angle) or learned models | Kabzan et al.|(2019); Djeumou et al.|(2023)). Our goal
will be to learn these tire forces using an image of the terrain, as described below.

Our vision-conditioned dynamics model operates in several stages. Given a conditioning image I of
the terrain and a query state X; and associated action Uy, our model f aims to predict the resulting

next state X; 11 =~ f(X¢, Up; I). The overall model architecture is summarized in Fig. 2?.

When receiving a new image I, we first apply the pre-trained DINO model [Oquab et al.| (2024) to it,
obtaining a set 21, ..., zp of general-purpose features z; € R334, describing each 14 x 14 pixel patch
in the image. We then compress these general-purpose features to lower-dimensional terrain latents
01, ...,0p using a neural network learned module h(z;) = 0; € R3 applied identically and separately
to each DINO feature. The hope is for & to extract from the DINO features only the relevant visual
information pertinent for terrain classification and dynamics prediction. These resulting terrain latents
{6}, can be used repeatedly until a new image is obtained. By using the camera parameters, we
can project from image coordinates to physical coordinates in space (see the center portion of Fig.
relying on a flat ground assumption or depth image. Thus, we can obtain 2D positions on the ground
{p:}2, for each pixel patch, associated with the terrain latents {6, }2,.

Given a query state X and action U, we first perform interpolation to determine a terrain latent 0
describing the terrain at the query position. Given the query position p, we perform radial basis
function interpolation

D D
0(p) =Y wibhi,w; = exp(—|lp — pill3)/ D _ exp(—llp — p;l13). ()

i=1 j=1
We then use 6 as an additional input for a learned neural network tire force module
(FwaFyT'7Fyf):g(vfava(*U)Fcaéve)' (3)

After obtaining the tire forces, we apply the bicycle model Eq. [T| with Euler discretization to predict
the next resulting state. Notably, our learned dynamics f do not depend on global coordinates, so
our approach can generalize to novel environments and tasks (featuring similar terrains as seen in
training).

We train the dynamics model end-to-end, jointly learning the terrain latent model h and tire
force predictor g. To do so, we randomly extract short trajectory segments from the data
(Lo, Xo,Ug, X1,Uy, ..., X) and compute the single-step prediction error when conditioning on
the starting image I for all times:
N-1
Loss = > || Xpy1 — f(Xe, Un)ll3 4)
k=0
We choose IV based on our MPC planner’s horizon. By reusing I across the horizon, the learned
dynamics model is trained to use different parts of the image depending on the query state X, distance

to Xy (e.g., the bottom of the image is used earlier in the horizon and upper portions towards the
end).

3.2 Uncertainty-Aware Planner

We use the fitted vision-conditioned dynamics model for MPC planning to track a given reference.
MPC repeatedly plans for a short horizon of N actions, using the dynamics model f to predict future

Learned

Terrain Latent

00 a0 500

Interpolate K

— Camerawark
» o e s Bicycle Model

Projection Rays F

Query State-Action

(X; V)

Learned o
Predicted Tire Forces / 2}_ o 0 7 Fye F,
F, -

,,7 NN(U Jw, Fe,0,w,0) (¥

-10
Fyr

»

Figure 2: Vision-Conditioned Dynamics Model Architecture

yf

10

states, and optimizes a tracking objective to follow a reference path X ,:

N N-1
pomin. T = 301X = XpUG + Y Uk~ Uil
0:N—1,X1:N k=0 k=0 (5)

sit. Xp1 = f(Xp, U Iy), Vk=0:N—1,
FUk<gu, Vk=0:N-1

Here @ > 0 is used to penalize state dev1at10n from the reference states, R > 0 is used to encourage

temporally smooth action sequences F,, g,, describe control constraints, and we condition f on the
latest image [y throughout the horizon. After solving for an open-loop plan Uy.y—_1, X1:n, MPC
executes Uy before re-solving at the next time.

Directly solving Eq.[5|with a single model performs quite poorly, as it neglects model error/uncertainty
in the learned dynamics f. To improve performance, we propose training an ensemble of several dy-

namics models fl, e f M, using them for both improved dynamics prediction and model uncertainty
estimation. Our approach adopts a probabilistic model of the dynamics using the ensemble and then
solves the resulting stochastic MPC problem.

Each neural network is trained on the same data but with random initialization and stochastic descent,
therefore for given query (X, U) the errors ¢; are independent, identically distributed random variables
f(X,U) = fi(X,U) = &,E[e;] = 0,Covle;] = B(X,U) (6)

where f (X U) is the fixed but unknown true dynamics. Our only assumption/approximation is that
the error is zero-mean i.e., if we were to train many neural network models, on average, they would
predict the correct value f (X,U). From Eq. EI, the ensemble average dynamics f = 1/M ZZ 1 fi

have random error € = 1/M Ef\il €; yielding

f(X.U) = F(X,U) + & Efed = 0,Cov(e) = (X, U) /M. ™
Since the error covariance is unknown, we approximate it by the ensemble sample covariance
M
1 R _ . _
B(X,U) = 35X, U) = 70— D _(A(X,U) = FX,ON(f(X,0) = F(X,0)T. (®)

i=1

Using Eq. El we can describe the ensemble error after a single time-step X1 = f(Xy,Ux) =
f(Xk, Ug) + €. However, we need to consider how error propagates over the N-step horizon. We
achieve this by using a linear approximation of the dynamics and a linear tracking controller as a

"For U_; in Eq. Elwe use the executed control action from the previous timestep.

surrogate for closed-loop execution of MPC. We first solve for an initial plan {X;} N, {Ux}N_,
solving the optimization in Eq. [5| with the ensemble dynamics and ignoring model error. Using this
initial plan, we linearize the ensemble dynamics f about these states and actions to approximate

Xi41 ~ A X + BLU, + Cr + €.)

Ideally, we would like to understand how error propagates under closed-loop execution of MPC,
which re-solves at each time and can thus respond to new errors. As an implementable surrogate
model, we instead use the linearized dynamics {(Ay, Bx) ,]j:}f to derive an optimal linear feedback
controller { K k},i\:ol using the backwards Riccati equation (see the Appendix for details). Thus, for
the purposes of optimization, we approximate future MPC’s response to error e, = X, — X, via

U = Uy + Ki(Xy, — Xi) (10)

where U}, is the nominal/planned action and X, is the nominal/planned state using the ensemble
dynamics. From a practical perspective, introducing the tracking controller is necessary to ensure
that the error dynamics are stable, preventing cost divergence. The nominal states evolve under the
ensemble dynamics

yk+1 = f(Xk,Uk) %Akyk—FBkUk—FCk. (11
Thus, using Eq.[9} Eq.[T1] and Eq.[I0]error dynamics are approximately given by
ex+1 = (Ax — BrKg)ex + €. (12)

This can be written in batch form to express £ = S.£ where the matrix S, is lower diagonal and uses
the tracked dynamics Ay, + B K, for error propagation and £ is column stack of {Ek}fcv;ol. In batch,

we therefore write X = X + S.& wherg X E the determiniitic, nominal states over time. Similarly,
the tracking feedback law yields U = U + K S¢W where K = blockdiag(Ky, K1, ..., Ky—1) and
S¢ is the same as .S, except that the last block row is clipped (since ey is irrelevant).

For tractability, we assume E[£] = 0, Cov[€] = ¥ = blockdiag(3o/M, 1 /M, ..., %x_1/M). In
other words, we additionally assume that the ensemble prediction error is uncorrelated across time.
We use the ensemble covariance to estimate the one-step prediction error covariance Y; /M, queried
at yk R Uk .

Under our probabilistic framework, the cost J is stochastic, so for optimization, we minimize the
expected cost

E[J] = E[(X — X3)"Q(X — X,) + (U — U-)"Ra(U — U-)] (13)
where U_ = (U_1,Up...,Un_2), @ = blockdiag(Q, ..., Q), and Ra = blockdiag(Rn, ..., RA).

Using the trace trick E[27 2] = tr(E[z27]) and canceling cross-terms assuming E[£] = 0 yields
ElJ) = (X - X,)TQ(X - X,)+ U RU +tx(ID) (14)

where D = Dx + Dy is constant with respect to the declsion variables and degribes @w the > error
propagates and effects the cost over time. Here Dx = STQS. and Day = (MK SS)TRA(MKS?)
where M is a first-order block difference matrix.

The first term in Eq. (X - X,)TQ(X — X,) + U'RU is simply the objective using the
nominal ensemble dynamics without the model error. The second term in Eq. tr(XD) =
ij\]:_ol tr(ﬁEkak) (as ¥ is a block-diagonal) and Dy, refers to the k-th diagonal block of D.

The resulting uncertainty-aware optimization problem is

N N-1 N-1
. e — _ 1. — —
min E[J} = Z HXk - X;CH?Q + Z HUk - Uk,1‘|%3A + Z tr(MZ(XkyUk)Dkk)
k=0 k=0 k=0

Uo:n-1,X1:N

15)

s.t.YkJrl :f(Xk,Uk;[o), VkE=0:N—1,
FU,<gy,, Vk=0:N-1

In summary, our uncertainty-aware MPC planner performs the following steps at each time:

1. Solve the certainty-equivalent optimization problem Eg. B] using the ensemble dynam-
ics to obtain {X; }2_,, {Ux}~ ;" and linearize the dynamics about this guess, obtaining
{(Ax, Br, ci) bl

2. Using the linearized dynamics, derive a linear feedback controller with gains { K k},ivz_ol via
backwards Riccati recursion.

3. Solve the uncertainty-aware optimization problem Eq. using {K k}g;()l for closed-loop
error propagation and ensemble covariances {X k}ffgol for uncertainty quantification.

4 Experimental Setup

To test our method, we develop a visually realistic simulator by using Gaussian splatting to render
images from a real room. On the floor, there are three tiles (red, green, and blue) and we artificially
assign to each of these tiles different terrain properties and use a single terrain for the remainder
of the room. Specifically, the true terrain dynamics, which are unknown to the model and must be
learned from vision, are that the lateral tire forces are proportional to the slip angle Fy,., s = Cya,. /¢
B B
where o, = tan_l(vyv%bw) and ay = tan_l(%U#)
values correspond to more slippery surfaces. We set C, = —1 for the red terrain, Cyy = —2 for the
green terrain, C;, = —5 for the blue terrain, and the remaining background terrain has C, = —10.
The true model for the longitudinal force, is terrain independent (but is also learned) is F, = F, — F}
where Fy = 0.1 models rolling resistance.

— 0. Intuitively, smaller in magnitude C,

To train the vision-conditioned dynamics ensemble, we fit M = 5 models, each to the same training
data of 400 trajectories, each consisting of 100 timesteps with discretization of At = 0.05. The
randomly generated reference trajectories (tracked by the expert MPC for training data) were chosen
to traverse the tiled portions of the floor, and some examples are shown in Fig.[I] The appendix
contains more details of the dynamics architecture hyperparameters.

We use a sampling-based solver for model predictive control, drawn from Howell et al.| (2022}, which
randomly generates many perturbations to the previous timesteps action sequence, and selects the
one achieving minimum cost. Despite its simplicity, it works surprisingly well, and a key insight
of the approach if that the perturbations are generated using randomly set splines, ensuring that the
perturbed action sequences will still be temporally smooth. We plan with a horizon of N = 10 and
use () = diag(1,1,0,0,0,0) for position-only penalization and Ra = diag(0.05,0.05).

5 Results

We evaluate our method by considering performance on a random set of 50 test references, generated
in the same fashion as the training data. As performance metrics we consider the tracking cost over
the full resulting closed-loop trajectory, defined as in Eq. [5] with the same () and R but for the full
trajectory duration. Since a key concern is that without accounting for model error, the planner might
diverge, we define a divergence metric. We declare a trajectory to have diverged from the reference
when the final state is more than 0.5 [m] from the associated goal state. As summary statistic over
the test runs, we consider the median total cost along with interquartile range IQR (i.e., the difference
between the 75th and 25th percentiles) as a measure of spread. We use median and IQR as measures
which will be less sensitive to outliers i.e., instances of divergence. Instead, we separately report
the fraction of divergence. For completeness, we also compute the average cost and associated 20
confidence bounds, although this measure is more sensitive to divergence outliers.

We compare our method against several alternatives. To study our suboptimality, we compare against
an "oracle" MPC which uses the true dynamics unknown to our method. We also consider a terrain-
agnostic "default" baseline which assumes the relationship £, = C'y« but always uses a C,, = —4.5,
averaging across the terrains. By comparing against this method, we can observe the potential gain
of reasoning about terrain effects. Lastly, we consider an "ensemble" ablation which solves the
certainty-equivalent optimization Eq. [3]still using the ensemble average dynamics, but dropping the
ensemble uncertainty term found in Eq.[T5] By comparing against this method, we can assess the
benefit our uncertainty-aware planner.

Comparison of Cumulative Tracking Cost

1.0
—— Oracle
Default
— Ensemble
0.8 Ours
u
(%]
o
[¥]
w 0.6
a
=
w
=
©
S 0.4
E
=5
o
0.2
0.0 U— T T T T T
0 1 2 3 4 5

Time [s]

Figure 3: Cumulative Tracking Cost over Time

Table 1: Performance Comparison

Method Median Cost IQR Average Cost, 20 CI Divergence Fraction

Oracle 0.051 0.034 0.065, (0.049, 0.08) 0.0
Default 0.253 0.162 0.288, (0.232, 0.344) 0.0
Ensemble 0.525 1.947 1.72,(1.000, 2.441) 0.12
Ours 0.169 0.167 0.412,(0.111, 0.713) 0.02

5.1 Quantitative Evaluation

In Figure[3]we compare the cumulative tracking cost across the trajectory time for each of the methods
(Oracle, Default, Ensemble, and Ours). Specifically, we plot the median tracking cost up to the given
time and shade the 25th to 75th percentile region. We observe that oracle unsurprisingly performs
best, followed by our method, then the terrain-agnostic default, and lastly the ensemble ablation with
no uncertainty term. We also note that the interquartile range grows dramatically for the ensemble
approach towards the end, reflecting potential divergence.

We present summary statistics for the final time of these runs in Table[I] After oracle, our method
achieves the lowest final median cost followed by default and then ensemble. The interquartile range
for oracle is lowest, with comparable ranges fo default and our method, and a higher interquartile
range for the ensemble. Intuitively, the interquartile range results indicate the oracle performs most
consistently and ensemble least consistently. This is reflected also looking at the divergence fraction:
oracle and default never diverge, our method does 2% of the time, while ensemble diverges 12%.
This finding supports the important of uncertainty-aware planning to prevent divergence, although it
is still imperfect. Although default has a higher median final cost that our method, it outperforms
in terms of the final average cost. This contrast can reflect the presence of some poorly performing
outliers when using our method. Further improving our method to prevent the remaining cases of
divergence is an important next step, and could even potentially be accomplished by simply adding
more models to the ensemble.

5.2 Qualitative Analysis

We also performed qualitative analysis using single example trajectory runs to better understand the
effectiveness of the learned dynamics model and the uncertainty-aware planner.

Oracle Default Ensemble ours

12 14 16 18 20 22 12 14 16 18 20 22 12 14 16 18 20 22

Figure 4: Performance on Challenging Circle Reference

Ours Current Latents Qurs Planned Latents

- Closed-Loop -~ Closed-Loop °
--- Reference ---- Reference

H
0
.
o e
1P
)

Wl

S 1Y]
i
»ﬁ. 1

08

o
. TR

0.6

04

0.2 02

Figure 5: Current and Planned Terrain Latents

Figure [4] shows an example trajectory for each of the methods. We chose this example to follow
a circular reference of radius 0.45 [m] at a reference speed of 1.1 [m/s]. This was chosen as a
particularly challenging example due to its fast speed at a relatively tight radius. Qualitatively, while
the oracle tightly follows the circle, we observe that the terrain-agnostic default slips out on the
green and red terrains which have lower magnitude C';. The ensemble does so as well and begins to
diverge. In contrast, our method performs relatively well, slipping out only on the red terrain and not
as extensively.

For this same example, we also visualized with RGB coloring the interpolated terrain latents § € R3
(averaged across the ensemble models) for our method. El FigureEl shows the resulting latents. On
the left, we show only the latent at the current state over time. On the right, we visualize at different
times the NV latents for the full planned MPC horizon. We observe that there are indeed roughly four
colors in the left plot showing the current latents, reflecting that the vision-conditioned dynamics
model is capable of distinguishing the terrains. The right plot showing the planned latents is more
ambiguous but still shows some colors shifts across the different terrains. Notably, we can also see
some instances where early in the horizon the latent is one color but then shifts to another as the
terrain shifts. For instance, in the upper portion of the plot we can see transitions from blue to green.
Although not clearly defined, this loose finding can suggest the capability of our vision-conditioned
dynamics model to anticipate terrain shifts later in the planning horizon.

Lastly, to qualitatively understand the impact of the uncertainty term, we visualized in Figure[§the
trace of the ensemble covariance when queried at (X, Ug), comparing the ensemble approach with
our approach featuring the additional uncertainty term. We observe that our approach tends to reduce
the ensemble covariance trace relative to the baseline with no uncertainty term. In particular, our
uncertainty-aware planner reduces spikes in the trace evident in the baseline. These findings suggest
that the uncertainty term encourages the planner to remain in regions where the ensemble models
agree, which may help prevent divergence.

6 Discussion

Our approach demonstrated a proof-of-concept for uncertainty-aware vehicle planning using a vision-
conditioned learned dynamics model. However, there are several key directions to continue this work.

?For better display, we used PCA to align RGB with principle components.

Trace of Ensemble Covariance

—— Ensemble
84 ours

tricov)

ES
L

N}
.

///\' 1'\‘,
el - NN
° ' 2'I’|me [sec] : ¢

T
5

Figure 6: Comparing Ensemble Covariance Trace with and without Uncertainty Term

Firstly, testing in hardware using an RC or full-scale car and in varied off-road environments would
help determine the real-world viability of the proposed approach. Secondly, it would be valuable to
compare our approach against alternative dynamics models using history-conditioning and adaptation.
These approaches could also be incorporated into our vision-conditioned model. Thirdly, it would be
valuable to compare against particle-based approaches for uncertainty-aware MPC planning.

From the theoretical perspective, it would be valuable to empirically justify/assess the probabilistic
framework for using the ensemble (e.g., the zero-mean error assumption and accuracy of the ensemble
sample covariance). This probabilistic framework could also be extended for other uses. Specifically,
it could be used to explicitly constrain the planner to avoid traversing unknown/anomalous terrains.
This could be achieved by adding an optimization constraint bounding the trace of the ensemble
covariance (i.e., the expected squared single-step dynamics error should remain sufficiently small).
Additionally, the same error propagation approach currently used for uncertainty-aware planning
could also be used to enforce chance constraints on the state e.g., to avoid obstacles or occluded
regions while accounting for the model error.

While our approach significantly improved on the ensemble baseline, it can still diverge. To resolve
this issue, we could try adding more models to the ensemble or improve the quality of each model.
One method to improve model quality could be to train the models using a closed-loop tracking cost
with linear feedback (as currently done for error propagation) rather than mean-squared error. Doing
so could provide a loss function better aligned with the downstream planning use case for the model
and thereby potentially achieve improved performance.

7 Conclusion

In this work, we developed a prototype approach for terrain-dependent modeling and planning for an
autonomous off-road vehicle. We learned a vision-conditioned dynamics model to infer terrain effects
on the vehicle dynamics using an onboard camera. We then incorporated this learned model into an
uncertainty-aware planner using an ensemble of models to account for model error in the planning
procedure. We tested our approach in visually realistic simulation and demonstrated improved
performance relative to a terrain-agnostic baseline as well as a planning method which uses the
ensemble but neglects model uncertainty. While we developed our approach for off-road autonomous
driving, it could be adapted for other dynamics learning problems. For instance, vision could be
used to inform model-based planning for manipulation or to reason about currents and wind for
autonomous shipping.

Changes from Proposal Given limited time, we left for future work the goals of comparing against
a particle-based planner and implementing a tracking-based loss for model training.

10

References

S. Banerjee, J. Harrison, P. M. Furlong, and M. Pavone. 2020. Adaptive Meta-Learning for Identifica-
tion of Rover-Terrain Dynamics. arXiv:2009.10191 [cs.RO] https://arxiv.org/abs/2009.
10191

Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. 2019.
Sample-Efficient Reinforcement Learning with Stochastic Ensemble Value Expansion.
arXiv:1807.01675 [cs.LG] https://arxiv.org/abs/1807.01675

Mateo Guaman Castro, Samuel Triest, Wenshan Wang, Jason M. Gregory, Felix Sanchez, John
G. Rogers III, and Sebastian Scherer. 2023. How Does It Feel? Self-Supervised Costmap Learning
for Off-Road Vehicle Traversability. arXiv:2209.10788 [cs.RO] https://arxiv.org/abs/
2209.10788

Jiaqi Chen, Jonas Frey, Ruyi Zhou, Takahiro Miki, Georg Martius, and Marco Hutter. 2024. Identify-
ing Terrain Physical Parameters from Vision — Towards Physical-Parameter-Aware Locomotion
and Navigation. arXiv:2408.16567 [cs.RO] https://arxiv.org/abs/2408.16567

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. 2018. Deep Reinforcement
Learning in a Handful of Trials using Probabilistic Dynamics Models. arXiv:1805.12114 [cs.LG]
https://arxiv.org/abs/1805.12114

Franck Djeumou, Jonathan Y. M. Goh, Ufuk Topcu, and Avinash Balachandran. 2023. Autonomous
Drifting with 3 Minutes of Data via Learned Tire Models. arXiv:2306.06330 [eess.SY] https:
//arxiv.org/abs/2306.06330

Franck Djeumou, Thomas Jonathan Lew, NAN DING, Michael Thompson, Makoto Suminaka,
Marcus Greiff, and John Subosits. 2024. One Model to Drift Them All: Physics-Informed
Conditional Diffusion Model for Driving at the Limits. In 8th Annual Conference on Robot
Learning. https://openreview.net/forum?id=0gDbaEtVrd

Robert Dyro, James Harrison, Apoorva Sharma, and Marco Pavone. 2021. Particle MPC for Uncertain
and Learning-Based Control. arXiv:2104.02213 [eess.SY] https://arxiv.org/abs/2104.
02213

Jonas Frey, Matias Mattamala, Nived Chebrolu, Cesar Cadena, Maurice Fallon, and Marco Hutter.
2023. Fast Traversability Estimation for Wild Visual Navigation. arXiv:2305.08510 [cs.RO]
https://arxiv.org/abs/2305.08510

Jason Gibson, Anoushka Alavilli, Erica Tevere, Evangelos A. Theodorou, and Patrick Spieler. 2024.
Dynamics Modeling using Visual Terrain Features for High-Speed Autonomous Off-Road Driving.
arXiv:2412.00581 [cs.RO] https://arxiv.org/abs/2412.00581

Tyler Han, Alex Liu, Anqi Li, Alex Spitzer, Guanya Shi, and Byron Boots. 2024. Model Predictive
Control for Aggressive Driving Over Uneven Terrain. arXiv:2311.12284 [cs.RO] |https://
arxiv.org/abs/2311.12284

James Harrison, Apoorva Sharma, and Marco Pavone. 2018. Meta-Learning Priors for Efficient Online
Bayesian Regression. arXiv:1807.08912 [cs.RO] https://arxiv.org/abs/1807.08912

Gabriel M. Hoffmann, Claire J. Tomlin, Michael Montemerlo, and Sebastian Thrun. 2007. Au-
tonomous Automobile Trajectory Tracking for Off-Road Driving: Controller Design, Experi-
mental Validation and Racing. In 2007 American Control Conference. 2296-2301. https!
//doi.org/10.1109/ACC.2007.4282788

Taylor Howell, Nimrod Gileadi, Saran Tunyasuvunakool, Kevin Zakka, Tom Erez, and Yu-
val Tassa. 2022. Predictive Sampling: Real-time Behaviour Synthesis with MuJoCo.
arXiv:2212.00541 [cs.RO] https://arxiv.org/abs/2212.00541

Juraj Kabzan, Lukas Hewing, Alexander Liniger, and Melanie N. Zeilinger. 2019. Learning-Based
Model Predictive Control for Autonomous Racing. IEEE Robotics and Automation Letters 4, 4
(2019), 3363-3370. https://doi.org/10.1109/LRA.2019.2926677

11

https://arxiv.org/abs/2009.10191
https://arxiv.org/abs/2009.10191
https://arxiv.org/abs/1807.01675
https://arxiv.org/abs/2209.10788
https://arxiv.org/abs/2209.10788
https://arxiv.org/abs/2408.16567
https://arxiv.org/abs/1805.12114
https://arxiv.org/abs/2306.06330
https://arxiv.org/abs/2306.06330
https://openreview.net/forum?id=0gDbaEtVrd
https://arxiv.org/abs/2104.02213
https://arxiv.org/abs/2104.02213
https://arxiv.org/abs/2305.08510
https://arxiv.org/abs/2412.00581
https://arxiv.org/abs/2311.12284
https://arxiv.org/abs/2311.12284
https://arxiv.org/abs/1807.08912
https://doi.org/10.1109/ACC.2007.4282788
https://doi.org/10.1109/ACC.2007.4282788
https://arxiv.org/abs/2212.00541
https://doi.org/10.1109/LRA.2019.2926677

Donald E. Kirk. 2004. Optimal Control Theory: An Introduction (reprint of 1970 ed. ed.). Dover
Publications, Mineola, NY.

Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. 2021. RMA: Rapid Motor Adaptation
for Legged Robots. arXiv:2107.04034 [cs.LG] https://arxiv.org/abs/2107.04034

Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. 2018. Model-Ensemble
Trust-Region Policy Optimization. arXiv:1802.10592 [cs.LG] https://arxiv.org/abs/1802!
10592

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. 2017. Simple and Scalable
Predictive Uncertainty Estimation using Deep Ensembles. arXiv:1612.01474 [stat. ML] https:
//arxiv.org/abs/1612.01474

Dzenan Lapandi¢, Fengze Xie, Christos K. Verginis, Soon-Jo Chung, Dimos V. Dimarogonas, and
Bo Wahlberg. 2024. Meta-Learning Augmented MPC for Disturbance-Aware Motion Planning
and Control of Quadrotors. arXiv:2410.06325 [cs.RO] https://arxiv.org/abs/2410.06325

Jacob Levy, Jason Gibson, Bogdan Vlahov, Erica Tevere, Evangelos Theodorou, David Fridovich-
Keil, and Patrick Spieler. 2025. Meta-Learning Online Dynamics Model Adaptation in Off-Road
Autonomous Driving. arXiv:2504.16923 [cs.RO] https://arxiv.org/abs/2504.16923

Elena Sorina Lupu, Fengze Xie, James A. Preiss, Jedidiah Alindogan, Matthew Anderson, and Soon-
Jo Chung. 2024. MAGIC-VFM: Meta-learning Adaptation for Ground Interaction Control with
Visual Foundation Models. arXiv:2407.12304 [cs.RO] https://arxiv.org/abs/2407.12304

Gabriel B. Margolis, Xiang Fu, Yandong Ji, and Pulkit Agrawal. 2023. Learning to See Physical
Properties with Active Sensing Motor Policies. arXiv:2311.01405 [cs.RO] https://arxiv!
org/abs/2311.01405

Matias Mattamala, Jonas Frey, Piotr Libera, Nived Chebrolu, Georg Martius, Cesar Cadena, Marco
Hutter, and Maurice Fallon. 2024. Wild Visual Navigation: Fast Traversability Learning via
Pre-Trained Models and Online Self-Supervision. arXiv:2404.07110 [cs.RO] https://arxiv,
org/abs/2404.07110

Anusha Nagabandi, Guangzhao Yang, Thomas Asmar, Ravi Pandya, Gregory Kahn, Sergey Levine,
and Ronald S. Fearing. 2018. Learning Image-Conditioned Dynamics Models for Control of
Under-actuated Legged Millirobots. arXiv:1711.05253 [cs.RO] https://arxiv.org/abs/
1711.05253

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas
Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut,
Armand Joulin, and Piotr Bojanowski. 2024. DINOv2: Learning Robust Visual Features without
Supervision. arXiv:2304.07193 [cs.CV] https://arxiv.org/abs/2304.07193

Michael O’Connell, Guanya Shi, Xichen Shi, Kamyar Azizzadenesheli, Anima Anandkumar, Yisong
Yue, and Soon-Jo Chung. 2022. Neural-Fly enables rapid learning for agile flight in strong winds.
Science Robotics 7, 66 (May 2022). https://doi.org/10.1126/scirobotics.abm6597

Spencer M. Richards, Navid Azizan, Jean-Jacques Slotine, and Marco Pavone. 2021. Adaptive-
Control-Oriented Meta-Learning for Nonlinear Systems. arXiv:2103.04490 [cs.RO] https:
//arxiv.org/abs/2103.04490

Spencer M. Richards, Navid Azizan, Jean-Jacques Slotine, and Marco Pavone. 2022. Control-oriented
meta-learning. arXiv:2204.06716 [cs.RO] https://arxiv.org/abs/2204.06716

Vickie Ye, Ruilong Li, Justin Kerr, Matias Turkulainen, Brent Yi, Zhuoyang Pan, Otto Seiskari, Jianbo
Ye, Jeffrey Hu, Matthew Tancik, and Angjoo Kanazawa. 2024. gsplat: An Open-Source Library
for Gaussian Splatting. arXiv:2409.06765 [cs.CV] https://arxiv.org/abs/2409.06765

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea Finn, and
Tengyu Ma. 2020. MOPO: Model-based Offline Policy Optimization. arXiv:2005.13239 [cs.LG]
https://arxiv.org/abs/2005.13239

12

https://arxiv.org/abs/2107.04034
https://arxiv.org/abs/1802.10592
https://arxiv.org/abs/1802.10592
https://arxiv.org/abs/1612.01474
https://arxiv.org/abs/1612.01474
https://arxiv.org/abs/2410.06325
https://arxiv.org/abs/2504.16923
https://arxiv.org/abs/2407.12304
https://arxiv.org/abs/2311.01405
https://arxiv.org/abs/2311.01405
https://arxiv.org/abs/2404.07110
https://arxiv.org/abs/2404.07110
https://arxiv.org/abs/1711.05253
https://arxiv.org/abs/1711.05253
https://arxiv.org/abs/2304.07193
https://doi.org/10.1126/scirobotics.abm6597
https://arxiv.org/abs/2103.04490
https://arxiv.org/abs/2103.04490
https://arxiv.org/abs/2204.06716
https://arxiv.org/abs/2409.06765
https://arxiv.org/abs/2005.13239

A Implementation Details

A.1 Deriving Linear Feedback Controller

We derive the linear feedback controller in Eq.[10]as the closed-form solution to the quadratic tracking
problem using the linearized error dynamics ey 1 = Apep + B AUy where AU, = Uy — Uy:

N N-1
. 112 2
A[I]Iol:lj{,lfl Z H('kHQ + Z HAU}CHR (16)
k=0 k=0
st egr1 = Ageg + BrAUy, Vk=0:N—1

which reduces to linear quadratic regulation (LQR) [Kirk| (2004} and can be solved in closed-form,
admitting a general solution in the form of a linear time-varying feedback policy AU, = Kyey i.e.,
Eq.|10, The feedback gains { K k}ff:_ol are obtained via the backwards Riccati recursion:

Py =QnN 17)

Ky =— (R+BFPi1By) ' (BF PuyiAy) (18)

Py =Qp + A} Py A, — (AL Pys1Bi + Sy) (R + ngk+1Bk)_1 (B Prs1Ar) (19)
We use (= diag(1,1,0,0,0,0) as in the original policy and R = diag(0.0001,0.0001).

A.2 Dynamics Model Architecture

For the terrain latent model ~» we use an MLP of shape (384,50,25,3) with GeLU activations. For
the force prediction model g we use an MLP of shape (8, 25, 15) with GeLLU activations. We use
~ = 250 for interpolation. We pass in to DINO images of size (90, 160). We train the models for 50
epochs with batch size 30 using Adam with default pytorch arguments.

A.3 MPC Solver Details

For the sampling-based solver developed in [Howell et al.|(2022)), we generate at each time 1000
action spline perturbations using 3 knot points with perturbation variance > = diag(0.1,0.1). Of the
1000, we randomly set 1% to reset to just the perturbation, instead of adding to the previously applied
action sequence.

13

	Introduction
	Related Work
	Method
	Vision-Conditioned Learned Dynamics Model
	Uncertainty-Aware Planner

	Experimental Setup
	Results
	Quantitative Evaluation
	Qualitative Analysis

	Discussion
	Conclusion
	Implementation Details
	Deriving Linear Feedback Controller
	Dynamics Model Architecture
	MPC Solver Details

