Extended Abstract

Motivation Small language models (0.5B parameters) offer computational efficiency but struggle
with complex reasoning tasks. We investigate curriculum learning for the countdown numbers
game, where models use arithmetic operations to reach target numbers from given operands. Existing
curriculum approaches use static difficulty scheduling that can cause training instability. This work ex-
amines whether adaptive curriculum scheduling based on performance feedback can improve training
efficiency while avoiding model collapse in sparse reward reinforcement learning environments.

Method After training a model to output parseable results using SFT with a set of solved example
problems, we develop an adaptive curriculum framework for RLOO (Reinforcement Learning
from Online Optimization) training that targets 50% success rates across completions. This target
maximizes the variance of advantage estimates (R(7) — b) in the REINFORCE objective, ensuring
meaningful gradient signals. We extract difficulty features from countdown problems including parse
tree depth, operator diversity, and maximum intermediate values. A linear regression model predicts
problem difficulty using performance feedback collected during training. The system dynamically
filters problems from a fixed dataset to maintain optimal difficulty levels, preventing scenarios where
all RLOO completions uniformly succeed or fail.

Implementation Our implementation uses a Qwen 0.5B model fine-tuned using SFT on solved
countdown problems, followed by RLOO training with 16 completion candidates. We generate a
base dataset of countdown problems with 3-4 operands covering different structural patterns. The
adaptive curriculum manager monitors success rates every 50 training steps, updates the difficulty
prediction model, and selects problem subsets predicted to achieve the target 50% success rate.

Results We compare three curriculum strategies over 500 training steps. No-curriculum training
achieves 59.0% success rate on evaluation problems. Fixed curriculum obtained better results after
hyperparameter tweaking found the goldilocks zone of problems that were neither too easy nor too
hard. Our adaptive curriculum achieves 64.5% success rate while maintaining stability. However, this
represents only modest improvement over the no-curriculum baseline, suggesting that curriculum
benefits may be more limited than initially expected for this task and model size. Additionally, an
adaptive curriculum based on difficulty estimation of existing dataset problems was implemented and
shows promise, but still needs further investigation.

Discussion Our results demonstrate both opportunities and limitations of adaptive curriculum
learning. While the 50% success rate target successfully prevents the catastrophic collapse observed
in fixed curriculum approaches, the overall improvement over random sampling is substantial (64.5%
vs 59.0%). The fixed curriculum failure illustrated the brittleness of static scheduling - rapid difficulty
progression causes all RLOO completions to fail, reducing optimization to KL penalty minimiza-
tion. The adaptive approach’s stability suggests that performance feedback can guide curriculum
scheduling, though the limited gains raise questions about curriculum learning’s effectiveness for
small models on this reasoning task.

Conclusion This work investigates adaptive curriculum learning for small language models in
sparse reward environments. Our key finding is that while adaptive scheduling prevents catastrophic
training failures seen in fixed curricula, the performance gains over random sampling are modest.
The 50% success rate target maintains training stability by ensuring gradient signal variance, but
curriculum learning may offer diminishing returns for small models on certain reasoning tasks. Future
work should explore whether curriculum benefits scale with model size or emerge more clearly in
other reasoning domains.

Project TANTALUS

Nathaniel Voorhies
Department of Computer Science
Stanford University
ncv@stanford.edu

Abstract

Small language models offer computational efficiency but struggle with complex
reasoning tasks requiring sequential decision-making. We investigate adaptive
curriculum learning for the countdown numbers game using RLOO (Reinforce-
ment Learning from Online Optimization) training with sparse binary rewards. Our
approach dynamically adjusts problem difficulty based on model performance feed-
back, targeting a 50% success rate across RLOO completions to maximize gradient
signal variance. We compare four strategies: no curriculum (random sampling),
fixed curriculum (predetermined progression), adaptive curriculum (performance-
driven selection), and sampling adaptive curriculum (brute-force solution difficulty
estimation). Results show that fixed curriculum achieves 63.4% success but can
suffer instability when difficulty progression outpaces model capabilities. Our
adaptive approaches achieve 64.5% (adaptive) and 65.4% (sampling adaptive)
success while maintaining training stability, representing modest but consistent
improvements over random sampling (59.0%). The key finding is that adaptive
scheduling eliminates the need for manual hyperparameter tuning to find optimal
difficulty progression, providing a robust alternative to fixed curriculum approaches.
This work demonstrates both the potential and limitations of curriculum learning
for small models, showing that adaptive methods prevent training instabilities while
providing moderate performance gains.

1 Introduction

Mathematical reasoning represents a particularly challenging domain for small models (those with
1 billion parameters or less), as it demands precise operation sequencing, accurate intermediate
calculations, and the ability to backtrack when approaches prove unfruitful. The countdown numbers
game exemplifies these challenges: given a set of numbers and a target value, models must combine
arithmetic operations to reach the target while using each number at most once. This task requires
models to explore combinatorial search spaces, evaluate intermediate results, and select among
multiple valid solution paths. These are capabilities that emerge slowly in small models through
standard training approaches.

Curriculum learning, which presents training examples in order of increasing difficulty, has shown
promise in improving learning efficiency in various domains. The core hypothesis is that models can
build foundational skills on simpler examples before tackling more complex problems, leading to
better final performance and more stable training dynamics. However, existing curriculum learning
approaches for language models typically employ static difficulty schedules or simple heuristics for
complexity estimation, which may not adapt to the evolving capabilities of the model during training.

Policy gradient methods their variants like RLOO or GRPO DeepSeek-Al et al.|(2025) have become
standard approaches for aligning language models with desired behaviors. However, these methods
face significant challenges when applied to mathematical reasoning tasks with sparse binary rewards
(correct/incorrect solutions). The sparsity of meaningful feedback signals can lead to training

Stanford CS224R 2025 Final Report

instability, particularly when problem difficulty is not carefully calibrated to model capabilities.
If problems are too easy, all completions succeed and provide no learning signal; if too hard, all
completions fail and no learning signal is retrieved from the model results.

This work investigates adaptive curriculum learning for small language models in sparse reward
environments, using the countdown numbers game as a testbed. We focus on a critical but underex-
plored question: how should curriculum difficulty progress be calibrated to maintain optimal learning
signals throughout training? Our approach continuously monitors model performance to adjust
problem difficulty, targeting a 50% success rate across RLOO completions to maximize the variance
of advantage estimates and ensure meaningful gradient signals.

We make several contributions to understanding curriculum learning in sparse reward reinforcement
learning settings. First, we demonstrate that fixed curriculum schedules, while initially promising, can
lead to catastrophic training collapse when difficulty progression outpaces model learning. This failure
mode occurs when all RLOO completions begin failing uniformly, eliminating the reward variance
necessary for policy gradient updates. Second, we develop an adaptive curriculum framework that
uses performance feedback to maintain optimal challenge levels, preventing both reward saturation
(uniform success) and reward starvation (uniform failure). Third, we provide empirical analysis
showing that while adaptive curriculum prevents catastrophic failures seen in fixed approaches, the
overall performance gains over random sampling are modest for small models on this reasoning task.

Our experimental results reveal both the potential and limitations of curriculum learning for small
language models. Comparing no curriculum (59.0% success), fixed curriculum (63.4% success),
and adaptive curriculum (64.5% success), we find that curriculum timing is as critical as difficulty
ordering. The adaptive approach successfully maintains training stability and provides meaningful
but moderate improvements, suggesting that curriculum benefits may be more limited than initially
expected for certain model sizes and reasoning tasks. These findings have implications for the broader
application of curriculum learning in resource-constrained reinforcement learning scenarios where
training efficiency directly impacts practical deployment feasibility.

2 Related Work

Curriculum learning, initially formalized in|Bengio et al.|(2009), involves training models on examples
of increasing difficulty to improve learning outcomes. Recent advancements have shown particular
promise for enhancing small language models’ reasoning capabilities without requiring the enormous
computational resources of their larger counterparts.

The DeepSeek-R1 paper demonstrates effective curriculum learning through a structured progression
from simpler to complex reasoning capabilities|DeepSeek-Al et al.| (2025). Their multi-stage pipeline
(pure RL, cold-start data incorporation, targeted RL, and comprehensive training) systematically
builds reasoning skills in a difficulty-progressive sequence.

Building on this foundation, |(Gandhi et al.|(2025) explored the causal relationship between cognitive
behaviors and self-improvement capacity. Their research revealed that models exhibiting specific
reasoning patterns (particularly verification and backtracking) demonstrated significantly better
improvement through reinforcement learning compared to models lacking these behaviors. This
explains why some language models effectively utilize additional computation while others plateau.
There process by which these abilities are gained, and gained efficiently is not discussed.

For small code models specifically, recent work has demonstrated that well-designed curriculum
learning strategies can substantially improve performance on complex execution tasks while having
less impact on simpler completion tasks [Nair et al.| (2024). This task-dependent benefit suggests
that curriculum approaches are particularly valuable for complex reasoning challenges that require
sequential problem-solving. However, the curriculum was divided into 3 levels based on a scalar
metric of code complexity.

The R? (Reverse Curriculum Reinforcement Learning) technique offers another promising approach,
progressively working backward from solution demonstrations to create a step-wise curriculum that
enables more efficient learning | Xi et al.|(2024). This is similar to the process we propose, although
working with fully-reasoned correct examples rather than building up skills from smaller problems.

The success of these approaches suggests that combining curriculum learning with reinforcement
learning offers a promising path forward for enhancing small language models’ reasoning capa-
bilities, potentially narrowing the gap between small, efficient models and their resource-intensive
counterparts.

3 Method

Our approach addresses the challenge of maintaining optimal learning signals in sparse reward
reinforcement learning through adaptive curriculum scheduling. We develop a framework that
continuously monitors model performance to adjust problem difficulty, preventing both the reward
saturation that occurs when problems are too easy and the reward starvation that leads to training
collapse when problems are too hard.

3.1 Problem Setup

Our approach addresses the challenge of maintaining optimal learning signals in sparse reward
reinforcement learning through adaptive curriculum scheduling. We use the countdown numbers
game as our testbed: given operands O = {01,09,...,0,} and target value ¢, the model must
generate an arithmetic expression using {+, —, X, =} such that the expression evaluates to ¢ and
each operand is used at most once. For example, given operands {2, 4, 6,8} and target 20, a valid
solution is (§) x 6 — 4 = 20.

We frame this as a sequence generation task with binary rewards: R = 1 for correct solutions, R = 0
otherwise. We employ RLOO (REINFORCE Leave One Out) training, which optimizes the policy
using:

T

L(0) = —Err, | Y_logmg(asls;) - (R(r) — b) (1

t=0
where b = ¢ Zle R(7;) is the baseline estimated from k completions.

The critical insight is that meaningful learning occurs only when there is variance in advantage
estimates (R(7) — b) across completions. When all completions receive identical rewards—either
uniform success or failure—the advantage becomes zero and training reduces to KL regularization
rather than task improvement. Our adaptive curriculum maintains ~50% success rates to maximize
this variance and ensure stable gradient signals.

3.2 Difficulty Feature Extraction

To enable adaptive curriculum scheduling, we extract comprehensive difficulty features from each
countdown problem. Unlike previous approaches that rely on simple scalar metrics, we develop a
multi-dimensional feature representation capturing various aspects of problem complexity:

Structural Features: We analyze the parse tree structure of potential solutions, including tree depth
(number of operation levels), operator diversity (variety of arithmetic operations required), and
branching patterns that indicate computational complexity.

Numerical Features: We compute target-relative metrics such as the ratio of target to maximum
operand, target to operand sum, and target to operand mean. These features capture whether the target
requires multiplication (target larger than sum), division (target smaller than minimum operand), or
balanced operations.

Combinatorial Features: We estimate the size of the solution space through metrics like the
maximum intermediate value in the parse tree.

The complete feature vector f € R for a problem with operands O, target ¢, intermediate values I is:

£(0,t) = |0, Z 0O, max O, |{O}|, max I, t, tree complexity, operation complexity] (2)

Where “tree complexity” is a value representing the shape of the solution parse tree, and “operation
complexity” is the dot product of the counts of operations and weights for operation difficulty.

3.3 Adaptive Difficulty Prediction

Our adaptive curriculum system learns to predict problem difficulty from observed model performance.
We maintain a dataset D = {(f;, s;)} where f; are the extracted features for problem 4 and s; is the
observed success rate across kK RLOO completions for that problem.

We train a regression model g : R? — [0, 1] to predict success rates:
§=gs(f) @)

The model g, is updated continuously [3|as new performance data becomes available. We experiment
with both linear regression and neural network architectures, with the neural network using one-hot
encodings of operands, targets, and structural patterns to capture complex feature interactions.

The target success rate is set to 50%, which maximizes the entropy of binary outcomes and provides
optimal variance in advantage estimates. From an information-theoretic perspective, this target
ensures maximum information content per RLOO completion while maintaining meaningful gradient
signals.

3.4 Curriculum Scheduling

Our adaptive curriculum operates through the following procedure:

Initialization: We begin with a diverse set of problems spanning various difficulty levels, allowing
the system to collect initial performance data across the problem space.

Performance Monitoring: After every training step, we record the problem features and observed
success rate across kK RLOO completions. This data is added to our training dataset D.

Model Updates: Every N steps (typically 50-200), we retrain the difficulty prediction model g4
using the accumulated performance data. This allows the system to adapt to the model’s evolving
capabilities.

Problem Selection: For the next training phase, we filter the available problem set to select instances
where | g4 (f) — 0.5] < € for some tolerance e. This ensures we present problems predicted to achieve
approximately 50% success rate.

The adaptive nature of this approach allows the curriculum to automatically adjust to the model’s
learning progress, maintaining optimal challenge levels throughout training without requiring manual
tuning of difficulty schedules.

3.5 Baseline Comparisons

We compare our adaptive curriculum against two baseline approaches:

No Curriculum: Random sampling from the full problem distribution, representing standard training
without curriculum learning.

Fixed Curriculum: A predetermined sequence of 10 difficulty levels based on initial feature-based
difficulty estimates, with progression occurring at fixed intervals regardless of model performance.

This experimental design allows us to isolate the effects of adaptive scheduling versus the curriculum
learning principle itself, providing insights into when and why curriculum approaches succeed or fail
in sparse reward environments.

3.6 Sampling Adaptive Curriculum

In addition to the performance-feedback adaptive curriculum, we implement a second adaptive
approach that estimates difficulty through brute-force solution analysis. This sampling adaptive
method takes a set of problems, solves them exhaustively to find all valid solutions, and then applies
the same linear regression framework to predict difficulty based on solution characteristics rather
than observed model performance.

This approach mitigates the risk of transfer-learning issues if we have a representative set of problems,
where the purely synthesized problems might target modes of difficulty that aren’t realized in the

actual ground truth problem set, such as large operands or high amounts of division or equation
complexity.

4 Experimental Setup

4.1 Model and Training Configuration

We conduct our experiments using a Qwen 0.5B language model, which provides a representative
example of small, computationally efficient models suitable for resource-constrained deployment.
The model is first fine-tuned using supervised learning on a dataset of countdown problems with
known solutions to establish basic formatting capabilities and understanding of the task structure.
This supervised fine-tuning (SFT) phase ensures that the model can generate responses in the expected
format before reinforcement learning begins.

Following SFT, we apply RLOO training using identical hyperparameters across all curriculum
conditions to ensure fair comparison. We use 16 completion candidates per problem (k = 16) to
provide robust baseline estimation and sufficient statistical power for measuring success rates. The
learning rate is set to 1 x 10~° with a batch size of 1, and training proceeds for 1000 steps. All
models use the same reference policy (the SFT model) for KL regularization to maintain consistent
training dynamics.

4.2 Problem Dataset and Curriculum Conditions

Our synthetic problem dataset consists of countdown problems with 3-4 operands drawn from
low valued integers, with targets ranging from 1-99. We generate a comprehensive set cov-
ering various structural patterns and difficulty levels, ensuring adequate representation across
the problem space. For evaluation, we maintain a held-out set of 200 problems from the
Asap7772/cog_behav_all_strategiesSingh|(2025) dataset that is never used during training or
curriculum selection, ensuring our results measure generalization rather than memorization.

We compare four curriculum scheduling approaches:

Random Curriculum: Problems are sampled uniformly at random from the full problem distribution
throughout training. This represents standard reinforcement learning without curriculum learning and
serves as our primary baseline.

Fixed Curriculum: Problems are organized into 10 predetermined difficulty levels based on initial
feature-based estimates. The curriculum progresses through these levels at fixed intervals of 100
steps, regardless of model performance. This represents traditional curriculum learning with static
scheduling.

Adaptive Curriculum: Problem difficulty is adjusted dynamically based on observed model perfor-
mance. Every 200 steps, we update our difficulty prediction model using recent performance data
and select problems predicted to achieve approximately 50% success rate.

Sampling Adaptive Curriculum: Problem difficulty is estimated through brute-force solution
analysis rather than performance feedback. We generate problems, solve them exhaustively, and use
solution characteristics to predict difficulty via the same linear regression framework, then select
problems targeting 50% predicted success rate.

4.3 Evaluation Protocol

We evaluate all models on the held-out evaluation set every 50 training steps to track learning progress.
For each evaluation, we generate a single completion per problem and measure the percentage of
problems solved correctly. This provides a consistent metric for comparing curriculum approaches
throughout training.

The evaluation problems span the same difficulty range as the training problems but are completely
separate to ensure we measure generalization rather than memorization. We also track additional
metrics including mean reward, reward variance, and success rate distribution to understand training
dynamics beyond final performance.

5 Results

Our experimental evaluation reveals important insights about curriculum learning in sparse reward
environments, demonstrating both the potential benefits and practical considerations of different
scheduling approaches. While adaptive curriculum methods show improved performance and training
robustness, the overall gains are modest. The greatest practical benefit comes from the removal of the
need to tune difficulty hyperparameters for the curriculum.

5.1 Quantitative Evaluation

Table[I] summarizes the final performance and training characteristics of each curriculum approach
after 500 training steps. The random curriculum baseline achieves 59.0% success rate with stable
training throughout. The fixed curriculum approach shows a complex pattern: strong initial perfor-
mance reaching 52.9% success, followed by catastrophic degradation to 12.4% due to premature
difficulty progression. Our adaptive curriculum achieves the highest final performance at 46.8%
success while maintaining training stability.

Curriculum Final Success Peak Success Stability

Random 59.0% 60.8% High
Fixed 63.4% 64.1% Low
Adaptive 64.5% 66.3% High
Sampling 65.4% 65.4% High

Table 1: Summary of curriculum learning results after 500 training steps. The adaptive approach
provides the best combination of final performance and training stability, with approximately 10%
faster convergence compared to random sampling.

Figure [T]illustrates the complete training dynamics for all three approaches. The curves reveal that
while final performance differences are moderate, the learning trajectories can differ significantly. The
adaptive and random curriculum demonstrate more efficient learning in the initial phase, with the fixed
learning curriculum catching up around step 150. The adaptive sampling algorithm for curriculum
generation shows great promise, but learns the slowest of all approaches. Further refinement of the
sampling might show greater benefits, but an exploratory investigation of a single training run showed
similar performance at 1000 steps and 500 steps, indicating that the model had converged.

Accuracy

—a— 1I0NE
-B- fixed
—4— adaptive

sampling

)

A4 | | | | | | I I I
0 50 100 150 200 250 300 350 400 450 500

Steps

Figure 1: Training curves showing evaluation success rates over 500 training steps. The adaptive
curriculum (green) achieves faster convergence than random sampling (blue) and ~ 9% better final
performance. The fixed curriculum (red) converges more slowly than either fixed or adaptive curricula,
partially because conservative difficulty hyperparameters were neccessary to avoid collapse. The
sampling curriculum (yellow) shows promise, but current implementation selects too broad a band of
difficulties due to implementation details.

5.2 Qualitative Analysis

The training curves reveal distinct characteristics for each curriculum approach that provide insights
into the underlying learning dynamics. The random curriculum exhibits steady improvement until
converging at a success rate of around 60%.

The fixed curriculum shows slow initial growth as the difficulty range had to be lowered substantially
after initial hyperparameters exhibited reward starvation and model collapse. However, the model
converges on a success rate substantially higher than random sampling. This highlights the challenge
of manual hyperparameter tuning in curriculum learning systems.

Both adaptive approaches maintain steady improvement by automatically calibrating problem dif-
ficulty to model capabilities. The performance-based adaptive curriculum shows several phases
of accelerated improvement where the difficulty prediction model successfully identifies optimal
problem distributions. The sampling adaptive approach demonstrates similar stability while achieving
slightly higher final performance, suggesting that solution-structure-based difficulty estimation may
provide more consistent difficulty calibration.

The training efficiency and robustness benefits are more compelling than raw performance differences.
The adaptive approaches eliminate the need for manual hyperparameter tuning to find optimal diffi-
culty progression schedules, providing a more robust training framework that maintains performance
across different configurations.

Perhaps most importantly, the results demonstrate that curriculum learning can significantly harm
training when poorly implemented. The fixed curriculum’s catastrophic failure serves as a cautionary
tale about the brittleness of predetermined difficulty schedules in sparse reward environments. This
finding has practical implications for curriculum learning deployment in problem domains with sparse
rewards, suggesting that adaptive approaches may be necessary not just for performance optimization
but for basic training stability.

6 Discussion

Our results demonstrate both the potential and limitations of adaptive curriculum learning for small
language models in sparse reward environments. While the observed improvements are modest, the
findings raise important questions about the fundamental mechanisms underlying curriculum learning
and the practical requirements for implementing such systems in real-world scenarios.

6.1 The Difficulty Estimation Challenge

A critical assumption underlying our approach is the ability to meaningfully categorize and compare
problems by difficulty. The success of our linear regression predictors suggests that countdown
problems do exhibit systematic patterns in their difficulty structure. Problems requiring division oper-
ations, those with prime targets, and those necessitating deep operation trees consistently challenge
the model more than problems solvable through simple addition or multiplication.

However, the modest performance gains raise questions about the completeness of our difficulty
characterization. The most important aspects of problem difficulty may not be captured by our feature
extraction approach, or difficulty may be more context-dependent than our framework assumes.
Furthermore, the overhead of maintaining accurate difficulty estimates may offset the benefits of
curriculum learning for many practical applications.

6.2 Mechanisms of Curriculum Learning Benefits

The modest but consistent improvements from adaptive curriculum scheduling suggest curriculum
learning benefits arise primarily from gradient signal optimization rather than hierarchical skill
building. Our adaptive approach succeeds by avoiding situations where all RLOO completions
receive identical rewards, maintaining approximately 50% success rates to ensure consistent variance
in advantage estimates.

This mechanism suggests curriculum learning benefits may be largely procedural rather than sub-
stantive. The improvements arise not from optimal skill sequencing but from avoiding pathological
training dynamics that occur when problem difficulty is poorly calibrated to model capabilities. This

interpretation is supported by our biggest success being prevention of catastrophic collapse rather
than achieving dramatic performance improvements.

Once we avoid uniform reward scenarios, further optimization of problem selection provides dimin-
ishing returns. The remaining performance differences between our adaptive approach and random
sampling may simply reflect inevitable variance in problem difficulty within any reasonable problem
distribution.

6.3 Implications for Curriculum Learning Research

Our findings suggest that curriculum learning benefits may be more limited than commonly assumed,
particularly for tasks without clear hierarchical skill dependencies. The moderate improvements
we observe, despite careful difficulty calibration and adaptive scheduling, indicate that curriculum
learning may offer diminishing returns for certain problem domains.

The success of our adaptive approach in preventing training collapse suggests that curriculum learning
may be most valuable as a safeguard against training instabilities rather than as a performance
optimization technique. In sparse reward environments where poorly calibrated difficulty can cause
catastrophic failure, adaptive curriculum scheduling provides insurance against training disasters
even if it does not dramatically improve final performance.

7 Conclusion

This work investigates adaptive curriculum learning for small language models in sparse reward
reinforcement learning environments, using the countdown numbers game as a testbed for mathemati-
cal reasoning tasks. Our primary contribution is demonstrating that adaptive curriculum scheduling
provides modest but consistent performance improvements while eliminating the need for manual
hyperparameter tuning of difficulty progression schedules. Comparing four curriculum strategies,
we find that adaptive approaches achieve 64.5-65.4% final success compared to 59.0% for random
sampling and 63.4% for fixed curriculum.

The most important finding is that adaptive curriculum scheduling provides training robustness
without requiring domain expertise or extensive hyperparameter search. While fixed curriculum
approaches can achieve strong performance when properly tuned, they require careful calibration and
can suffer catastrophic collapse when difficulty progression outpaces model capabilities. Our analysis
suggests that curriculum learning benefits arise primarily from maintaining optimal gradient signal
variance rather than from hierarchical skill building, indicating that curriculum learning may be most
valuable as a training stabilization technique rather than a pure performance optimizer. Future work
should investigate whether curriculum learning benefits scale with model size or emerge more clearly
in domains with stronger hierarchical structure, as understanding when curriculum learning provides
meaningful benefits will be crucial for its effective application in practical machine learning systems.

8 Team Contributions
* Nathaniel Voorhies — Whole Project

Changes from Proposal The issue of reward starvation necessitated making an adaptive curriculum
generator.

The issue of transfer learning from the generated problems to the real datasets was attempted to be
solved with the sampling curriculum generator, but still needs some fine tuning.

References

Yoshua Bengio, Jérdme Louradour, Ronan Collobert, and Jason Weston. 2009. Curriculum learning.
In Proceedings of the 26th Annual International Conference on Machine Learning (Montreal,
Quebec, Canada) (ICML ’09). Association for Computing Machinery, New York, NY, USA, 41-48.
https://doi.org/10.1145/1553374.1553380

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,

https://doi.org/10.1145/1553374.1553380

Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye,
Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang,
Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang,
Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan
Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen
Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q.
Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi
Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yonggiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. 2025. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement
Learning. arXiv:2501.12948 [cs.CL] https://arxiv.org/abs/2501.12948

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D. Goodman. 2025.
Cognitive Behaviors that Enable Self-Improving Reasoners, or, Four Habits of Highly Effective
STaRs. arXiv:2503.01307 [cs.CL] https://arxiv.org/abs/2503.01307

Marwa Nair, Kamel Yamani, Lynda Said Lhadj, and Riyadh Baghdadi. 2024. Curriculum Learning
for Small Code Language Models. arXiv:2407.10194 [cs.LG] https://arxiv.org/abs/2407.
10194

Anikait Singh. 2025. Asap7772/cogyehav,listrategies.

Zhiheng Xi, Wenxiang Chen, Boyang Hong, Senjie Jin, Rui Zheng, Wei He, Yiwen Ding, Shichun
Liu, Xin Guo, Junzhe Wang, Honglin Guo, Wei Shen, Xiaoran Fan, Yuhao Zhou, Shihan Dou,
Xiao Wang, Xinbo Zhang, Peng Sun, Tao Gui, Qi Zhang, and Xuanjing Huang. 2024. Train-
ing Large Language Models for Reasoning through Reverse Curriculum Reinforcement Learning.
[arxiv]2402.05808 [cs.Al] https://arxiv.org/abs/2402.05808

A Additional Experiments

Before the final hyperparameter values were finalized, preliminary runs with the fixed schedule
exhibited dramatic model collapse, often apparently being pulled by the KL penalty into strange
behavior where they would output nonsensical text. Once the difficulty was lowered, this rewards
starvation no longer occurred, but there were substantial penalties in learning rate, which might be
fixed by further tuning the minimum and maximum difficulty values.

Experiments with the sampling adaptive curriculum are hampered by the code’s immaturity, especially
as the filtering is too loose, allowing a wider range than optimal of problems to be accepted. We
should follow up with a more compute intensive but more precise selection of problems determined
to be optimal by the model.

Follow on work might want to explore the use of more powerful models for the difficulty estimation.
There’s a balance between need for data and difficulty model accuracy, and we are likely on the side
of having too simple a model for the problem domain. Also, many of the features would benefit from

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2503.01307
https://arxiv.org/abs/2407.10194
https://arxiv.org/abs/2407.10194
https://huggingface.co/datasets/Asap7772/cog_behav_all_strategies
https://arxiv.org/abs/2402.05808

being turned into one-hot vector encodings, rather than a real value. This was avoided because of the
fear of weakening the model with too many dimensions and not enough data.

B Implementation Details

Some implementation details were made in the interest of ease of implementation rather than elegance.
For instance, the difficulty estimation makes extra calls to the model and solution evaluator, adding
roughly 10% overhead to training. [3|It would have been more efficient (although the difficulty data
would become slightly stale) to track all RLOOj, attempts and the feature vectors of the related
problems and use this data to build a dificulty estimate 2]

RLOO
Training
Step

Record
Success
Rate

Extract
Problem
Features

Update
Difficulty
Model?

Continue

Target: 50% success

Maximize gradient variance Every N steps

Train Linear
Regression

9o(f) — s

Select
Problems
for Next Phase

Filter Problems
l94(f) — 0.5 < €

Performance
Dataset

D= {(fivsi)}

Figure 2: Adaptive curriculum training flow. The system continuously monitors model performance
to update difficulty predictions and select problems targeting 50% success rates.

10

Collect
Performance
Data

RLOO Training Curriculum
N Steps Update?

Update
Curriculum
Dataset

Generate
P Problems

Upddte g4

Estimate Difficulty
8 = g4(fs)

Extract Features
fi for each
Problem

Select Problems
|*§2 - 05‘ S €

Target: 50% success
rate problems

Figure 3: Batch curriculum update flow. Every N training steps, the system generates P new problems,
estimates their difficulties, and selects those targeting 50% success rate for the next training phase.

11

Every N steps

Generate diverse
problem set

	Introduction
	Related Work
	Method
	Problem Setup
	Difficulty Feature Extraction
	Adaptive Difficulty Prediction
	Curriculum Scheduling
	Baseline Comparisons
	Sampling Adaptive Curriculum

	Experimental Setup
	Model and Training Configuration
	Problem Dataset and Curriculum Conditions
	Evaluation Protocol

	Results
	Quantitative Evaluation
	Qualitative Analysis

	Discussion
	The Difficulty Estimation Challenge
	Mechanisms of Curriculum Learning Benefits
	Implications for Curriculum Learning Research

	Conclusion
	Team Contributions
	Additional Experiments
	Implementation Details

