Extended Abstract

Motivation In this project, we investigated fine-tuning techniques aimed at enhancing the
instruction-following capabilities of a small language model (Qwen 2.5 0.5B). We implemented
Supervised Fine-Tuning (SFT) and Direct Preference Optimization (DPO), while also exploring
advanced variants such as Rejection Sampling DPO (RS-DPO) and self-improvement strategies. Our
goal was to evaluate whether the model could improve its own performance using techniques that
rely on its own outputs, rather than solely depending on static datasets.

Method Implementation

Rejection Sampling Rejection Sampling DPO (RS-DPO) is a technique that augments standard
DPO by dynamically generating rejected responses from the current model—typically an SFT
model—instead of relying exclusively on predefined datasets. These generated rejections are paired
with preferred responses to form contrastive training examples. In our implementation, due to time
constraints, we conducted single-sample rejection sampling on the 61k prompts from the UltraFeed-
back training split. We assumed that UltraFeedback’s “chosen” responses are of higher quality than
those generated by our SFT model. Therefore, for each prompt, we paired the UltraFeedback “chosen”
response as the preferred output and the SFT-generated response as the rejected output. These pairs
were then used to train the policy model using DPO.

Self-Improvement This experiment explored self-improvement using model-generated data for
DPO training. The motivation is based on two hypotheses: 1. High-temperature sampling enables
better selection — By sampling multiple responses (e.g., K=8) at higher temperature, the model
generates a diverse set of outputs. With the aid of a reward model, we can select the best and worst
responses to construct preference pairs for training. 2. Self-generated chosen responses can also
be useful — Our prior experiments showed that model-generated rejections improved DPO training.
We hypothesized that carefully selected self-generated chosen responses could similarly enhance
performance.

Results Our results indicate measurable performance improvements using both RS-DPO and
self-improvement strategies. Specifically, RS-DPO achieved approximately a 15

Discussion Conclusion These explorations highlight the feasibility and effectiveness of self-
improvement strategies—Ileveraging the model’s own outputs to refine its behavior. Further investiga-
tion is warranted into areas such as model bias, stability of sampling-based methods, and the criteria
for selecting high-quality training data. These directions are crucial for building more robust and
adaptive fine-tuning pipelines.

Self-Improvement variants on DPO

Yiyang Hao
Department of Computer Science
Stanford University
yyhao@stanford.edu

Abstract

In this project, we investigated fine-tuning techniques to enhance the instruction-
following capabilities of a small language model (Qwen 2.5 0.5B). We implemented
Supervised Fine-Tuning (SFT), Direct Preference Optimization (DPO), and ex-
plored variants such as Rejection Sampling DPO (RS-DPO) and self-improvement
strategies. Our results demonstrate that incorporating a small portion of rejection-
sampled data into DPO training leads to performance gains, and highlight the
potential of self-improvement methods for further enhancing model alignment.

1 Introduction

Objective This project explores the implementation of various reinforcement learning (RL)
algorithms for fine-tuning large language models (LLMs). We begin by fine-tuning base models using
Supervised Fine-Tuning (SFT) and Direct Preference Optimization (DPO), followed by experiments
with advanced techniques such as RS-DPO, self-improvement, and curriculum-based optimization.

Starting Point We selected the Qwen 2.5 0.5B base model, which is the smallest in the Qwen 2.5
series, as our starting point. Its lightweight nature enables efficient experimentation on relatively
small datasets, allowing us to clearly observe the impact of different techniques while minimizing
GPU usage and training time.

Supervised Finetuning For supervised fine-tuning (SFT), we used the smolTalk dataset|Allal et al.
(2025)), available at https://huggingface.co/datasets/HuggingFaceTB/smoltalk. This
synthetic dataset is designed for training LLMs in a conversational format, containing approximately
460k human-assistant dialogue pairs.

Directo Preference Optimization After SFT training, we applied Direct Preference Optimization
(DPO) to further enhance the model’s instruction-following capabilities. We used the UltraFeedback
dataset|Cui et al.| (2024), which contains 61k prompt-response pairs in the exact format required for
DPO: each example includes a prompt, a preferred (chosen) response, and a less preferred (rejected)
one. UltraFeedback is a large-scale, synthetic, and fine-grained preference dataset, created by
sampling prompts from various LLMs and generating responses to capture diversity of instructional
behaviors.

Evaluation We use win rate comparison as the primary evaluation metric for model performance.
Given a set of instruction-following prompts, we sample responses from both the trained model and
reference models, and then evaluate them using the LLaMA 3.1 Nemotron-70B Reward Model

Stanford CS224R 2025 Final Report

https://huggingface.co/datasets/HuggingFaceTB/smoltalk

Wang et al.| (2024bla). This reward model assesses responses based on truthfulness, honesty, and
helpfulness. While absolute reward scores are not comparable across different prompts, they are
meaningful for comparing responses to the same prompt. We evaluate win rates across multiple
reference baselines, including Qwen 2.5 0.5B Instruct, our trained SFT model, DPO model, and other
experimental variants.

Research Directions We aim to explore extensions of DPO to improve model performance. First,
we investigate Reject Sampling DPO (RS-DPO) |[Khaki et al.| (2024), which augments training
data by sampling rejected responses directly from the current model, rather than relying solely on
UltraFeedback. We also examine the potential of RLAIF (Reinforcement Learning from Al Feedback)
Ouyang et al.|(2022), focusing on how self-generated response pairs can be selected and structured
within the DPO framework to impact performance.

2 Related Work

Self-Rewarding Language Models |Yuan et al. (2025) proposes a novel approach for fine-tuning
LLMs without relying on fixed, human-trained reward models. Instead, the model serves as its own
evaluator by: (1) generating its own training prompts, (2) scoring its responses using an LLM-as-a-
judge prompting strategy, and (3) fine-tuning itself using DPO. The results are promising—after 2—3
self-training iterations, the model shows consistent and significant improvement.

Rejection Sampling-DPO |Khaki et al.|(2024) introduces RS-DPO, a method that systematically
combines Rejection Sampling (RS) with Direct Preference Optimization (DPO). The approach begins
by training a supervised fine-tuned (SFT) policy model, from which k diverse responses are sampled
per prompt. RS-DPO then selects contrastive pairs based on their reward distribution. These pairs are
used to apply DPO, aligning the model more closely with human preferences. Experiments show that
RS-DPO is effective in resource-constrained settings and consistently outperforms standalone RS,
PPO, and DPO in aligning models with user intent.

RLAIF vs. RLHF |Ouyang et al.|(2022)) investigates alternatives to human-in-the-loop feedback by
comparing Reinforcement Learning from AI Feedback (RLAIF) with traditional Reinforcement
Learning from Human Feedback (RLHF). In RLAIF, preference labels are generated by off-the-shelf
LLMs rather than humans, enabling scalable training. The study explores two settings: (1) RLAIF,
where a reward model is trained on Al-generated preference data, and (2) d-RLAIF, which bypasses
the reward model entirely by directly using LLM-generated scores during reinforcement learning.
Experimental results demonstrate that both methods offer competitive alignment performance while
significantly reducing reliance on human annotations.

Self-Instruction |[Wang et al| (2023) introduces Self-Instruct, a method for aligning language
models by leveraging self-generated instructional data. The approach uses a small seed set of
prompts (approximately 5%) to bootstrap a larger set of high-quality instruction-following examples
generated by the model itself. Through iterative self-citation and self-evaluation, the model refines its
own behavior, creating a feedback loop that enhances alignment and overall performance.

3 Method

Supervised Fine-Tuning (SFT) The first stage of this project involves Supervised Fine-Tuning
(SFT). Our starting point is a base model trained only to predict the most likely next token, which
means it lacks the ability to follow instructions and instead tends to produce generic continuations.
SFT is designed to bridge this gap by teaching the model to behave like an assistant. It transforms the
model from a raw language model into one that can engage in helpful, task-oriented dialogues by
fine-tuning it on a dataset of conversational interactions.

By training on prompt-response pairs in a natural dialogue format, SFT helps the model learn the
structure of helpful responses, maintain appropriate length, and generalize across diverse user queries.
This process lays the foundation for human-like interactions with LLMs.

Technically, SFT involves predicting the correct response given a prompt. The loss function used is
the standard autoregressive cross-entropy loss over the response tokens (where the prompt is masked
out):

LIM ==Y i=1"log P(y; | x,y<i;0)

Masking and Padding One critical implementation detail is the masking of the prompt tokens
in the loss calculation. Tokens from the prompt should be labeled as -100 to exclude them from
gradient updates. Additionally, since training is batched and all sequences in a batch must be the
same length, proper padding is necessary.

Gradient Accumulation Due to the constrains of GPU memory storage, we only have batch size
= 8. To accomplish a more stable gradient ascent, we applied gradient accumulation. It performs
multiple forward + backward passes and accumulate the gradient, simulate a much larger batch.

Automatic Mixed Precision Automatic Mixed Precision (AMP) is speed up model training and
reduce GPU memory, it uses FP16 in some operations for speed and efficiency and keep the FP32 in
loss calculation or weights updates for numerical stability.

3.1 Direct Preference Optimization

Direct Preference Optimization (DPO) is a fine-tuning method that updates the policy directly using
preference data, eliminating the need to explicitly train a reward model. Instead of learning a reward
function and optimizing it with reinforcement learning, DPO uses a pairwise loss that implicitly
aligns the model’s behavior with human preferences. The core loss function is:

X . toy”
EDpo=—10g< exp (8- Alz,y",y7)))

1+exp (8- Alz,yt,y7))

Here, A(z,yT,y~) = logm(yT|x) —logn(y~|z) — (log met(y ™ |z) — log met(y~|z)) is the differ-
ence in log-probabilities between the chosen and rejected responses under the current policy 7 and a
frozen reference model 7.

In our DPO training, we use the following optimization techniques (also used in SFT): cosine learning
rate scheduling with 10

To further enhance DPO training, we apply the following regularization techniques:

Frozen Reference Model We use a reference model ¢ as a frozen copy of the base model. It
serves as a baseline to compare how the trained policy 7 improves or diverges. Including 7 in the
loss prevents the model from overfitting for preferences.

DPO-Positive Regularization To ensure that the model does not degrade on chosen outputs, we

use DPO-Positive (DPO-P) regularization. This term penalizes the model when the log-probability of
the preferred (chosen) response under the new policy is lower than that of the reference model:

LDPO-P = max (0,log mref(y™ |z) — log m(y*|x))

This encourages the model to maintain or improve performance on preferred responses instead of
losing on both of chosen and reject patterns.

KL Regularization To prevent overfitting and catastrophic forgetting, we also add a KL-divergence
term that penalizes divergence from the reference model for both the chosen and rejected responses:

LKL = = [(log mref(y ™ |z) — log 7(y ™ |2)) + (log Twer(y~ |2) — log 7(y ™ |z))]

DN | =

This term is controlled by a hyperparameter gy, which balances imitation of the reference model
and preference alignment.

3.2 RS-DPO

Rejection Sampling DPO (RS-DPO) is a technique that combines rejection sampling with Direct
Preference Optimization. In this method, rejected responses are not sourced from a fixed dataset but
are instead generated dynamically from the current model (typically the SFT model), and used to
construct preference pairs for DPO training.

In our implementation, due to time constraints, we conducted single-sample rejection sampling using
the SFT model on the 61k prompts from the UltraFeedback training split. We assumed that the
UltraFeedback “chosen” responses are of higher quality than those generated by our SFT model.
Thus, for each prompt, we formed a preference pair where the UltraFeedback “chosen” was treated
as the preferred response and the SFT-generated sample was treated as the rejected response. We
then trained our policy model using DPO on these pairs.

This setup is based on the observation that the UltraFeedback chosen and rejected responses are often
both significantly better than outputs generated by our SFT model, and therefore may not provide
strong contrast for learning. In contrast, the SFT-generated responses serve as more informative and
realistic “negative” examples, better matching the current model’s decision boundary. Khaki et al.
(2024).

3.3 Self-Instruct DPO

In this experiment, we explored a self-improvement strategy for DPO based on self-generated data.
This is inspired by two key assumptions: 1. High-Temperature Sampling Enables Quality Selection:
With increased sampling temperature, the model can generate a diverse range of outputs—some
strong, some weak. By generating multiple candidates (e.g., K=8) and using a reward model to select
high-quality samples, we can build new training data that encourages better performance through
preference optimization. 2. Self-Generated Chosen and Rejected Responses Can Be Effective:
Building on our prior observation that SFT-generated rejections improve training, we hypothesize
that self-generated “chosen” responses—if properly selected—can also be beneficial. By constructing
entirely self-generated preference pairs (both chosen and rejected), and applying DPO, we can test
whether the model is capable of self-improvement without relying on human-annotated or external
high-quality responses.

This experimental direction parallels the spirit of RLAIF and Self-Rewarding Language Models,
pushing the boundary of LLMs learning from their own outputs in a bootstrapped manner.

4 Experimental Setup

4.1 Supervised Fine Tuning
4.1.1 Data Preparation

In data prepration phase, we have done three modification on the smolTalk dataset:

1. Extract first conversation.
We only use the first conversation of each dialog, mainly because we realize that the following
questions will contain the previous context, and due to our evaluation format, which is one question
one response, not the multi question required, so we decide to only extract first question and prompt,
first response as response to format the training dataset. 2. Truncate at the best percentile.
After the examination of prompts and responses, we realized that 95th is the best cut to balance the
space requirement and content included. As the result, we use 255 length of the prompt cut, 420 as
the length to cut prompts, all based on token numbers.

3. Filter out short response.
Due to the small conversation, there are responses really short which doesn’t fit our expectation of

Table 1: Percentile of smolTalk

Percentile Prompt length Response length

50th 57 225
90th 179 375
95th 254 419
99th 1339 576

instruction following, so we removed the reponse which contains less than 75 characters.

4.1.2 Training

We initially tested with a small subset (5%) of the smolTalk dataset to verify the training and code
pipeline. Although both training loss and evaluation loss decreased as expected, we observed that
the resulting SFT model performed significantly worse than the base model—producing mostly
nonsensical outputs. This highlighted the inadequacy of relying solely on loss metrics. To address this,
we introduced win rate evaluation by randomly selecting 100 prompts from the UltraFeedback test
set and comparing our model’s responses against those from the Qwen base and Qwen Instruct models.

Training and Validation Loss

" — Training Loss
Validation Loss

11

10

nnnnnnnnnnnnnnnnnnnnnnnnn

Figure 1: loss & evaluation

0.40 — Win Rate

0 10000 20000 30000 40000 50000

Figure 2: win rate

From the charts we can observe that win rates increases at the beginning and drops significanlty later.
The main reason should be overfitting, since it’s a rather small dataset, model learns to fit it quickly
but forget generalization. We then decided to add win rate monitoring to all of the following training
to avoid overfitting, which adds extra time of training though.

Then we prepared for SFT training, we use learning rate: Se-6 within three epochs. From the results
we can see the decreasiong of loss and evaluation, with increasing of win rates against base and
instruct models

SFT Training

0

25000 50000 75000 100000 125000 150000 175000
Steps

—— Training Loss

—— Validation Loss

B Win Rate vs Base
Win Rate vs Instruct

0.8

Loss

0.6 4

o

0.4

~

0.21

N}

0.

=)

Figure 3: SFT Training

42 DPO

With generated 61k ultrafeedback DPO datasets, we evaluates different combination of learning rate,
beta, KL and other parameters.

train/loss

Figure 4: DPO loss

train/rewards/margins

Figure 5: DPO Margins

4.3 RS-DPO

Due to the time constrains, we didn’t sample multiple rejections, for each prompt we only sampled
once, there are 61k ultrafeedback training prompts, we generated the same amount of response from

our previously trained SFT-model, then applied DPO with the same parameters as previous with the
full new dataset.

We then tried with another two experiments, mix dataset of ultrafeedback and our generated RS
training dataset. We tested a lower learning rate on the 10% mixture (10% of Reject Sampling
dataset and 90% of ultrafeedback) and a 20% mixture (20% of Reject Sampling dataset and 80% of
ultrafeedback).

The above experiments are all trained upon SFT-model, which can compare with the trained DPO
model.

4.4 Self-Improvement from cirrulumns

To validate our assumption of modeling could self-improve, we tested sampling 5 results for a small
prompts set (100), with temperature 1.0. After sampling, we evaluate the response using reward
model, pick the top score and calculate win rate against SFT-model. The result is promosing, we
have increased the winning rate from 0.72 to 0.83, as a 15.2% performance increase.

We then started the self-improvement cycle, to improve most performance with least prompts,
we used cirrululmns-orientated prompts selection. We first categorized all 1000k test prompts in
ultrafeedback with ChatGPT, then calculate the win-rate of our DPO-model vs SFT-model, calcuate
indivitual win rate, pick the top two category with lowest win rate, generate corresponding prompts
from other LLMs (we use ChatGPT, Gemini and Claude mixture). Then sampled 8 responses within
in different temperature. The different temperature can help to provide more diverse responses. We
sampled two response under temperature 0.2, sampled three under temperature 0.7 and sampled last
three under temperature 1.2. In this case we have two of the "best" response and some moderate
exploration and some high risk explorations. Then use reward model to evaluate the responses, pick
the top performance response as chosen and random pick rejected from the bottom three responses.
Use the new data as DPO training data and train our model.

Reference Model

Response
— Win Rate 1
—>] Model | » Evaluation Response
Categorized Prompts
Synthetic Prompts «——— LLMs
DPO
Training
Sampled Multiple Reward Model
Responses
DPO training Data
Figure 6: Self-Improvement Flow Chart

S Results
5.1 RS-DPO-1

Here is the training results of RS-DPO with full rejection sampled dataset, I also include the loss and
margin of previous DPO training with normal ultrafeedback chart. Yellow represents RS-DPO, pink

represents regular DPO. And win rates of RS-DPOL1 is dropping directly under 0.1 agains SFT model.

Figure 8: RS-DPO margin

Analysis We can clearly see that the margin of RS-DPO increased a huge number compared with
regular DPO, the large difference actually explains a lot. Since DPO aims to let model learn the
difference between chosen and reject and allow model learn the reward by picking chosen, this
pattern is too easy for our model to learn not picking its own genearted response. It gets "too easy"
training signals, chosen response are obviously better than teh SFT outpus. This turns out: model
learns the different pattern quickly but didn’t learn what makes response really good, it predicts
rejected really easy, turns out low loss and high margin, the result turns to be, this model learns
"response not similar” to its SFT generated is Good, turns out a dramastic low performance on the
evaluation.

5.2 RS-DPO2, RS-DPO3

We then tested two data mixture of rejection sampling and ultrafeedback datasets, RS-DPO?2 is the
20% mixture and RS-DPO3 is the 10% mixture. With less amount of rejection sampling, it can
provide diversity and allow model to learn what is the good response and steer not too much from its
current policy.

Pink is regular DPO, green is RS-DPO2 and gray is RS-DPO3.

Figure 9: RS-DPO2 vs RS-DPO3 loss

Figure 10: RS-DPO2 vs RS-DPO3 margin

We can see with mixture of ultrafeedback as majority, we have loss and margin much closer to regular
DPO, which shows we have a normal level of pattern recoginization. The win rate is more important
to compare, there is the win rate calculation (the win rate is calculated against DPO model):

Table 2: RS-DPO win rates

Method win-rate (0.33 epoch) win-rate (0.66 epoch) win-rate (1 epoch)

RS-DPO1 0.12 0.15 0.10
RS-DPO2 0.62 0.585 0.48
RS-DPO3 0.515 0.555 0.67

Analysis We can clearly see, the 10% mixture has highest performance after one epoch runs, which
out performed regular DPO training. And if we increase the percentage, we increase the high risk
for model to learn the "easy" pattern instead of what’s really good response. It’s much clear in the
RS-DPO?2, the win rate actually drops after more data involved in training.

5.3 Self-Improvement

Due to the time and resource constrains, we didn’t test self-improvement in a larger set, we only
categorized the 1000 prompts from ultrafeedback test results and generated about 1k synthetic
prompts.

Category Count Lose loss rate

Math, Logical Reasoning 97 45 0.4639175258
General Knowledge 72 33 0.4583333333
Scientific / Technical Expla 155 44 0.2838709677
Creative Generation 130 56 0.4307692308
Professional Writing 86 24 0.2790697674
Instructional Procedures 151 54 0.357615894
Multilingual 87 47 0.5402298851
Open ended Discustion 58 47 0.8103448276
Imitation Writing 15 8 0.5333333333
Classification 95 54 0.5684210526

Figure 11: Category Distribution

With previous approach, we categorized prmpots into 10 buckets, and calculated the loss rate of
our DPO model against SFT model, realzied that our model is weak at Open ended Discussion and
Classification Tasks. Then we generated 600 prompts in the Open ended Discussion, 400 prompts in
the Classification category.

We use the DPO training, running three epoches on the RS-DPO3 model.

Table 3: Self-Improvement win rates

Method win-rate
RS-DPO3 vs DPO 0.5975
Self Improvement VS DPO 0.6275

Self Improvement VS RS-DPO3 0.520

Analysis Since self-improvement is trained upon RS-DPO3 and we only have time to train
on a rather small dataset (1k), we can see a potiential of improvements. The Self-Improvement
version performs 6% better when comparing to DPO baseline and it outperformed a little (4%) over
RS-DPO3. This method has risk of amplify the bias inside the model, but the results shows potiential
of iteration and improve itself towards a better response.

6 Discussion

This project explored and evaluated several techniques for fine-tuning a small language model
(Qwen 2.5 0.5B) to improve its instruction-following capabilities. Our experiments demonstrated
that approaches like Rejection Sampling (RS-DPO) and Self-Improvement can yield measurable
performance gains. However, there remain limitations and areas for further study.

In the case of Self-Improvement, we were only able to perform a single iteration due to time
constraints. We did not analyze cross-category win rates, which could have provided deeper insights
into model generalization. Additional iterations may help the model gradually refine its outputs, but
also risk exposing the limitations of small models, such as capacity bottlenecks and self-reinforcing
biases.

Another key limitation lies in the reward-model-centric optimization. Since we rank samples using a
fixed reward model, the fine-tuned model may learn to optimize specifically for that reward model’s
preferences—not necessarily for human judgment. This alignment gap means that performance could
degrade when evaluated using a different reward model or by human raters. Thus, the improvements
we observe may reflect optimization for a narrow evaluator, not general instruction-following ability.

7 Conclusion

Through our exploration, we found that even small models like Qwen 2.5 0.5B possess potential for
self-improvement when equipped with the right training mechanisms. Techniques such as Rejection
Sampling DPO introduce additional diversity and offer meaningful gains by pairing high-quality
reference responses with self-generated rejections.

Similarly, Self-Improvement demonstrates that models can bootstrap their own learning—selecting
chosen and rejected responses from their own generations and using them for further fine-tuning.

Looking forward, we are particularly interested in two open questions: 1. How does performance
evolve over multiple self-improvement iterations? Does the model reach a plateau, or does it
eventually degrade due to overfitting or bias accumulation? 2. What is the potential and limitation of
self-judgment? If a model scores its own responses instead of relying on external reward models, can
it still improve? And how reliable is such self-assessment?

These directions will be critical for building more robust, autonomous, and generalizable LLM
training pipelines.

8 Team Contributions

* Yiyang Hao Single Member Team

10

References

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martin Bldzquez, Guilherme Penedo,
Lewis Tunstall, Andrés Marafioti, Hynek Kydli¢ek, Agustin Piqueres Lajarin, Vaibhav Srivastav,
Joshua Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clémentine Fourrier, Ben Burtenshaw, Hugo
Larcher, Haojun Zhao, Cyril Zakka, Mathieu Morlon, Colin Raffel, Leandro von Werra, and
Thomas Wolf. 2025. SmolLM2: When Smol Goes Big — Data-Centric Training of a Small
Language Model. arXiv:2502.02737 [cs.CL] https://arxiv.org/abs/2502.02737

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong
Xie, Ruobing Xie, Yankai Lin, Zhiyuan Liu, and Maosong Sun. 2024. UltraFeedback: Boosting
Language Models with Scaled Al Feedback. arXiv:2310.01377 [cs.CL] https://arxiv.org/
abs/2310.01377

Saeed Khaki, JinJin Li, Lan Ma, Liu Yang, and Prathap Ramachandra. 2024. RS-DPO:
A hybrid rejection sampling and direct preference optimization method for alignment
of large language models. (2024). https://www.amazon.science/publications/
rs-dpo-a-hybrid-rejection-sampling-and-direct-preference-optimization-method-for-alignment-of

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. 2022. Training language models to follow instructions with human feedback.
arXiv:2203.02155 [es.CL]

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi,
and Hannaneh Hajishirzi. 2023. Self-Instruct: Aligning Language Models with Self-Generated
Instructions. arXiv:2212.10560 [cs.CL] https://arxiv.org/abs/2212.10560

Zhilin Wang, Alexander Bukharin, Olivier Delalleau, Daniel Egert, Gerald Shen, Jiaqi Zeng, Oleksii
Kuchaiev, and Yi Dong. 2024a. HelpSteer2-Preference: Complementing Ratings with Preferences.
arXiv:2410.01257 [cs.LG] https://arxiv.org/abs/2410.01257

Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi Zeng, Gerald Shen, Daniel Egert,
Jimmy J. Zhang, Makesh Narsimhan Sreedhar, and Oleksii Kuchaiev. 2024b.

HelpSteer?2: Open-source dataset for training top-performing reward models.
arXiv:2406.08673 [id="cs.CL’ full,ame =" ComputationandLanguage’is,ctive =
Truealt,ame =" cmp — lg'ingrchive =’ cs'isgeneral = Falsedescription =’

Coversnaturallanguageprocessing. Roughlyincludesmaterialin AC M SubjectClassI.2.7.Notethatworkonarti fici
languageissuesbroadlyconstrued(natural—languageprocessing, computationallinguistics, speech, textretrieval,

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu,
and Jason Weston. 2025. Self-Rewarding Language Models. arXiv:2401.10020 [cs.CL] https:
//arxiv.org/abs/2401.10020

11

https://arxiv.org/abs/2502.02737
https://arxiv.org/abs/2310.01377
https://arxiv.org/abs/2310.01377
https://www.amazon.science/publications/rs-dpo-a-hybrid-rejection-sampling-and-direct-preference-optimization-method-for-alignment-of-large-language-models
https://www.amazon.science/publications/rs-dpo-a-hybrid-rejection-sampling-and-direct-preference-optimization-method-for-alignment-of-large-language-models
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2410.01257
https://arxiv.org/abs/2401.10020
https://arxiv.org/abs/2401.10020

	Introduction
	Related Work
	Method
	Direct Preference Optimization
	RS-DPO
	Self-Instruct DPO

	Experimental Setup
	Supervised Fine Tuning
	Data Preparation
	Training

	DPO
	RS-DPO
	Self-Improvement from cirrulumns

	Results
	RS-DPO-1
	RS-DPO2, RS-DPO3
	Self-Improvement

	Discussion
	Conclusion
	Team Contributions

