Extended Abstract

Motivation Modern model-based reinforcement learning (RL) methods, such as DreamerV3,
predict pointwise transitions in a latent space. While effective in many domains, this approach
demands large training data and struggles to generalize across structurally similar states that differ
only in surface-level details or context.

We hypothesize that decomposing the state into soft memberships over multiple learnable subspaces—
each representing meaningful structure—can improve generalization, robustness, and sample effi-
ciency. This idea builds on state abstraction but goes further by learning overlapping, interpretable
latent dynamics.

Method We propose a set-based state abstraction framework in which latent states are represented
as soft memberships in a set of learned subspaces (factors). Each subspace models a subset of state
transitions, and the dynamics are computed by weighting each subspace’s transition model according
to its membership probability. This allows transitions to be modeled not just point-to-point, but
between latent factors, enabling structural reuse and generalization.

We incorporate this approach into the DreamerV3 pipeline by replacing the recurrent state model
with a “Set Dreamer” that uses a learned factor-based dynamics model. Each transition is generated
by selecting dynamics from a learned matrix according to the factor membership vector of the current
state.

Implementation We implemented a grid world transition model in PyTorch, using a custom
environment and a custom neural network. We also designed and implemented several novel loss
functions and wrote a custom hyperparameter search script to search over weighted combinations of
these loss functions. We tested the ability of our model to reconstruct the generative factors used to
define the transition function.

We implemented Set Dreamer in PyTorch, leveraging the codebase in https://github.com/
NM512/dreamerv3-torch/tree/main. We compared Set Dreamer with the default DreamerV3
hyperparameters on the Ataril00k Pong task Machado et al.| (2018). For fair comparison, the
hyperparameters were set to make the model sizes comparable, and we used the average evaluation
return as a performance metric.

Results On its own, our implementation was unable to reconstruct the generative factors. We
showed that as posed this problem is not identifiable. However, once we pretrained a transition
function and fixed 2/10 factors, we showed we were able to learn the remaining 8 using our custom
loss function.

Set Dreamer reached a final average evaluation return of 2.45 while DreamerV3 reached 21.

Discussion Contrary to our hypothesis that the set-based state abstraction framework would improve
sample efficiency, Set Dreamer underperformed compared to the default DreamerV3.

Conclusion Our work extends the state abstraction literature and shows the limits of simultaneously
learning subsets of state space that are causally related to each other, and the transition function
between these subsets. Although finding such subsets promises to greatly increase data efficiency
of model-based RL methods, we show that in deterministic systems this problem is ill-posed. Our
work contributes multiple novel loss functions that, in simple stochastic settings, or settings with few
predefined factors, facilitate the learning of others.

https://github.com/NM512/dreamerv3-torch/tree/main
https://github.com/NM512/dreamerv3-torch/tree/main

Dynamics Modeling between Learnable State Space
Subsets for Data Efficient Reinforcement Learning

Hyun Dong Lee Kyle Ellefsen
Stanford University Stanford University
hdlee@stanford.edu kyleellefsen@gmail.com
Abstract

Model-based reinforcement learning methods learn a recurrent model of the en-
vironment to support ‘“imagination”-based planning in latent space. Despite their
promising performance on complex tasks, these methods still often require sub-
stantial amounts of training data and fail to leverage structural similarities among
different states, owing to their pointwise transition functions. In this work, we
propose a novel approach that decomposes the world model dynamics into transi-
tions between structured and overlapping subspaces of the latent space. With a toy
grid world example, we designed and explored various loss functions to investigate
whether we can recover the true subspaces. We further implemented Set Dreamer,
a modification of DreamerV3 with our set-based state abstraction framework, and
tested it on the Ataril00k Pong task. Despite being a promising idea, the experi-
mental results and our extensive analyses show how learning the correct subspaces
is highly non-trivial, especially in high-dimensional and entangled environments.

1 Introduction

Model-based reinforcement learning has shown promising performance in complex environments |Ha
and Schmidhuber (2018)); Hafner et al.| (2019} 2023)); /Ahmadi et al.|(2023)). In particular, DreamerV3
has successfully leveraged compact latent representations and “imagination"-based planning to learn
effective policies from limited data. Despite its success, DreamerV3 models the dynamics in the world
model as pointwise transition functions in a latent state space, which may often require substantial
amounts of training data and fail to generalize across states that share structural similarities.

To address these limitations, we explore a novel approach based on the hypothesis that the world
model dynamics can be decomposed into transitions between structured subspaces of the latent state
space. Drawing inspiration from state abstraction [Li et al.|(2006), we propose to represent each latent
state as a soft membership distribution over a set of learnable subspaces, each grouping a coherent
aspect of the environment’s dynamics. By modeling transitions between these subspaces rather than
individual latent states, we aim to enhance sample efficiency.

Our research questions were motivated by the goals of interpretability and data efficiency, inspired by
reasoning in humans. In this project, we propose a novel set-based state abstraction framework. Our
main research question was: can we learn overlapping state abstractions such that we reduce the data
efficiency requirements by enabling ‘natural‘ generalization across similar states, where similarity is
context-dependent?

Stanford CS224R 2025 Final Report

2 Related Work

2.1 State Abstraction and Bisimulation

State abstraction is the process of mapping high-dimensional states in a Markov decision process
(MDP) to a lower-dimensional or simplified representation that preserves relevant decision-making
properties |Li et al.| (2006). It is a long-standing goal in reinforcement learning (RL), aimed at reduc-
ing the complexity of decision-making by mapping high-dimensional states to lower-dimensional
representations that preserve task-relevant information. The intuition behind state abstraction is that
by grouping states that are similar together, information learned about one state can be transferred
to another, increasing data efficiency. Another advantage of the state abstraction approach is that,
transitions between subsets of the state base have the potential to be somewhat more interpretable
than transitions done in an abstract latent space (see Dreamer below). Bisimulation metrics formalize
this by grouping together states with identical future dynamics and reward distributions. Zhang et
al.Zhang et al.| (2021) proposed a method to learn bisimulation-invariant latent spaces without relying
on reconstruction losses, leading to improved generalization in visual environments.

However, recent work has identified limitations in offline RL settings where bisimulation can struggle
due to incomplete data coverage and reward scaling issues Zang et al.|(2023). In nearly all of the
state abstraction literature, including bisimulation, the state space is partitioned on an equivalence
relation in which points in state space are equivalent if they share properties, e.g. they have the same
optimal action or the same reward and next state probabilities. However, some partitions might be
efficient for some subtasks but ineffective for others. Decomposing the state space into overlapping
subsets would enable different representations for different subtasks, but this remains underexplored
in the literature.

2.2 Latent World Models in Model-Based RL

Model-based RL methods such as PlaNet Hafner et al.|(2019) and Dreamer |Hafner et al. (2023) learn
recurrent state-space models (RSSMs) that support imagination-based planning in latent space. The
motivation behind this ‘imagining® is that, by learning an accurate world model, agents can plan
far into the future, in contrast to methods like TD updating that rely on propagating a scalar value
backwards through time. The hope is that planning in an imagined latent space can improve data
efficiency. Dreamer v3 |Hafner et al.|(2023) is a model-based reinforcement learning algorithm that
learns a world model to simulate future trajectories and optimizes behavior by planning in this learned
latent space. It was a notable advance over its predecessors -v1 and -v2 because of its stable training
and generalization enhancements. It implements the world model as a Recurrent State-Space Model
(RSSM) alongside convolutional encoders and decoders for observations. The policy and value
functions are trained using “imagined" rollouts, with robustness techniques based on normalization,
balancing, and transformations.

In the original Dreamer v3 paper, ablation showed that performance was heavily dependent on
reconstruction loss. The reconstruction loss was required to prevent latent space collapse. However,
reconstruction loss encourages the model to learn spurious correlations in the high dimensional
observation, and as a result it becomes very sensitive to background features, decreasing robustness.
There are a number of model-based reinforcement learning papers that learn a dynamics model in
latent space without including a reconstruction loss. MuZero [Schrittwieser et al.| (2020) doesn’t
include an explicit loss on ensuring temporal consistency in the latent space, but instead uses the
dynamics model on the latent space to predict the value function, the policy, and the rewards, which
all have losses on them. EfficientZero|Ye et al.[(2021)) modifies MuZero to add a temporal consistency
loss that in the latent space. DreamerPro Deng et al.| (2022) modifies Dreamer by dropping the
reconstruction loss and replacing it with a fixed number of ‘prototypes’, which are points in latent
space. To avoid trivial solutions they explicitly encourage data points to be assigned to each cluster
within a batch uniformly. While all these approaches avoid a reconstruction loss, they are still not
data efficient enough to work on many robotics tasks.

While Dreamer-v3 is a model-based RL method with SOTA data efficiency, we believe model-based
RL can still be more data efficient. By taking ideas from state-abstraction (namely the idea that
features can be constructed out of sets of the state space), and dropping the requirement that these
sets partition the state space, we hoped to test our ideas in the Dreamer model by substituting out the
original encoder with one based on our novel architecture. If a model can learn sets of state space

that are ‘the same’ for predicting future trajectories, it should be able to imagine rollouts of the future
with more accuracy and without memorizing spurious correlations.

3 Method

3.1 Grid world

3.1.1 Motivation Behind Set Abstraction

The motivation for state abstraction arises from the desire to learn rules that apply to sets of states,
rather than individual states, thus reducing the amount of data needed. Consider a grid world where
states are the set of coordinates (x,y), with z,y € {1, ...,5}. Suppose a rule states: "if z = 1 then in
the next timestep x = 2", then without state abstraction one would need to observe this transition
for all 5 possible values of y. However, if the coordinates X and Y are known to be independent
factors, this rule could be learned with fewer samples. We can define factors f; = {s € S|z = 1}
and g1 = {s’ € §’|x = 2}. The dynamics hypothesis ¢1 = (f1, g1) represents the prediction that if
the current state x is in f1 (i.e., its first coordinate is 1), then the next state s’ will be in g3 (i.e., its
first coordinate will be 2).

3.1.2 Definitions

Each factor is a soft state indicator function.

f:S—=1[0,1] (Factor)

Intuitively, if a factor mapped to the two element set {0, 1}, it would indicate a subset of the state
space, and we could talk about a particular state being ‘in’ or ‘out of” a factor. A factor is like the
receptive field of a neuron, which measures how intensely a particular element ‘activates’ the factor.

A dynamics hypothesis (DH) is defined to be a pair consisting of an antecedent factor and a consequent
factor.
¢; := (anty,, cong,) (Dynamics Hypothesis)

The dynamics-hypothesis-wise dynamics model is the weighted average of the normalized consequent
factor and a uniform distribution over the next state space, weighted by the probability that the current
state is in the antecedent.

1
Pau(sls) i= Zoryooms, (1) ® (DH model)

The overall model is the product of these weighted by P(¢;), normalized:

1 .
pa(s']s) = 0] H i (s']5)F (@) (Aggregate Model)
¢, €D

For each dynamics hypothesis and for the overall model, we can define the following cross-entropies
and losses.

H(T,ps|Ug) := —log pq>(s'|s)} (Aggregate Cross Entropy (CEs))

E { E
s~Us () Ls'~T(:]s))
H(T,pylanty) := s~aIE¢(-) L'~7]E(~|s)) — logp¢(s/|s)] (DH Gated Cross Entropy (C'Eg|ant))

H(T,py|Us) := SN[E]JES“ L'~7I’E(»|s)) — logp¢(s's)} (DH Cross Entropy (C'Ey))

The corresponding losses are

Lcp = H(T,ps|Us) (H
1

Lty = g7 2 P(8:) - H(T, po.Jants) @)

¢ €D
1

Lo, = g > P(¢q) - H(T,ps,|Us) 3)
€D

L:=Lck+ biLcE,,,, + B2LcE, + B3LR “4)

Why have 3 different cross-entropies? The first—the aggregate cross-entropy—indicates a good
predictive model overall. The DH-gated cross-entropy measures, in the region of the antecedent space
that this particular DH claims to be an expert in, how good its predictions are. However, minimizing
this causes the antecedent size to shrink, resulting in a prediction that is accurate but overly specific
and does not generalize. Finally, the DH cross-entropy measures how good this specific DH is at
predicting across the entire antecedent space, encouraging the antecedent to be large. One idea is that,
in optimization, for the DH Gated CE, one could freeze the antecedent of each dynamics hypothesis
and modify the consequent to minimize this cross-entropy loss. For the DH Cross Entropy, one
could conversely freeze the consequent and optimize the antecedent to expand as much as possible
to increase abstraction and generalization. Since DH-specific CEs do not take into account the
interaction between DH, the aggregate cross entropy would minimize redundancy between the DHs
so they do not make the same predictions as each other; they provide coverage over the antecedent
space, and simultaneously active DHs don’t predict the same consequent.

Entropy Type Frozen Optimized Objective

CFEs — P ant coverage T , con orthogonality 1
CEq cong antg |antg| T
CEglant anty cong Consequent quality

Why aggregate DH-wise CEs by weighting by their probabilities? P(¢) is the degree of belief
the agent has that ¢ is ‘true’, or more formally, that C'Ey|4,,; = 0. Since dynamics hypotheses share
factors, when doing gradient descent, if all C E;, were treated equally, factors constituent of a ¢ with
low P(¢) would contribute to the gradient as much as those with a high P(¢), which would cause
forgetting of good dynamics hypotheses.

3.1.3 Redundancy Loss

Also core to the intuition is that for a state s, each dynamics hypothesis will reduce the possible
consequent space independently. That is, if we view them as hard indicator functions in some BV
space, each one ‘eliminates’ a different binary dimension, such that if we start out with a space of
size 2V and we apply k dynamics hypotheses, then we would end up with a space of possibilities of
size 2V =% The entropy of a factor measures how much of the log consequent space is remaining, so
we can measure how much a DH shrinks the consequent space by measuring the change in entropy it
is responsible for. Formally, for a factor ¢ the entropy at a point s can be defined as

Hylpg) = | E 1=logps(s|s)] ®)

and the change of entropy A H can be defined as the difference between the entropy of a uniform
distribution over S’ and the final entropy

AHS(]%) = log |S/| - HS(paﬁ) (6)

For a collection of dynamics hypotheses @, the distribution formed by multiplying, then normalizing
(as in Equation must have a lower AH than the sum of their individual entropies

AH,(ps) <) AH,(py,) (7
¢, €D

Therefore, we can form a measure of information redundancy in a collection of dynamics hypotheses
as

R(s)= | D AH(py,) | — AH,(pa) ®)
¢, €D

R(s) € [0, oo] measures how much redundancy there is. As a simple example of this, suppose we
have a 16x16 grid world, and currently there are two active dynamics hypotheses ¢ and ¢, where
cong, = (z =5) and cong, = (y = 2). Then since |S| = 2% a uniform distribution has H = 8 bits,
a factor that specifies the x coordinate has 4 bits, so the remaining entropy in our grid world after
observing cong, would be 4 bits, and another factor that specified the y coordinate would completely
eliminate the entropy. That is, AH,(ps,) = AHy(py,) = 4 and AH,(ps) = 8, so there is no
redundancy.

We can define a new loss term

Lr:= E [R 9
wim B RG) ©
= %3 ZAHS(ZD@) — AH(ps) (10)
s~Us(+) | \dico
= E > log|S'| = Halpy,) | — (log|S'| — Ha(pa)) (11)
s~Us ()
| \¢:€P
=(|@] - D)log|S'|+ E |Hi(pa)— | Y Hilpy,) (12)
s~Us ()
¢ €D
=K+ E HS(pé)_ ZHs(ptin) (13)
s~Us(+) bred

This loss should encourage sparsity of active DH, as inactive DHs (those where ant,(s) ~ 0) will
have uniform distributions as models, which have AH,(py) ~ 0. Importantly, this objective is
independent of the true dynamics model, it is entirely a property of the relation between the factors
themselves.

3.1.4 Grid world Architecture

The complete model for the grid world was a neural network with two components: an encoder
and a transition matrix. The encoder mapped a one-hot representation of the state space through a
3-layer MLP followed by a sigmoid function onto a 10 dimensional latent vector where each element
is constrained between 0 and 1. Each element corresponds to a factor, so there are 10 factors in
total to represent the | S| = 25 states. The (7,)" entry of the transition matrix represented the
probability P(¢; ;) of the dynamics hypothesis defined as the pair of the ith antecedent factor and the
jth consequent factor. The model was implemented in PyTorch and trained on a infinite data loader
(i.e. new samples were constantly generated).

3.2 Set Dreamer

Here we introduce Set Dreamer. In Set Dreamer, we replace the GRU sequence model in DreamerV3
with the subspace abstraction framework.

We first review the world model of DreamerV3. DreamerV3’s world model learns compact repre-
sentations of input images through autoencoding and enables planning by predicting future image
representations and rewards. The world model first maps input images x; and current hidden state
h, to stochastic representations z;. DreamerV3 then uses a GRU that takes in the previous hidden
state, action, and image embedding to compute the next hidden state. The model is trained to use the

hidden state to predict the image embedding and a concatenation of the hidden state and the image
embedding to predict the reward and continuation flag and reconstruct the input image. The following
is a list of equations that constitute the world model, as defined in the DreamerV3 paper |Hafner et al.
(2023)):
Sequence model: hy = fg (ht_l, Zi_1, at_l)
RSSM Encoder: z; ~ qg (2t | he, @)
Dynamics predictor: 2, ~ pg (2 | hy) (1
Reward predictor: 7y ~ pg (74 | he, 24)
Continue predictor: & ~ pg (¢ | he, 2t)
Decoder: Ty ~ Py (i’t | B, zt)

Now, we define Set Dreamer. We replace the standard sequence model of DreamerV3 with a subspace
abstraction framework:

T—1 = f(p(ht_h Zt—hat—l)a Tt—1 € R[DO:LlTDh (14)
Dy,

hy =1— H(l —he—14Ti—1,0) 3)
=1

where 7;_; . ; is the ith column of 7;_; and h;_; ; is the ith entry of h;_;. Here, the function f is
parameterized by a neural network (e.g., an MLP) and is followed by a sigmoid activation function to
ensure outputs between 0 and 1.

The matrix 7, represents a dynamics hypothesis matrix, where the element in the jth row and ¢th
column corresponds to the probability that the dynamics hypothesis ¢;_, ; is valid. We interpret each

dimension i of the recurrent state h; € [0, 1]P" as representing the probability of membership in
subspace U; at time ¢. Specifically, the recurrence in equation (I3)) can be understood as follows:

plhej =1) =1 =p(he; = 0)
Dy,
=1- H(l —p(hi—1i = 1)p(pisj = 1))

i=1

This simplification arises under the assumptions that:

* If the system is a member of subspace U; and if the dynamics hypothesis ¢;_, ; is valid for
atleastone ¢ € [1,..., Dy], the system will transition into subspace Uj;.

* If the system is not a member of subspace U; or if the dynamics hypothesis ¢;_, ; is invalid
forall i € [1,..., D], the system will not transition into subspace Uj;.

Although this recurrence formulation enjoys a clear probabilistic interpretation, it suffers from a
couple of practical drawbacks:

* Numerical underflow / vanishing gradients: Multiplying many factors (i.e. when Dy, is large)
in [0, 1] underflows to zero in finite precision, and Hf):hl(l —plhi—1,; =)p(pims; = 1))
vanishes once any term is zero.

* Parameter blow-up: Naively computing a dense 7 € R”»*Pr from the hidden state, action,
and image embedding with a feedforward NN is costly.

Thus, rather than multiplying D;, factors, we exploit the structure of the Poisson process and its
hazard rate to obtain a numerically stable framework.

1. Interpret each coordinate 7 at step ¢ — 1 as an exposure time h;_1; € [0, 1] to a source 7.

2. Learn a nonnegative “hazard" rate matrix 2 € RES’ *Dn Each entry of {2;; (the ith column

and jth row entry of €2) represents how much an exposure to source 7 leads to subspace j.
In our case, ending up in subspace j would be considered a “failure" or “death".

3. Assuming independence across sources 7, the survival function at coordinate j is
D
exp(— ;21 Qjihe—1,9).

4. The final recurrence thus becomes
hy =1 — exp(—Qhs—1)

where the exponential is applied element-wise.

This formulation is exactly equivalent to our initial formulation in equation (I3) when the hidden
states are restricted to be binary. With this reparameterization, we get a more numerically stable
framework with better gradients.

In addition, in order to avoid parameter blow-up, we parameterize 7 as a low-rank plus diagonal matrix.
In other words, we compute U, = fg, (hi—1, 211, a1-1) € RP»>" Vo = fy (h4—1,24-1,a1-1) €
RP»*" and e, = foo(hio1,2e-1,ai-1) € RP*, for r << Dy,. Then, we set 7 = U, V; + diag(e,),
which greatly reduce the number of parameters.

4 Experimental Setup

4.1 Grid world problem

We call the factors that were used in the generation of a dynamics process the ’generative factors’.
To test out the ability of our loss functions to reconstruct the generative factors, we set up a toy
grid world. The grid world consisted of a the discrete Cartesian plane of size 5 x 5 and a dynamics
process 7 (s'|s) that mapped 7T : (x,y) — (f(z), g(y)), where f and g are deterministic stationary
functions of one coordinate. The functions were constructed so that there each coordinate (e.g. x)
was permuted with a cycle size equal to the size of the entire dimension, so there were no smaller
loops. During training we sampled from a uniform distribution over the state space denoted Ug(.5)
and trained with single step trajectories. The goal was then, based on these single step trajectories,
to simultaneously learn factors that were sufficient in modeling the dynamics, and the dynamics
themselves. Although we tracked our four losses, our main success metric was the reconstruction of
the generative factors, described below.

4.1.1 Objective: Factor Reconstruction

Factors are defined below, but in the grid world setup, the generative factors (factors that generated
the dynamics) are indicator functions over the discrete Cartesian coordinates that pick out a fixed
z-coordinate (column) or y-coordinate (row). For example, the factor f,—4 : 72 — {0, 1} that maps
each point (z,y) to 1 if x = 4 and 0 otherwise. this problem, each x coordinate and each y coordinate
correspond to a distinct factor. That is, since a particular x coordinate in a discrete cartesian plane is
a column, and each y coordinate a row, the factor x = 4 corresponds to the column at z = 4. More
specifically, a factor is the indicator function mapping points in the cartesian plane to the set 0, 1
indicating whether or not x = 4.

Our main objective with the grid world was to show that we could learn the generative factors from
only the single step transitions. To measure this, we define a factor reconstruction score. Given a

generative factor f : S — {0,1} and a reconstructed factor f : S — [0,1],

Rec(f, f) : |S\Z f(s)log f(s) = (1= f(s)) log(1 = f(s))

seS

Since we are attempting reconstruction up to permutation, we greedily matched learned factors with
the generative factor with the best (lowest) reconstruction score, and summed Rec(f, f) over all
matched pairs of factors. We always used the same number of generative and reconstructive factors.
This loss was not used in training at any point, only in evaluation.

4.2 Ataril00k Pong

To test Set Dreamer, we compared the performance of Set Dreamer and the default DreamerV3 on the
Atari100k Pong task Machado et al.[(2018)). We used the “ALE/Pong-v5" environment, whose action
space consists of 6 discrete actions (NOOP, FIRE, RIGHT, LEFT, RIGHTFIRE, and LEFTFIRE)
and the observation space consists of RGB images of size (210, 160, 3). Ataril00k is a low-data

Figure 1: Atari Pong Environment.

variant of the default Atari benchmark, where the agent is limited to 100k agent steps to interact
with the environment. Both Set Dreamer and default DreamerV3 were trained for 400k steps. The
hyperparameters of DreamerV3 were set to the default hyperparameters outlined in [Hafner et al.
(2023)), and the hyperparameters of Set Dreamer were set to match the parameter count of DreamerV3
for a fair comparison.

5 Results

Here we show the quantitative and qualitative experimental results from the Gridworld and Atari
Pong experiments.

5.1 Quantitative Evaluation
5.1.1 Gridworld

Because we had 4 losses, we performed a hyperparameter search on their relative weights (i.e.
coefficients). Unfortunately, when we trained the entire model end to end, we were not able to recover
the original factors, or indeed minimize the cross entropy loss. For unknown reasons the transition
matrix, although it contained only 100 parameters, was extremely slow to converge. And, when we
pretrained the transition matrix to convergence (10,000 epochs), we still were unable to learn factors
that minimized the cross entropy loss. However, when pretrained the transition matrix and fixed
two factors to the generative factors (corresponding to indicators for one column and one row of our
grid world respectively), we were able to reconstruct the other 8 factors. The results in TableT|and
Figure [2] show a hyperparameter search which started out with the pretrained transition matrix and 2
fixed factors.

Table 1: Experimental results for training runs with different loss weights showing all four components
of the training losses, as well as the generative factor reconstruction score (i.e. perfect encoder loss).
All numbers were taken after the end of the 200 epoch run. The reconstruction score was not used in
any training objective, while the aggregate cross entropy Lo g was used in all runs.

Run LcE ECE(Mant ﬁCE¢ Lr Perfect Encoder Loss
Bo=1, 51=0, B>=0, 33=0.0 0.5507 0.3023 0.3254 | 36.8493 7.2977
Bo=1, 51=0, B2=0, 53=0.003 | 0.9728 0.2527 | 0.3057 | 17.7221 1.0777
Bo=1, 51=0, 3>=3, 83=0.0 0.4078 0.2444 | 0.2909 | 25.1974 3.0952
Bo=1, 81=0, 8>=3, 33=0.003 | 0.1376 | 0.2185 0.2893 | 28.1841 0.3952
Bo=1, 51=3, B>=0, 83=0.0 0.0690 | 0.1973 0.2809 | 29.1047 0.4284
Bo=1, 51=3, B>=0, 83=0.003 | 0.1448 0.1929 | 0.2829 | 29.5455 1.2591
Bo=1, $1=3, B2=3, 83=0.0 0.2024 | 0.2063 0.2898 | 33.1035 3.7269
Bo=1, 51=3, B>=3, 33=0.003 | 0.4443 0.1977 | 0.2809 | 26.2355 0.8324

Although there was considerable trial-to-trial noise, a consistent finding was that addition of one or
more of the losses in addition to the vanilla cross entropy loss were required for generative factor
reconstruction.

CE Loss
Perfect Encoder Loss

7 100 125 150 s 20

. . A 0 2
Training Step Training Step

(a) Cross Entropy Loss (b) Perfect Encoder Loss

Figure 2: Learning curves showing (a) Lo g, the aggregate cross entropy and (b) Lg, the distance the
reconstructed factors are from the generative factors.

Table 2: Set Dreamer vs. DreamerV3 Performance Comparison on Ataril00k Pong

Method Final Average Eval Return (1)
Default DreamerV3 21
Set Dreamer 2.45
S — P
a s \ / —

o E 100K 1506 200k 250 300k 350k 00K

Run Value Step Relative
atari_pong_rssm k2l 400000 16.39 hr
. atari_pong_sarssm_reparam_new_v2 245 400,000 1.081 day

Figure 3: Average eval return as a function of training steps.

5.1.2 Ataril00k Pong

Here we show the average evaluation return as a function of training steps. We see that the default
DreamerV3 outperforms Set Dreamer, converging to a higher average evaluation return in a shorter
number of steps. We hypothesize that this gap in the performance could be caused by the following:

1. In many cases, we observed that the paddle that the agent controls gets stuck at either end of
the frame. This phenomenon is potentially due to the collapsing states (i.e., all the states
tend toward zeros or ones as we apply the world model recurrence), caused by the difficulty
of learning the useful subspaces in a high-dimensional and entangled environment.

2. Set Dreamer is not as expressive as the default DreamerV3 that uses a GRU as its backbone
sequence model. In particular, we think that the performance gap could also be due to
the fact that we had to set the rank r of Set Dreamer to a small value to make the number
of parameters between the two models comparable. While the number of parameters was
comparable, making the comparison fair, this may have been too restrictive for Set Dreamer
to learn an expressive dynamics hypothesis matrix 7.

5.2 Qualitative Analysis
5.2.1 Grid world

One way to capture the performance of the grid world model is to plot out the receptive fields. As
shown in Figure[d] the receptive fields of each factor changed dramatically during training. Videos
of the factor learning process reveal *waves’ of factor reconstruction, propagating backwards from
the fixed factors. For example, Factor O (corresponding to = 0) is always followed by Factor 1
(corresponding to z = 1). Since Factor 1 is fixed, the first factor to be learned is Factor 0, followed by

Bo=1, B1=0, B>=3,

5=0.003

Bo=1, B1=0, B2=0, B3=0.0

Figure 4: Changes in Receptive Fields from the best (top) and worst (bottom) hyperparameters in the
grid training. Left are the starting receptive fields, with factors 1 and 8 fixed to be the column z = 1
and row y = 3 respectively. Addition of a nonzero beta for Lo g, and L can be seen to improve
reconstruction of the generative factors.

factor 5 (corresponding to x = 4), etc. It seems as if once these target factors are learned, it unblocks
the learning of the causally upstream factor. This qualitative observation was very consistent across
many hyperparameters, particularly when the coefficient for the C'E4 was nonzero.

6 Discussion

6.1 Why can’t we recover the generative factors in a deterministic Markov process?

The generative factors are not identifiable We suspected that, given these single step trajectories
and our four losses, it was impossible to reconstruct the original generative factors without fixing
several of the factors. In order to show this, we constructed two sets of dynamics hypotheses, shown
in Figure[f] One set consisted of the generative dynamics hypotheses, while the other was generated
randomly such that it still was consistent with the transition function. As seen in Table[3] when we
computed the loss terms for both complete models, they had exactly the same values. This shows in
a proof by example that this problem has multiple global minima, no matter what coefficients are
placed on the losses. In other words, recovering the unique generative factors in a deterministic grid
world is not possible.

Atomic and Compound Dynamics Hypotheses Let’s define a point dynamics hypothesis ¢ to be
one that has exactly a single state in the antecedent and exactly a single state in the consequent. In a
deterministic Markov process, every state goes deterministically to exactly one state. Given some
state space of size |S|, this can be perfectly modeled with a single point dynamics hypothesis for
every antecedent state, indicating where it transitions to. Given a collection of such distinct point
dynamics hypotheses, the product of all these conditional densities perfectly models the Markov

process. That is, H(T, (H bicaP <i>'> |Us) = 0, as there is no uncertainty remaining about the next

10

Bo=1, B1=0, B>=3, B3=0.003

Sample 0
0.00

y coordinate
43210

x coordinate

Sample 1

y coordinate
43210

x coordinate

Sample 2

y coordinate
43210

x coordinate

Sample 3

y coordinate
43210

x coordinate

Sample 4

y coordinate
43210

0 1 2 3 a
x coordinate

Bo=1, B1=0, B,=0, B3=0.0

Sample 0

0.00
| 099 |EEG
0.00
0.00 0.00
0.00
2
x coordinate

y coordinate
43210

Sample 1
0.00
0.00
0.00
0.00

y coordinate
43210

0.00
2
x coordinate

Sample 2

y coordinate
43210

2
x coordinate

Sample 3

y coordinate
43210

) 1 2 3 4
X coordinate

Sample 4

y coordinate
43210

2
x coordinate

Figure 5: Example next-state predictions of the complete dynamics models.

Table 3: Comparison of Loss Values for two collections of DHs

Generative DHs Random DHs
LcE 0.0 0.0
ﬁCE¢|am 2.0 2.0
Lce, 3.5 3.5
Lr 0.0 0.0

state. To see this, observe that for all dynamics hypotheses where s, is not in the antecedent, py, (s'|s)
is equal to the uniform distribution over the next state, whereas it is equal to the Dirac distribution of
the correct consequent factor. The product of an arbitrary number of uniforms with a Dirac is that
Dirac.

Define two binary operators on dynamics hypothesis: A and V. We can define these as the product
t-norm and probabilistic sum s-norm (from fuzzy logic), respectively

o1 A P2 ::(ant¢1 (5) - antg, (5)3 COng, (S) * €O, (5)) (16)
b1V P2 ::(ant¢1 (S) + antg, (8) — anty, (5) - antg, (8)7 COong, (S) + cong, (8) — CONg, (S) * COlg, (S))
(17)

Recall that both factors of a dynamics hypothesis map S — [0, 1]. Dynamics hypotheses are thus
closed under A and V. Consider the disjunction of two dynamics hypotheses. The resulting dynamics
hypothesis would state "if s; is an element of either antyg, or anty, then s;; will be in either cong,
or cong, " The interpretation of the conjunction of two dynamics hypotheses would follow similarly:
"if s; is an element of both anty, and anty, then s;11 will be in cong, and cong,". Note that in these
operators, information about the original factors is not preserved in the new factors.

11

Figure 6: The generative collection of dynamics hypotheses (A) vs a random collection (B). Each
row consists of a DH (a pair of factors) where the antecedent (left) deterministically precedes the
consequent (right). Both have exactly the same values for all 4 losses on the task, when each state
(z,y) deterministically transitions to (z + 1modN,y + 1modN).

Defining conjunction and disjunction on dynamics hypotheses is useful because it allows us
to compute the conditional cross entropy of the resulting dynamics hypotheses for example
H(T,pprne:|Usg) or H(T,pgy,ve,|Us). Suppose we have a collection of distinct correct point

dynamics hypotheses ¢. What happens as we take their disjunction? The antecedent grows, the
coverage of the antecedent goes up, which decreases the C.E. However, as the consequent grows, the
surprise of the consequent, even when inside the antecedent, increases, decreasing the C.E.

Core to the intuition of our formulation is the idea that good dynamics hypotheses are those that
have antecedents and consequents that are bound in real causal relationships. In our gridworld, we
sought to essentially combine (with this V operator) point dynamics hypotheses where, for example,
all points in the antecedent and consequent corresponded to the same values of x or y. that is,
if ¢ = ((iE =Ly = 4),(.T =2,y = 7)) and ¢o = ((Z =ly= 8),($ =2,y = 1)) then
P1Voa=((x=1,y=(4V8)),(x =2,y =(7V1)) gets us closer to a pure factor that drops all
reference to y (i.e. (x = 1,z = 2)). However, the cross-entropy of this disjunction (¢; V ¢2) is no
less than that of any other arbitrary disjunction. Because of this, our training algorithm that only uses
CE, as the loss learns arbitrary disjunctions of true point dynamics hypotheses, not corresponding
to the factors. However, when we also consider C E, the more independent these antecedents are
relative to each other, the lower the cross entropy.

Suppose we have two dynamics hypotheses ¢; and ¢5 that have two distinct antecedent factors
Ay and As, but have the same consequent C. For example, let Ay = (z = 0V 1,y = 0)),
let Ao = (x =2V 3,y =0),and let C = (y = 1). In words, both ¢; and ¢, say that for
particular values of x, y transitions from O to 1, but they have disjoint values of x. Suppose we
have a new factor ¢3 that has the same consequent factor, but merges the two antecedents to be
Az =(x=0V1V2V3,y=0). Then this new ¢3 has the same cross entropy as {¢1, ¢}, but is
more compact, and is closer to the generative factor (a pure factor of y).

Our argument is that ¢j3 is likely to be learned when the y transitions are randomized, but not when
the Markov process is deterministic. This is because the formation of ¢3 requires ¢; and ¢ to
have exactly the same consequent, a pure factor of y. However, as A1, the antecedent of ¢;, has
information about the = coordinate, it is more likely that instead of learning the consequent C', it will
instead learn something about where the «’s transition to (i.e. C = (x =6V 7V 8,y = 1), and that
will get entangled with the y transition in C'. Once the two consequents for ¢; and ¢4 diverge, the

12

merger of the dynamics hypotheses into ¢35 would actually increase the cross entropy, and so would
not be learned.

7 Conclusion

In this work, we explored how we can improve interpretability and data efficiency of model-based
reinforcement learning methods by incorporating the set-based state abstraction framework, a novel
framework where we represent each latent state as a soft membership distribution over a set of
subspaces and model the dynamics between these subspaces. We tested our framework on a toy
grid world problem and extensively analyzed the effects of different loss functions and why we
cannot recover the ground truth factors. We further implemented Set Dreamer by incorporating
the set-based state abstraction framework into DreamerV3 and tested on the Atari100k Pong task.
Although modeling dynamics between learnable subsets of state space is a promising idea, offering
interpretability and potential for generalization, we found that learning the correct subsets (factors) is
highly non-trivial, especially in high-dimensional, entangled environments. When naively integrated
into DreamerV3, Set Dreamer fails to learn the task, highlighting the practical limitations of this
abstraction. For future work, we could explore nonlinear interactions between factors (e.g., attention
or gating) or incorporate temporal hierarchies, where some factors evolve on longer timescales.

8 Team Contributions

* Hyun Dong Lee: Architecture design, implementation. Set Dreamer implementation. Paper
write-up. Poster creation.

* Kyle Ellefsen: Architecture design, implementation. Loss function design. Grid world
implementation and related ablation experiments. Paper write-up. Poster creation.

Changes from Proposal We focused more on understanding why our framework fails in the toy
grid world example, recognizing the importance of diagnosing issues in a simpler setting.

References

Aida Ahmadi, Danijar Hafner, et al. 2023. Learning Contextual World Models for Generalization. In
NeurlPS.

Fei Deng, Ingook Jang, and Sungjin Ahn. 2022. Dreamerpro: Reconstruction-free model-based
reinforcement learning with prototypical representations. In International Conference on Machine
Learning. PMLR, 4956-4975.

David Ha and Jiirgen Schmidhuber. 2018. World models. arXiv preprint arXiv:1803.10122 (2018).

Danijar Hafner, Nicolas Heess, et al. 2023. Mastering Diverse Domains through World Models. In
International Conference on Learning Representations (ICLR).

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. 2019. Learning latent dynamics for planning from pixels. In International conference
on machine learning. PMLR, 2555-2565.

Lihong Li, Thomas J Walsh, and Michael L Littman. 2006. Towards a unified theory of state
abstraction for MDPs. AI&M 1, 2 (2006), 3.

Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew J. Hausknecht, and
Michael Bowling. 2018. Revisiting the Arcade Learning Environment: Evaluation Protocols
and Open Problems for General Agents. Journal of Artificial Intelligence Research 61 (2018),
523-562.

Julian Schrittwieser, loannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon

Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. 2020. Mastering
atari, go, chess and shogi by planning with a learned model. Nature 588, 7839 (2020), 604—609.

13

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. 2021. Mastering atari
games with limited data. Advances in neural information processing systems 34 (2021), 25476—
25488.

Hengyuan Zang, Lirong Li, et al. 2023. Understanding and Addressing the Pitfalls of Bisimulation
Metrics in Offline Reinforcement Learning. arXiv preprint arXiv:2306.00949 (2023).

Amy Zhang, Rowan McAllister, William Whitney, et al. 2021. Learning Invariant Representations
for Reinforcement Learning without Reconstruction. In International Conference on Learning
Representations (ICLR).

A Additional Theory

A.1 Decompositions of Conditional Cross Entropies

Section Summary: the conditional entropy H(7|Ug) is a lower bound on the conditional cross
entropy of any model.

All three cross-entropy terms above are conditional cross-entropies, conditional on the parent variable
distribution p(s). They can be decomposed into the sum of the conditional KL divergence, which can
be reduced when varying the parameters of the DH, and the conditional entropy, which cannot.

H(T,ps|Us) = H(T|Us) + DxL(Tllpe|Us)
—_—— ———— —_——

Conditional Cross Entropy Conditional Entropy ~ Conditional KL Divergence

The KL Divergence is bounded in [0, oc] and is a measure of how dissimilar our model of the
dynamics process to 7. If the dynamics is deterministic, the conditional entropy term is zero, and the
KL term and the cross entropy term are equal. We can compare how well our model pg is doing to a
baseline model. For example, we could use the marginal distribution of the next state as a baseline:

ps)= E [T()s)

We could introduce a measure of how much better off we are using a model py compared to this
baseline as the difference in conditional KL divergences.

ADgr(pa) :=DxL(T|lp(s")|Us) — Dxv(T|Ips|Us) (18)
=H(T,p(s")[Us) — H(T,pa|Us) (19)

= E E —1 N= E E —1 ! 20

) [y 1080)} s~ Us (") L'w('s)) ogpa(s'ls) (20)

—H(S'|S) — H(T, ps|Us) 1)

That is, it is the average reduction in surprise of the consequent state when sampling the antecedent
state from a uniform distribution. How much does using this dynamics hypothesis alone decrease the
average surprise compared to a base model that simply modeled P(s’) and was blind to s.

14

	Introduction
	Related Work
	State Abstraction and Bisimulation
	Latent World Models in Model-Based RL

	Method
	Grid world
	Motivation Behind Set Abstraction
	Definitions
	Redundancy Loss
	Grid world Architecture

	Set Dreamer

	Experimental Setup
	Grid world problem
	Objective: Factor Reconstruction

	Atari100k Pong

	Results
	Quantitative Evaluation
	Gridworld
	Atari100k Pong

	Qualitative Analysis
	Grid world

	Discussion
	Why can't we recover the generative factors in a deterministic Markov process?

	Conclusion
	Team Contributions
	Additional Theory
	Decompositions of Conditional Cross Entropies

