
Extended Abstract

Motivation Aligning large language models (LLMs) with human preferences is critical for pro-
ducing helpful, truthful, and safe outputs. While supervised fine-tuning (SFT) establishes a strong
foundation, it often fails to optimize for nuanced preferences present in open-ended tasks. Reinforce-
ment learning from human feedback (RLHF) addresses this gap but is costly and complex. Recent
alternatives like Direct Preference Optimization (DPO) offer a scalable middle ground. However,
scaling DPO is still bottlenecked by the availability of high-quality preference data. We investigate
whether synthetic supervision from frozen reward models can bridge this gap.

Method We construct a three-stage alignment pipeline. First, we fine-tune a pretrained language
model on the SmolTalk dataset to encourage instruction-following behavior. Next, we apply DPO
using UltraFeedback, which is a large collection of human-annotated preference pairs, to align
the model with user preferences. Finally, we propose a synthetic extension: generating model
completions, scoring them using Nemotron-70B (a frozen reward model), and using these scores to
construct new preference tuples for further fine-tuning. We evaluate each stage quantitatively and
qualitatively.

Implementation We use parameter-efficient fine-tuning (LoRA) for both DPO and the synthetic
extension stages to reduce memory footprint and support modular experimentation. All training was
performed using three NVIDIA RTX 4090 GPUs with mixed-precision and gradient checkpointing.
The DPO model was trained on binarized UltraFeedback preference tuples, while the synthetic model
used 400 bootstrapped tuples derived from Nemotron scoring. Each fine-tuning stage used consistent
hyperparameters for comparability.

Results Each stage in the pipeline improves model alignment. Pairwise evaluation using Nemotron
reward scores shows DPO outperforming SFT (52.5% win rate), and the synthetic extension outper-
forming DPO (53.7%). Iterative bootstrapping further improves results over longer training on static
data. Qualitative evaluation reveals better logical structure and factual correctness in models trained
with synthetic preferences, correcting major reasoning failures present in earlier stages.

Discussion Our findings show that synthetic feedback, when sourced from strong frozen reward
models, can meaningfully improve alignment at low cost. Unlike traditional RLHF pipelines, our
approach avoids explicit reward model training and leverages modular LoRA adapters to enable
lightweight preference refinement. Iterative reward-space bootstrapping yields additional gains,
demonstrating that new model generations over fixed prompts can continue to explore improved
response regions.

Conclusion We demonstrate that alignment through synthetic supervision is feasible, scalable,
and effective. By combining SFT, DPO, and synthetic bootstrapping via a frozen reward model, we
achieve consistent improvements in preference alignment. This modular pipeline offers a practical
alternative to full RLHF and sets the stage for further work in reward-model-driven self-improvement.
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Abstract

We explore a multi-stage pipeline for aligning language models to human prefer-
ences using both supervised and synthetic data. Starting with supervised fine-tuning
(SFT) on the SmolTalk dataset, we build a strong instruction-following base model.
We then apply Direct Preference Optimization (DPO) using the UltraFeedback
dataset to align the model with human-annotated preferences. Finally, we introduce
a synthetic extension method that uses a frozen reward model (Nemotron-70B)
to score model-generated responses, creating new preference data without human
labeling. This synthetic bootstrapping approach yields consistent improvements
over SFT and DPO baselines, both in win rate metrics and qualitative output quality.
Our findings demonstrate that reward-model-driven supervision can scale pref-
erence alignment efficiently without reinforcement learning or additional human
feedback.

1 Introduction

Large language models (LLMs) have demonstrated remarkable performance across a range of natural
language understanding and generation tasks. While base models trained on massive corpora exhibit
impressive zero-shot capabilities, fine-tuning remains essential for adapting models to downstream
applications and for aligning their outputs with human preferences. Supervised fine-tuning (SFT), in
particular, provides an effective foundation by training models on high-quality input-output pairs,
often derived from human-written demonstrations or instruction-following datasets.

However, SFT alone does not guarantee alignment with human preferences. Models trained purely
via SFT tend to mimic behavior from their training set and may not always produce responses that
are preferred by users. This limitation has motivated the development of reinforcement learning-
based fine-tuning methods, such as Reinforcement Learning from Human Feedback (RLHF) Ouyang
et al. (2022), which further refine model behavior using preference data. While RL methods can
improve alignment, they are computationally intensive and complex to implement. Direct Preference
Optimization (DPO) Rafailov et al. (2023), a recently proposed method, simplifies this process by
leveraging pairwise human preferences in a supervised learning framework, avoiding the need for
full RL.

In this project, we first perform SFT using the SmolTalk Mu et al. (2023) dataset, a collection
of synthetic dialogues designed to teach conversational skills to language models in a structured,
lightweight manner. This serves as our base model for further experimentation. We then explore
alignment using the UltraFeedback Yuan et al. (2023) dataset, which consists of preference compar-
isons over long-form model completions on a wide range of queries. Using this data, we train a DPO
model to better capture human preferences.

Finally, we propose an extension based on synthetic preference data generation. Specifically, we use
our existing DPO model to generate candidate responses to prompts, and then score these responses
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using the Nemotron-70B Reward Model NVIDIA (2024). This approach allows us to automatically
generate high-quality preference data without relying on costly human annotations. We fine-tune
a second layer of LoRA adapters Hu et al. (2021) on top of the DPO model using this synthetic
supervision, and compare its performance against the original models.

Our experiments aim to understand the tradeoffs and potential of preference-based alignment through
both human-annotated and synthetic signals.

2 Related Work

Supervised Fine-Tuning (SFT) remains the foundational method for adapting large language models
(LLMs) to downstream tasks. Datasets like SmolTalk Mu et al. (2023) provide structured dialogues
for instruction tuning and serve as a lightweight alternative to massive instruction datasets. While
SFT enables models to follow task instructions and produce syntactically fluent outputs, it does not
directly optimize for human preference or utility, leading to suboptimal alignment.

Direct Preference Optimization (DPO) Rafailov et al. (2023) builds on SFT by incorporating
pairwise human preference data in a contrastive loss framework. This allows models to learn not
just what to say, but which responses are preferred when multiple valid outputs exist. DPO sidesteps
the instability of reinforcement learning algorithms like PPO, offering a simpler and more scalable
alignment method. Our baseline uses SFT followed by DPO, forming a strong aligned model trained
on the UltraFeedback dataset Yuan et al. (2023).

Synthetic Preference Supervision. A key challenge in scaling DPO-style alignment methods
is the high cost of collecting large volumes of preference data. Inspired by recent work such as
Reinforcement Learning from AI Feedback (RLAIF) Lee et al. (2024), we explore a different path:
using frozen reward models to evaluate and generate new preference data. Unlike RLAIF, which
trains a reward model from AI preferences, our method directly applies a strong frozen reward model
(Nemotron-70B NVIDIA (2024)) to score completions. This enables a single-stage synthetic reward
pipeline that bypasses the need to fit a new reward function. Similar in spirit to Constitutional AI Bai
et al. (2022), which uses model self-critiques as supervision, our approach uses model generations
evaluated by a reward model to synthesize learning signals except we skip the critique step entirely in
favor of scalar feedback.

Low-Rank Adaptation. Our extension fine-tunes a second layer of LoRA adapters Hu et al. (2021)
on top of the DPO-aligned model using this synthetic reward data. This allows for a lightweight and
modular approach to preference refinement, making it possible to stack alignment stages without
retraining the full base model or discarding previous training.

Our extension complements previous alignment methods by offering a scalable way to bootstrap
further preference training without additional human supervision or reward model retraining.

3 Datasets

3.1 SmolTalk Dataset

SmolTalk is a large-scale, synthetic instruction-tuning dataset designed to improve language model
performance, particularly for smaller models. Curated and released by the SmolLM2 team at Hugging
Face, it includes over 1 million samples generated via GPT-4 and other open data sources. SmolTalk
reflects a data-centric approach where synthetic high-quality samples can rival curated human-created
data, making it a strong base for SFT in downstream reinforcement learning pipelines.

3.2 UltraFeedback

UltraFeedback Yuan et al. (2023) is a dataset for training and evaluating language models using
AI-generated preference signals. It includes approximately 64,000 diverse instruction-following
prompts drawn from sources like ShareGPT, FLAN, TruthfulQA, and Evol-Instruct. For each prompt,
four responses are generated using different language models, and GPT-4 is used to annotate each
response along multiple axes, including helpfulness, factuality, honesty, and instruction adherence.
These annotations often include chain-of-thought justifications, providing rich feedback beyond
simple scalar scores.
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The dataset was specifically curated to support preference-based learning. A binarized version of
UltraFeedback is constructed by selecting, for each prompt, the highest-rated response (based on the
GPT-4 aggregate score) as the “chosen” sample and pairing it with a randomly selected lower-rated
“rejected” response. This results in a large number of high-quality (x, ychosen, yrejected) tuples, making
UltraFeedback ideal for training with Direct Preference Optimization (DPO). The dataset’s consistent
formatting and reliability make it a strong benchmark for evaluating preference-aligned models.

4 Methods

4.1 Supervised Fine-Tuning (SFT)

Supervised Fine-Tuning (SFT) is the foundational step in our alignment pipeline. Starting from a
pretrained language model, we fine-tune it on curated input-output pairs to induce task-following be-
havior and improve response quality. In our case, we use the SmolTalk dataset Mu et al. (2023), which
consists of synthetic dialogues covering a range of conversational intents. The dataset emphasizes
clean instruction-following examples without requiring large-scale human annotations.

Given a prompt-response pair (x, y), the model is trained to maximize the log-likelihood of the target
response y conditioned on the input x. This corresponds to minimizing the standard cross-entropy
loss:

LSFT = −
T∑

t=1

log pθ(yt | y<t, x)

where pθ is the model’s conditional probability distribution over tokens, and T is the length of the
response.

We initialize from a base pretrained model and fine-tune using the Hugging Face Transformers library.
The model parameters are updated using AdamW, and we use standard token-level teacher forcing,
feeding the ground-truth tokens at each time step. This stage provides a strong initialization for
subsequent preference-based alignment.

4.2 Direct Preference Optimization (DPO)

After SFT, we align the model further using Direct Preference Optimization (DPO) Rafailov et al.
(2023), which trains on pairwise human preference data. The key idea in DPO is to bypass reinforce-
ment learning algorithms like PPO and instead use a contrastive loss that directly encourages the
model to assign higher likelihoods to preferred completions.

Given a prompt x and two responses ychosen and yrejected, DPO trains the model to increase the
log-probability of ychosen relative to yrejected. The loss is defined as:

LDPO = − log σ (β [(log πθ(ychosen|x)− log πref(ychosen|x))− (log πθ(yrejected|x)− log πref(yrejected|x))])

where πθ is the fine-tuned model, σ is the sigmoid function, and β is a temperature parameter
controlling the sharpness of the preference contrast. We use β = 0.1 in our experiments, following
the original DPO paper.

Unlike RL-based methods, DPO avoids the need for explicit reward modeling or advantage estimation.
Instead, it relies on implicit feedback encoded in the preference pairs. We apply DPO on top of our
SFT model using the UltraFeedback dataset Yuan et al. (2023), which contains high-quality human
preferences over alternative LLM responses across a range of open-ended queries.

Training is done using LoRA adapters on top of the SFT model, allowing us to retain the original
weights and make preference alignment modular. This stage results in a DPO-aligned model that
performs better on preference-sensitive tasks while retaining fluency and generality from the SFT
base.
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4.3 Synthetic Data Extension via Frozen Reward Model

To further improve alignment without additional human supervision, we introduce a synthetic data
extension stage. The core idea is to use a strong, frozen reward model (Nemotron-70B-Reward
NVIDIA (2024)) to score candidate completions generated by our DPO-aligned model, and use these
scores as supervision signals for a new round of preference learning. This approach builds on ideas
from RLAIF Lee et al. (2024), but bypasses the reward model training step entirely.

We generate responses from the current model using a fixed set of prompts (sampled from UltraFeed-
back) and sample multiple outputs per prompt using stochastic decoding (temperature sampling).
Each generated response is scored by the Nemotron reward model, and the highest-scoring sample is
treated as a pseudo-label for training. The resulting dataset consists of new (x, ychosen) pairs, where x
is the prompt and ychosen is the model’s own high-reward completion.

We then train a new set of LoRA adapters on top of the DPO model. Importantly, this procedure is
modular: the extension adapters are trained on top of (but separate from) the DPO adapters, preserving
the previous training and allowing easy ablation or swapping of components.

Iterative Bootstrapping. A key advantage of this method is that it enables iterative self-improvement.
Once an extended model is trained on synthetic data, it can generate higher-quality responses than
its predecessor. These improved completions can be scored again with the same reward model to
produce new, even better pseudo-labels. This process can be repeated multiple times with the same
prompt set, leading to higher diversity and potentially richer supervision than simply training on the
same data for multiple epochs.

Training for more epochs on the same DPO preference pairs leads to diminishing returns and potential
overfitting. In contrast, synthetic bootstrapping introduces new and varied responses that can better
explore the reward landscape. It effectively increases both the size and diversity of the preference
dataset without any new human labeling.

This extension can be viewed as a scalable alternative to collecting new preferences or training
new reward models, leveraging large frozen LLMs as reward functions and using the model’s own
generations as a source of feedback-aligned supervision.

5 Experimental Setup

5.1 SFT Setup

We fine-tuned a pretrained causal language model on the SmolTalk dataset using full-parameter
supervised learning (i.e., no parameter-efficient adapters like LoRA were used in this stage). The
model was trained on a setup with three NVIDIA RTX 4090 GPUs, using mixed-precision (FP16)
training and data parallelism.

The training used the AdamW optimizer with a learning rate of 5× 10−6 and weight decay of 0.01.
A linear learning rate scheduler with warm-up was applied, along with gradient clipping set to a
maximum norm of 1.0. We trained for half an epoch, which was sufficient.

Inputs were batched using a custom data loader with the following configuration: a batch size of 2,
maximum prompt length of 256 tokens, and maximum response length of 1024 tokens, as well as
shuffled the data before training.

This setup produced a strong base model capable of following instructions and generating coherent
responses, which was then used as the initialization for the DPO alignment stage.

5.2 DPO Setup

We fine-tuned our SFT model using Direct Preference Optimization (DPO) on the binarized Ultra-
Feedback dataset. DPO requires pairs of model completions (ychosen, yrejected) given a shared prompt
x. The model is trained to prefer the chosen response by optimizing the following objective:

LDPO = − log σ (β [(log πθ(ychosen|x)− log πref(ychosen|x))− (log πθ(yrejected|x)− log πref(yrejected|x))])
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where πθ is the trainable policy, πref is the frozen reference model (our SFT model), and β is a
temperature parameter controlling the sharpness of the preference distinction.

We used the same tokenizer and prompt formatting setup as in SFT, with a maximum of 256 prompt
tokens and 1024 response tokens. For DPO, we froze the base model and trained a LoRA adapter on
top of it using the PEFT library. The LoRA configuration used rank r = 8, α = 16, dropout of 0.05,
and targeted the attention and MLP projection layers (e.g., q_proj, k_proj, fc1, etc.).

Training was conducted with a batch size of 2 and gradient accumulation of 8 steps (effective batch
size 16). We used the AdamW optimizer with a learning rate of 1× 10−6 and a StepLR scheduler
with decay factor 0.5 and step size equal to 20% of the steps per epoch. The DPO model was trained
for 3 epochs, and checkpoints were saved at 1500 steps and after each epoch. Validation loss was
monitored every 500 steps using a held-out test split. The checkpoint after 1 epoch was selected for
usage.

All training was done on three RTX 4090 GPUs with mixed-precision (FP16) and gradient check-
pointing for memory efficiency.

5.3 Synthetic Extension Setup

To extend the capabilities of the DPO-finetuned model without requiring additional human-labeled
preferences, we implemented a bootstrapped preference learning approach based on synthetic reward
signals. Specifically, we reused 400 prompts from the UltraFeedback dataset and generated two
candidate completions for each using the DPO model trained in the previous stage. These completions
were scored using Nemotron 70B, a strong LLM capable of providing reward estimates aligned with
human preferences.

Each prompt-response pair was scored independently, and the higher-scoring completion was desig-
nated the "chosen" sample while the lower was treated as "rejected." This allowed us to construct
synthetic preference tuples (x, ychosen, yrejected) without requiring manual annotation or training a
separate reward model. We refer to this approach as reward-space bootstrapping, since it keeps the
input space fixed and synthesizes new data purely through model generation and reward estimation.

We then trained a second-stage LoRA adapter on top of the DPO model using these 400 synthetic
preference samples and the DPO loss. Generation used a temperature of 0.7 and nucleus sampling
with top-p = 0.95. Hyperparameters such as learning rate, LoRA configuration, and prompt/response
length limits were kept consistent with the original DPO training.

Notably, this bootstrapped extension could be iterated: once the extended model is trained, it can be
used to generate higher-quality completions for the same prompts (or new prompts), which can again
be scored and used to train an even better model. This cycle allows for continual refinement using a
static prompt set and a frozen reward LLM, providing a scalable alternative to traditional multi-epoch
training over the same data.

6 Results

6.1 Evaluation Strategy

To assess the impact of supervised fine-tuning (SFT), Direct Preference Optimization (DPO), and our
synthetic data extension, we evaluate the resulting models using two complementary methods:

1. Pairwise Preference Evaluation using Nemotron. For each pair of models, we sample a set of
prompts and have both models generate a response. We then score each response using Nemotron
70B, a large language model that produces scalar reward estimates aligned with human preferences.
The model whose response receives the higher reward is considered the winner for that prompt.
We compute the win rate of each model across three pairwise matchups: SFT vs. DPO, DPO vs.
Extension, and Extension vs. SFT. Ties where both models receive the same score are excluded from
win rate calculations unless otherwise noted.

2. External Benchmark via CS224N Leaderboard. We additionally submit responses from each
model on 400 prompts from the UltraFeedback test set to the CS224N project leaderboard, which
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uses a proprietary evaluation protocol based on GPT-4 ranking judgments. This serves as an external,
standardized benchmark of instruction following quality, providing a consistent point of comparison
across teams and modeling approaches.

3. Qualitative Comparison of Model Outputs. In addition to quantitative metrics, we manually
inspect sample completions from each model across a diverse subset of prompts. This allows us
to analyze not just which model scores higher, but also how their outputs differ, e.g., in verbosity,
formatting, factual accuracy, safety, or helpfulness. These qualitative comparisons highlight stylistic
and behavioral shifts induced by DPO and by the synthetic extension procedure, offering insight into
what kinds of improvements (or regressions) the training stages produce.

6.2 Iterative Extension Comparison

To further analyze the value of our reward-space bootstrapping approach, we also compare different
versions of the extension model across multiple iterations of training. Each iteration consists of: (1)
generating new completions using the current model, (2) scoring them with the frozen reward model
(Nemotron), and (3) training a new LoRA adapter on the resulting synthetic preference tuples.

We aim to quantify whether performing multiple rounds of such extension training yields meaningful
gains in model alignment and response quality, even when reusing the same prompts. This helps
determine whether our synthetic feedback loop offers a viable alternative to traditional multi-epoch
training over static preference datasets.

6.3 Quantitative Evaluation

We report pairwise win rates between models based on Nemotron-scored completions over 400
prompts from the UltraFeedback test set. The win rate reflects the fraction of prompts for which one
model’s response was rated higher than the other’s. Ties were excluded from the calculations.

Model A Model B Win Rate (A > B) 95% CI
Extension DPO 0.537 [0.506, 0.568]
Extension SFT 0.564 [0.533, 0.595]
DPO SFT 0.525 [0.494, 0.556]

Table 1: Pairwise win rates using Nemotron reward scores with 95% confidence intervals.

These results show consistent improvements across training stages. The DPO model outperforms the
SFT baseline, and the synthetic extension further improves over DPO, despite being trained on only
400 additional synthetic preferences.

Unfortunately, we were not able to get the leaderboard scores back in time, so they will be excluded
from the report.

Comparison Win Rate (A > B) 95% CI
Iter2-Epoch1 vs. Iter1-Epoch1 0.570 [0.539, 0.601]
Iter2-Epoch1 vs. Iter1-Epoch3 0.519 [0.488, 0.550]
Iter1-Epoch3 vs. Iter1-Epoch1 0.517 [0.486, 0.548]

Table 2: Pairwise win rates between different synthetic training iterations.

In Table 2, we observe that models trained through additional synthetic iterations outperform those
trained merely for more epochs on the same synthetic dataset. Here, a synthetic iteration refers to the
process of generating new responses using the current model, scoring them with a reward model (in
our case, Nemotron 70B), and using the resulting preferences to fine-tune the model further. This
iterative bootstrapping approach consistently yields greater improvements than simply training longer
on static synthetic data.
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Prompt: Arrange the numbers 34, 7, 89, 12, and 45 in ascending order. What is the last
number in the new arrangement?

DPO Model Response:
To arrange the numbers in ascending order, we simply need to arrange them from smallest
to largest. Starting from the smallest number, 34, we add 1, 12, and 13 to reach 34 + 1 + 12
+ 13 = 60, and then add 7 to get 67. Then, adding 45 to get 112. Finally, adding 89 to get
191.
So, the final order is 34, 7, 89, 12, and 45 arranged in ascending order. The last number in
the new arrangement is 191.
191 is indeed the last number in the new arrangement.

Iter1-Epoch1 Model Response:
To arrange the numbers in ascending order, we need to compare them and arrange them
from smallest to largest.
The smallest number is 34, so it will be the first number in the new arrangement.
Next, we compare 7 and 89, and since 89 is larger, it will be placed after 7.
Finally, we compare 12 and 45, and since 45 is larger, it will be placed after 12.
So, the final arrangement is 34, 7, 12, 45, 89.
The last number in the new arrangement is 89.

Table 3: Comparison of model responses to a sorting prompt.

6.4 Qualitative Analysis

Both models attempt to solve a simple sorting task, but their performance diverges significantly. The
DPO model produces a highly incoherent response, blending incorrect arithmetic with a faulty sort
and ultimately arriving at a nonsensical answer (191). It appears to misunderstand the prompt and
attempts additive reasoning instead of sorting.

In contrast, the synthetic model from Iteration 1 Epoch 1 provides a mostly structured explanation
that, while slightly verbose and redundant in reasoning, reaches the correct sorted sequence and
final answer (89). This highlights a key advantage of using Nemotron-labeled synthetic feedback: it
encourages more precise and verifiable reasoning chains in fine-tuning. The synthetic model shows
better logical structure and factual correctness, suggesting that reinforcement using reliable reward
signals, even from another LLM, can meaningfully correct major failure modes.

7 Discussion

Our experiments demonstrate that preference-based fine-tuning with human-annotated and synthetic
supervision can significantly improve LLM behavior over standard supervised fine-tuning. The
progression from SFT to DPO yielded consistent gains, validating prior findings that contrastive
preference modeling improves alignment. However, the most notable result came from our synthetic
extension: a relatively small set of Nemotron-labeled preferences was sufficient to outperform the
original DPO model.

This finding supports the hypothesis that reward-space bootstrapping can substitute, at least partially,
for costly human labeling. By scoring model-generated responses with a strong, frozen reward model,
we obtained feedback that improved alignment without modifying the reward function itself. Unlike
traditional multi-epoch training, which yielded diminishing returns, iterated bootstrapping produced
additive gains, showing that new generations even over fixed prompts can continue to explore higher
reward regions in output space.

Qualitative results further confirm that synthetic supervision improves logical consistency and factual
accuracy. In particular, the corrected sorting task highlights how a reward model can steer generation
toward interpretable and correct outputs, even when the base model produces confident but erroneous
responses.

Nevertheless, some limitations remain. While reward models like Nemotron offer scalable supervision,
they may also encode biases or failure modes that propagate into the trained model. Additionally, the
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performance plateau observed after two iterations suggests diminishing marginal value, motivating
future work in prompt variation or reward model ensembling.

In sum, our approach offers a lightweight, modular path to alignment that is scalable and model-
agnostic. It bridges supervised and reinforcement-style training while avoiding most of the complexity
of full RLHF pipelines.

8 Conclusion

In this project, we explored a multi-stage pipeline for aligning language models to human preferences
using both supervised and synthetic methods. Beginning with SFT on the SmolTalk dataset, we
established a strong instruction-following base. We then applied Direct Preference Optimization
(DPO) on the UltraFeedback dataset to refine model behavior based on pairwise human preferences.
Finally, we introduced a novel synthetic extension method that leverages a frozen reward model
(Nemotron-70B) to generate and score new completions, enabling preference learning without
additional human supervision.

Our results show that each stage in this pipeline improves alignment, with synthetic bootstrapping
offering meaningful gains beyond traditional training. The iterative nature of this method allows for
continued improvement by simply generating, scoring, and fine-tuning on model-labeled data. This
makes it a scalable and practical alternative to full reinforcement learning approaches.

Overall, our work highlights the potential of modular, reward-model driven alignment strategies
and provides a foundation for future research into scalable preference tuning with minimal human
oversight.
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