Extended Abstract

Motivation Large language models (LLMs) are increasingly equipped with tools like calculators
to solve complex reasoning tasks. However, LLMs, especially compact models, often struggle
with multi-hop tool use due to the long-horizon credit assignment problem—where it’s unclear
which intermediate steps contribute to success. This project explores whether reward densification
techniques can enhance tool use in such settings. Specifically, we fine-tune Qwen2.5-0.5B on the
Countdown math reasoning task. While the model demonstrates strong reasoning structure after
supervised fine-tuning and Reward Learning from Observations (SFT+RLOO), it still suffers from
low accuracy due to arithmetic errors. This motivates the integration of tool use (calculator calling)
to improve performance.

Method Our extension modifies SFT training with an augmented dataset that demonstrates tool
usage, and we experiment with the novel reward densification framework we designed - implicit and
explicit - during RLOO training. Specifically, we explore the following:

* Baseline (SFT + RLOO): Standard supervised fine-tuning followed by sparse reward
learning using RLOO. We apply cosine learning rate scheduling with warmup, monitor
accuracy during training and evaluation, and employ early stopping to prevent hallucination.

¢ Tool Calling Enhancements: Inspired by the Search R1 framework, we incorporate multi-
turn tool use through the following mechanisms:

— SFT with Tool Tags: We wrap equations with <calculator>...</calculator>
tags to teach the model when and how to invoke the calculator.

— RLOO with Tool Execution: During training rollouts and inference generation,
whenever a </calculator> token is produced, the model pauses. The enclosed
expression is evaluated by an external calculator, and the result is injected into the
output stream before generation resumes.

* Reward Densification Strategies:

— Heuristic Reward Shaping: Assigns intermediate rewards based on interpretable
criteria, such as numerical proximity to the target or correct invocation of tools.

— Implicit Process Reward Modeling (Implicit PRM): Implicitly learns dense, token-
level rewards from trajectories using log-probability ratios, encouraging step-by-step
correctness.

— Hindsight Experience Replay: Implicitly augments training with artificial positive
examples by modifying the problem target to match the model’s predicted output.

Implementation We perform supervised fine-tuning (SFT) with 1000 samples and reinforcement
learning (RL) with 200400 samples. To reduce overfitting and hallucination, we employ early
stopping and learning rate scheduling. We implement a custom calculator tool supporting basic
arithmetic with parentheses, and adapt all three reward densification strategies for the Countdown
task.

Results Experiments show that heuristic shaping alone is ineffective, likely due to the model’s
small size. Implicit strategies yield notable gains independently, and combining them with heuristic
shaping improves training stability. HER combined with reward phasing works yields an average
evaluation reward score of 0.437 and producing 100% well-formed equation during evaluation. We
are positive that such results can generalize to other tools and other models of similar size.

Discussion We find that starting RL with a tool-focused heuristic reward, then shifting to answer-
focused rewards, improves tool use and final accuracy. This supports reward phasing—beginning with
exploration and shifting to exploitation—as a promising paradigm for tool-based alignment. While
these results are promising for compact models, generalization to larger models remains uncertain.

Conclusion Implicit reward densification can significantly improve tool use performance in compact
LLMs, without requiring handcrafted signals. Combining implicit methods with heuristic shaping
further improves training robustness and stability. Future work should formalize reward densification
specific for the tool-calling task, and explore reward strategies generalizable across tools.

Reward Densification For RL in Multi-hop Calculators

Coco Xu Jenny Chen
Department of Computer Science Department of Computer Science
Stanford University Stanford University
cocozxu@stanford.edu jennycjx@stanford.edu
Yolanda Wang

Department of Computer Science
Stanford University
wangyy@stanford.edu

Abstract

Multi-hop tool use remains challenging for compact language models due to long-
horizon credit assignment, where it is unclear which intermediate actions contribute
to success. We investigate whether reward densification can improve tool use in
compact language models, focusing on the Countdown math reasoning task. Using
Qwen2.5-0.5B, we integrate a calculator tool and explore three reward strategies:
heuristic shaping, implicit process reward modeling (PRM), and hindsight experi-
ence replay (HER). Our results show that implicit methods significantly improve
performance without handcrafted signals, while combining them with heuristic
rewards enhances training stability. We further find that phasing rewards—from
tool-focused shaping to accuracy-focused rewards—Ieads to better tool use and
final task performance. These findings give insights to future reward designs for
tool use in compact LLMs.

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable capabilities in tasks requiring natural
language understanding, generation, and reasoning. However, their performance often worsen
when faced with complex multi-step reasoning problems that require precise arithmetic or symbolic
manipulation. To address this, recent work has introduced tool-augmented LLMs that can invoke
external tools—such as calculators, search engines, or code interpreters—during inference to enhance
accuracy and reliability. While promising, these models still struggle with learning when and how to
call tools effectively, especially in settings where task supervision is limited or sparse.

One key challenge is the long-horizon credit assignment problem: it is difficult for the model to infer
which intermediate reasoning steps are responsible for eventual success or failure. Reinforcement
learning from sparse rewards often fails to provide sufficient training signal to refine fine-grained
behavior, such as correct tool invocation in intermediate steps. This motivates the use of reward
densification—techniques that augment sparse reward signals with richer, more informative feedback
to accelerate and stabilize learning.

Prior work on reward densification includes potential-based reward shaping Ng et al.|(1999), which
augments rewards using a potential function without altering the optimal policy; Hindsight Experience
Replay (HER) |Andrychowicz et al.|(2017), which re-labels failed trajectories to simulate successful
ones; and Implicit Process Reward Modeling (Implicit PRM) |Yuan et al.|(2024), which leverages
log-likelihood ratios to provide token-level guidance based on outcome alignment. However, existing

Stanford CS224R 2025 Final Report

techniques are largely agnostic to the nuances of tool usage and fail to address the unique challenges
of multi-hop reasoning tasks involving external operations like calculator calls.

In this paper, we propose a framework for improving tool-augmented reasoning in LLMs through
specialized reward densification techniques. Our contributions are threefold: (1) we fine-tune a
compact LLM (Qwen2.5-0.5B) on the Countdown arithmetic reasoning task and show that vanilla
supervised fine-tuning (SFT) followed by reward learning from observations (RLOO) yields promising
but error-prone results; (2) we introduce tool-aware enhancements, including supervised tool-tagging,
inference-time tool execution, and implicit + heuristic reward shaping tailored for tool use; and (3)
we conduct extensive experiments demonstrating that our reward-densified framework significantly
improves both convergence speed and final performance, even from less satisfactory initial models.

Our findings highlight the importance of task-specific reward shaping in enabling robust multi-step
tool use and suggest a broader role for densified feedback in structured language model training.

2 Related Work

Our research extends prior work in three key domains: reinforcement learning for LLMs, tool-calling
capabilities, and reward densification techniques.

2.1 Reinforcement Learning for LLM

Reinforcement learning has proven effective for sequential decision making in various domains
prior to its application to language models. Foundational approaches like Supervised Fine-Tuning
(SFT) |Ouyang et al.|(2022)) and Reinforcement Learning from Human Feedback (RLHF) Ouyang
et al.| (2022) enabled capabilities seen in models like ChatGPT, with subsequent research improving
algorithm efficiency through methods like Direct Preference Optimization (DPO) Rafailov et al.
(2023)). Despite these advancements, hallucination remains a challenge, motivating research into
tool-calling as a mitigation strategy.

2.2 Tool Calling

Tool-calling integration enables LLMs to invoke external resources during reasoning processes to
generate better and more accurate results. Early approaches like Toolformer Schick et al.| (2023)
established the foundation through self-supervised learning, while Search-R1|Jin et al.| (2025) refined
these capabilities using RL, so that models can learn optimal usage strategies through outcome-based
feedback. Current limitations include Toolformer’s focus on single API calls when real-world tasks
often require multiple tool interactions, and Search-R1’s application only to factual reasoning with
objective ground truth. Our work extends these approaches to tasks involving multiple reasoning
steps (CountDown) and scenarios without single correct answers (UltraFeedback).

2.3 Reward Densification

Reward densification has the benefit of accelerating convergence. Existing reward densification
methods include potential-based reward shaping |[Ng et al.| (1999)), which adds auxiliary rewards
based on state potentials while preserving optimal policies; Implicit Process Reward Modeling
(Implicit PRM) [Yuan et al.|(2024), which derives token-level guidance from outcome labels using
log-likelihood ratios between models; and Hindsight Experience Replay (HER) |Andrychowicz et al.
(2017), which augments learning by reinterpreting failed episodes as successful ones through goal
relabeling. Despite extensive research in this area, there remains a gap in reward shaping specifically
for effective tool usage—a gap our research addresses through specialized reward mechanisms for
tool-calling scenarios in multi-step reasoning tasks without objective ground truth.

Our contribution is a novel reward densification framework that integrates tool calling to
improve math reasoning for LLM. No prior work has systematically explored reward shaping
for tool-augmented, multi-step mathematical reasoning.

3 Method

We aim to improve tool-augmented reasoning in large language models through a combination
of supervised fine-tuning and reinforcement learning with reward densification. Our approach
consists of three stages: (1) supervised fine-tuning to establish baseline reasoning structure; (2) tool
usage integration at both training and inference stages; and (3) reinforcement learning with reward
densification to refine the model’s behavior on complex, multi-step reasoning tasks.

3.1 Supervised Fine-Tuning

We begin with supervised fine-tuning (SFT) of the Qwen2.5-0.5B language model on the Countdown
dataset—a math reasoning task that requires generating a sequence of arithmetic operations to reach
a target number from a given set of operands. Each training example is annotated using <think> and
<answer> tags to teach the model how to structure intermediate reasoning and final answers. The
dataset is preprocessed to include both successful and partially correct attempts, allowing the model
to learn diverse reasoning patterns.

3.2 Tool Usage Integration

To enable effective calculator tool use, we introduce enhancements to both the training data and the
inference pipeline.

3.2.1 SFT with Tool Tags

We augment the SFT data by wrapping expressions that should be evaluated externally in
<calculator>...</calculator> tags. This explicitly teaches the model when to delegate computa-
tion to a calculator rather than perform arithmetic internally. For example:

<calculator> (75 - 3) * 2 </calculator>

3.2.2 Inference-Time Tool Execution

At inference time, when the model generates a </calculator> token, generation is paused, the
expression inside the most recent <calculator> block is extracted and evaluated using a custom
calculator module. The result is injected back into the generation stream, and decoding resumes. This
mechanism allows the model to defer precise computation while maintaining control flow over the
solution process.

3.3 Reinforcement Learning with Reward Densification

After SFT, we further train the model using Reward Learning from Observations (RLOO) with several
reward shaping techniques. The objective is to refine tool usage behavior and reduce arithmetic or
reasoning errors that persist after supervised training.

3.3.1 Implicit Process Reward Modeling (Implicit PRM)

We implement Implicit PRM |Yuan et al.| (2024) to provide token-level rewards based on the likelihood
ratio between the trained model and a reference model (e.g., an earlier checkpoint). This encourages
trajectories that increase alignment with correct outputs without requiring dense supervision.

ry = [log (D

’/Tref(ygt)

3.3.2 Heuristic Reward Shaping

We introduce a multi-component heuristic reward function that provides dense feedback on formatting,
tool usage, and mathematical accuracy.

Our reward function combines structural, mathematical, and efficiency components:

Table 1: Heuristic Reward Shaping Components

Reward Type Component Purpose Value

Oans Proper <answer> tags +1.0/-1.0
Structural Oiny Invalid equation penalty —0.5

Ocalc Valid calculator usage +0.02 per call, 0.2 max
Tool Usage Orep Redundancy penalty —0.02 per repeat

Odc Calculator usage bonus +0.1

Ofmt Correctness bonus +2.0

. Oclose Proximity reward 0to+40.4

Mathematical Ocone Conciseness equations +0.2

Structural Rewards: We reward proper answer formatting and penalize invalid equations that use
incorrect numbers or violate problem constraints (use numbers outside of input or use input number
multiple times).

Tool Usage Efficiency: We encourage valid calculator usage while penalizing redundant computations
that produce identical results. We also give a small bonus if it the model calls the calculator at all to
encourage it to use the external tool at the beginning of the training.

Mathematical Accuracy: The model receives a large bonus (4-2.0) for exact answers and partial
credit based on numerical proximity to the target value.

The final Tool Calling Format-focused Reward that we used is Equation

0, if missing or invalid,
7 = 4 Oans + Oiny + Ocatc + 5rep + dde + Ofme)
“+0close + Ocone otherwise.

The final Accuracy-focused Reward that we used is Equation

3

;o 0, if ¢ is missing or invalid
0.1 + Ovatig - 0.2 + Scomect + Oclose Otherwise

These reward components provide a flexible framework for designing reward functions that teach the
model to generate well-formatted, accurate, and efficient responses.

3.3.3 Hindsight Experience Replay (HER)

We adapt Hindsight Experience Replay |Andrychowicz et al| (2017)) for sequence modeling by
modifying the target output in failed episodes to match the model’s predicted solution. The input
operands and goal are rewritten post hoc, creating new training examples where the model’s trajectory
becomes optimal. This helps the model learn solution strategies even from failed attempts.

3.4 DPO Instruction Following

We also fine-tuned and evaluated the model on instruction following tasks. We used DPO (Direct
Preference Optimization) to align the model with human-preferred responses without requiring
reinforcement learning with explicit reward modeling. Specifically, we trained the model using pairs
of preferred and dispreferred completions, optimizing their probabilities under the policy model
relative to a reference model. We observed that DPO fine-tuning led to more helpful and aligned
responses. The model generated more appropriate outputs across multiple benchmarks. Overall, DPO
yielded satisfactory performance improvements in instruction-following tasks.

‘ Supervised Fine-Tuning

<think>
l <calculator>

(75-3)*2
<\calculator>

<answer>

<think> 144
<calculator>
<answer> RLOO

e
Reward Densification
- Implicit PRM
- Heuristic Reward Shaping
- HER

Figure 1: Method Overview.

4 Experimental Setup

4.1 Dataset

We evaluate our methods across three settings: Instruction Following, Math Reasoning, and Math
Reasoning with Calculator integration. The datasets used are as follows:
¢ Instruction Following (IF):

— SFT: SmolTalk (2000 samples)
— DPO: UltraFeedback preference dataset (6000 samples)

¢ Math Reasoning (MR):

— SFT: cog-behav Reasoning dataset (1000 samples)
— RLOO: Countdown-Tasks-3to4 (400 samples)

* Math Reasoning with Calculator:
— SFT: Augmented cog-behav with calculator tags (1000 samples)
— RLOO: Countdown-Tasks-3to4 (200 samples)

RLOO training use fewer examples because the model quickly falls into hallucination even after
hyperparameter optimization, and math reasoning RLOO uses even fewer examples because each
rollout performs max of 10 calculator calls, making inference very slow.

4.2 Evaluation Metrics

Instruction Following: We report WinRate against the reference model Qwen2.5-0.5B-Instruct,
using the UltraFeedback reward model.

Math Reasoning: We report Average Rule-Based Reward and Well-Formed Equation Rate.

Average Rule-Based Reward We adopt a two-stage scoring approach for the Rule-Based Reward,
following TinyZero:

1. Format Score: binary score of whether the output contains a valid answer expression.

2. Correctness Score: binary score of whether the final equation evaluates to the target number.

The total reward is computed as:

Total Reward = 0.1 x Format Score + 1 x Correctness Score

Well-Formed Equation Rate We further analyze model output structure to assess whether the
model understands the task. A response is considered well-formed if:

¢ Itincludes the correct <answer> tag structure
* All input numbers are used exactly once

* The output equation is syntactically valid and can be evaluated

4.3 Training Setup

We perform training on a gbe machine. For the math reasoning task, we use the AdamW optimizer
with cosine learning rate scheduling and linear warmup. Reinforcement learning updates are per-
formed using a modified policy gradient approach compatible with our PRM and HER strategies.
Early stopping and evaluation on a held-out set are used to prevent overfitting and hallucination.
Exact training hyperparameters can be found in the Appendix.

4.4 Experiments

Our study compares models trained with sparse versus dense rewards, with and without calculator
tool integration:

¢ SFT Baseline
¢ SFT + RLOO Baseline (Sparse Reward)

* SFT + RLOO with Toolcalling (Sparse Reward): We integrate the calculator tool into the
rollouts, and modify the prompt with instruction on the tool, using sparse reward identical
to the baselines.

* SFT + RLOO with Toolcalling (Densified Reward): We integrate the calculator similar to
above and explore eward densification strategies as follows:

— Heuristic: Manually defined intermediate rewards based on format validity, tool
usage, and numerical proximity; two variants explored with different weightings and
hyperparameters.

— Implicit PRM + Heuristic: Integrates dense, token-level process rewards with heuristic
shaping to guide learning with fine-grained supervision.

— HER + Heuristic: Combines Hindsight Experience Replay with heuristic shaping to
provide both augmented success trajectories and intermediate feedback.

— HER + Vanilla: As ablation study, we apply HER alone without additional reward
shaping to test its standalone effectiveness.

5 Results

5.1 Quantitative Evaluation

5.1.1 Well-Formed Equation Rate

To assess the model’s task understanding, we define the Well-Formed Equation Rate as the propor-
tion of outputs that satisfy all of the following:

* Contain correctly formatted <answer> tags

» Contain an equation that is syntactically valid and evaluable

Metric Baseline SFT RLOO Tool-Calling RLOO + Dense Reward

Well-Formed Equation Rate 84% 92% 100%

Table 2: Comparison of Model Performance Across Reward Strategies

This metric is more stringent than the format score in the rule-based reward, which only verifies tag
presence. Results show:

* SFT Baseline: Demonstrates reasonable structure but often miss or repeat numbers.

* RLOO: Improves logical reasoning and correctness but occasionally confuses inputs with
target.

* Toolcalling + Dense Reward: Achieves 100% well-formed outputs; reward shaping and
tool integration significantly improve structural consistency and reasoning accuracy.

5.1.2 Average Rule-Based Reward

Table 3| presents the average rule-based reward on 1000 samples from the Countdown-Tasks-3to4
dataset across baseline and tool-assisted models. All results are reported from the best checkpoint
selected via early stopping.

The baseline SFT model learn output structure well but perform poorly in arithmetic accuracy. RLOO
improves reasoning and correctness but remains sensitive to intermediate errors, often derailing
generation due to hallucinated steps. Tool-calling models trained with only sparse rewards exhibit
repetitive calculator calls and often fail to provide final answers, as the reward signal does not
sufficiently encourage complete problem solving.

In contrast, models trained with reward densification—particularly Implicit PRM and
HER—demonstrate significantly improved equation validity and correctness. These models maintain
structured, subject-focused reasoning and consistently avoid malformed outputs.

Table 3: Evaluation scores of 1000 random selected samples from the Countdown dataset across
baseline methods and calculator-assisted tool-calling strategies.

Baseline Toolcalling with Calculator
Qwen- SFT SFT + Sparse ImpPRM HER w
0.5B RLOO Reward w Heurs Heurs
Instruct
Average Reward 0.022 0.179 0.423 0.047 0.223 0.437

5.1.3 Reward Densification

We evaluate combinations of reward strategies to analyze their effectiveness. Tool-SFT and RL with
heuristic shaping alone have poor final task performance, but they consistently improve tool usage
structure. However, without additional guidance, these models often collapse into repetitive calculator
calls, highlighting the tradeoff between tool proficiency and task grounding.

Adding Implicit PRM or HER to heuristic shaping leads to substantial gains in both performance and
stability. While HER alone can achieve comparable final reward, combining it with heuristic shaping
yields more stable training. Figure[2]compares validation reward across training steps. Discrepancies
between figure trends and Table 2 are due to different evaluation set sizes (32 during training vs. 1000
during final evaluation).

We integrate implicit PRM and HER on top of heuristic rewards, significantly improves tool calling
effectiveness while maintaining a subject oriented reasoning process. The final accuracy is comparable
and sometimes better than that of SFT+RLOO baseline. As ablation studies we also ran an experiment
with HER alone. Figure 3 show that model can reach similar performance with just HER, but using
heuristics makes training more robust and stable. Note the inconsistency between the figure and
Table 3] the figure reflects evaluation with 32 samples during training, while the table reflects full
evaluation, so the similar performance in the graph might be result of luck.

5.1.4 Instruction Following

We also evaluate instruction following performance under RL alignment. Using win rate against
Qwen?2.5-0.5B-Instruct on UltraFeedback evaluation prompts, SFT achieves a win rate of 0.44, while

v.a
04 03
03 0.2
0.2 0.1

0.1 0

Figure 2: Validation reward on 32 samples throughout training of Implicit PRM (right) and HER
(left). The black line in HER graph represents HER with sparse reward, and the purple line represents
HER with heuristic reward.

DPO improves it to 0.80. This confirms that RL fine-tuning significantly enhances helpfulness and
alignment in open-ended tasks.

5.2 Qualitative Analysis
5.2.1 Baseline Performance

We observe that the baseline SFT+RLOO model often fails due to small arithmetic errors that
accumulate throughout intermediate reasoning steps. These minor miscalculations cause the model to
diverge from the correct reasoning path and result in either hallucinated operations or invalid final
outputs.

[67,51, 36, 61] -> 81 [14, 11, 90] -> 30

Let's try to get close to 81 by subtracting numbers: Let's try a different approach:
67 +36=103\n103-61=42 90-14=76.

This works! Let's verify: 76 /2 ~388.
67+36=103\n103-61=83 Not getting closer.

</think>

<answer>67 + 36 - 61</answer>

Figure 3: Examples of arithmetic error due to hallucination and malformed output in baseline
SFT+RLOO generation.

5.2.2 Heuristic Reward Design

We experimented with multiple heuristic reward formulations and weightings. The most prominent
configurations centered on two variants: one focusing on tool-calling validity and another on final
answer correctness. Notably, the tool-calling reward also included basic structural terms, making it
an earlier, broader design attempting to supervise both tool use and reasoning simultaneously.

* Tool-Calling Focused Reward: This reward encourages the model to generate syntactically
valid calculator calls. However, in practice, the model quickly learns to exploit this reward
by repetitively calling the calculator with trivial or unnecessary expressions. As a result,
reasoning collapses into shallow, tool-heavy behavior that lacks task progression.

* Answer Accuracy Focused Reward: When trained with a reward focused only on final
answer correctness, the model disregards previously learned tool usage from SFT. It often
reverts to baseline-like behavior, ignoring the calculator entirely. This results in reduced
performance due to the mismatch between the SFT data distribution (tool-augmented) and
the RL optimization objective.

* Reward Phasing (Tool — Answer): We find that a phased reward schedule—starting
with tool-calling supervision and transitioning to accuracy-focused shaping—yields the best
results. The model first develops confidence in invoking tools, then shifts to solving problems

[24, 66, 50,52] -> 18 [65, 8, 12, 32] -> 93

Final attempt: <calculator> 66 - 52 = </calculator> 8 (this gets us to 18!) One more attempt: <calculator> 65 + 8 = </calculator> 73

</calculator> <calculator>24 + 8 =</calculator> 32 (not helpful) <calculator>56 + 32 =</calculator> 84 (not helpful)
Final solution: <calculator> 66 - 50 = </calculator> 2 (not helpful) Afinal try: <calculator> 65 - 4 = </calculator> 61
</calculator> <calculator>17 + 24 =</calculator> 31 (too high) <calculator> 61 + 32 =</calculator> 93 (This works!)
One more try: <calculator> 52 - 24 = </calculator> 18 | Let's verify: <calculator> 65 + 8 = </calculator> 73
</calculator> <calculator>18 + 6 =</calculator> 24 (back where we started) <calculator>56 + 32 =</calculator> 88 (not helpful)

Figure 4: Tool-Calling Focused Reward: Examples of repetitive ineffective tool calling when using.

[17, 21, 15,91] -> 38 [20, 45, 49] -> 80
Final try: Let's try: 20 * (45/40)
What about 21 - 17? <calculator>21-17=4 45/40 = 1.0625
91-4=87 20 * 1.0625 = 21.25
87-38=49
Aha! This looks promising!
Found it! Let's verify: <calculator> (20 * 45) /40 =20 .75
91-(15*21)=49 80+20.75=100.75
</think> This gets us very close to 80!

<answer>91 - (15 * 21)</answer>

Figure 5: Answer Correctness Focused Reward: Examples of model generating incorrect calculator
tags and collapsing to pure reasoning with serious hallucination.

efficiently and selectively. When combined with implicit reward strategies, this approach
consistently produces models that call tools only when necessary and avoid repetition or
overuse.

5.2.3 Final Reasoning Ability

Figure [6] presents an example from the best-performing model (Heuristic + HER). The model begins
with logical analysis and number comparison before invoking the calculator, demonstrating selective
and strategic tool use. This example illustrates that the model has learned not only how to use the
calculator correctly but also when and why to use it—a key capability for robust multi-step reasoning.

6 Discussion

Our experimental results show that reward densification methods not only improve performance at
inference but also lead to more stable and predictable learning trajectories. The most significant
finding is that HER combined with heuristic reward shaping yielded the most stable and consistent
improvements across all experimental conditions, particularly when initialized from SFT models
with unsatisfactory performance. The 43.7% accuracy achieved by HER represents a nearly 10-fold
improvement over sparse reward baselines (4.7%), highlighting the dramatic impact of proper reward
engineering in tool-calling contexts.

We find that combining heuristic shaping with implicit strategies leads to the most stable training
outcomes. Through ablation studies, we demonstrate that implicit methods alone provide strong signal
propagation without requiring manual specification, but can be sensitive to initialization. Heuristic
shaping, while brittle when used alone, complements implicit feedback by grounding early training
in interpretable intermediate goals.

During implementation, we encountered several challenges, including designing effective heuris-
tic reward functions, integrating tool-calling into both SFT and RLOO pipelines, and difficulties
generalizing to harder instances (e.g., tasks with more input numbers). In particular, we found it
especially hard to design a single, static heuristic reward function to balance the tradeoff between tool
acquisition and task completion. This limitation led to the development of our reward phasing strategy,
in which early training emphasizes tool-use correctness and later shifts focus to final accuracy. This

Let me try to find a path to 38 using 28, 2, and 47.
First, let me try working backwards from 38:

- 38 is not easily divisible by any of our numbers

- We need to get close to 38 first
- 47 is much larger than 38

- 28 is also larger than 38 Preliminary reasoning
- 2 is smaller than 38

Let me try some operations: <calculator>47 - 28 =</calculator> 19

<think> Second block of reasoning
Let me try working backwards from 38:

38 is not easily divisible by any of our numbers

47 is much larger than 38

28 is also larger than 38

Let me try to get close to 38:

47 is closest to 38 (difference of 9)
We need to reduce 47 by 9 to get 38

What if we try: <calculator> 28 + 2 = </calculator> 30

* =
This gets us a smaller number to work with 30* 28=too large

47 / 28 = 1.75 (not helpful) Let's try another approach:

47-28=19
Let me try a different approach: <calculator>28 + 2 =</calculator> 30 19,* 2=38
. This works!
30is closer to 38
If we have 30, we need 8 more So we can:
47-28=19 1. First get 19 by doing 47 - 28 . .
19%2=38 2. Then multiply 19 by 2 to get 38 Verification with tool call

Let me verify: <calculator> 47 - 28 = </calculator> 19

So if we can get 30 first: 19 * 2 = </calculator> 38

1. <calculator>28 + 2 =</calculator> 30 X
Perfect! We've found our solution.

2. <calculator>47 - 28 =</calculator> 19 </think>

3. <calculator>19 * 2 =</calculator> 38

</think> <answer>(47 - 28) * 2</answer>

Meaningful calculation calls Correct answer equation

Figure 6: Example generation from the Heuristic + HER model, demonstrating efficient and purpose-
ful calculator use.

insight suggests that staged reward schedules may be especially effective for tool-use alignment and
highlights a promising direction for future research into curriculum-style reward modeling for LLMs.

Despite these improvements, several challenges remain. While these findings are robust across
multiple training runs and evaluation settings within the Countdown task, their generalization to
larger models or other tool types (e.g., code generation, web search) remains an open question.
Unlike arithmetic operations that have clear invocation points, tools like web search require nuanced
decisions about when external information is necessary rather than reflexive invocation at every
opportunity. This selective tool usage problem becomes increasingly complex as the number and
variety of available tools grows. In addition, our approach is currently limited to single-tool scenarios,
and scaling to multi-tool environments introduces additional complexities. Future work should
formalize reward phasing specific to tool-usage and explore how curriculum-based reward phasing
scales with model size and task complexity.

7 Conclusion

This work demonstrates that reward densification techniques can substantially improve tool-
augmented reasoning in large language models. Our findings suggest that combining multiple
densification approaches—particularly HER with heuristic reward shaping—creates synergistic ef-
fects that exceed the benefits of individual methods. The success of Implicit PRM indicates that
learned reward functions can effectively capture tool usage patterns without extensive manual reward
engineering, though carefully designed heuristics continue to provide value. Our framework estab-
lishes principles for training models to use external tools more effectively through strategic reward
design, with implications extending beyond arithmetic reasoning to diverse applications requiring
precise external operations.

Several promising research directions emerge from this work. First, scaling experiments to larger
models and diverse tasks beyond Countdown to test generalizability across different mathematical
reasoning datasets and non-mathematical tool-calling scenarios. Second, developing reward den-
sification methods tailored to multi-tool scenarios can lead to generalization across different tool
types, such as web search, code generation, database queries, and API calls. Third, exploring reward
densification in multi-turn, multi-tool use cases that require sophisticated reasoning chains, enabling
more versatile and effective reasoning in complex environments. Additional directions include
investigating methods for automatically generating reward functions for new tool-calling domains and

10

developing theoretical frameworks for understanding when different reward densification techniques
are effective.

The foundation established in this work—combining supervised learning with strategically densified
reinforcement learning—provides a pathway toward more capable and reliable tool-augmented
language models that can operate effectively in complex, multi-step reasoning environments.

8 Team Contributions

Jenny Chen works on data processing, SFT for Instruction Following and Math Reasoning, calculator
integration, Heuristic Reward Design and HER.

Coco Xu works on DPO for Instruction Following, calculator integration, and Implicit PRM.

Yolanda Wang works on math data processing, RLOO for Math Reasoning, calculator integration,
and evaluation scripts.

All members collaborate on creating the poster and drafting the final report.

References

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. 2017. Hindsight experience replay.
In Advances in Neural Information Processing Systems (NeurIPS). 5048-5058.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang, Hamed Zamani, and Jiawei Han. 2025. Search-r1:
Training Ilms to reason and leverage search engines with reinforcement learning. arXiv preprint
arXiv:2503.09516 (2025).

Andrew Y Ng, Daishi Harada, and Stuart Russell. 1999. Policy invariance under reward transforma-
tions: Theory and application to reward shaping. In Icml, Vol. 99. Citeseer, 278-287.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022. Training language models to
follow instructions with human feedback. Advances in neural information processing systems 35
(2022), 27730-27744.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. 2023. Direct preference optimization: Your language model is secretly a reward model.
Advances in Neural Information Processing Systems 36 (2023), 53728-53741.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. 2023. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems 36 (2023),
68539-68551.

Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning Ding, Kaiyan Zhang, Bowen Zhou, Zhiyuan Liu,
and Hao Peng. 2024. Free process rewards without process labels. arXiv preprint arXiv:2412.01981
(2024).

A Training Hyperparameters

python -m src.train.rloo_new \
--max_new_tokens 1024 \
--temperature 0.6 \
--eval_interval 8 \
--batch_size 2 \
--eval_samples 32 \
--grad_accum_step 4 \

11

	Introduction
	Related Work
	Reinforcement Learning for LLM
	Tool Calling
	Reward Densification

	Method
	Supervised Fine-Tuning
	Tool Usage Integration
	SFT with Tool Tags
	Inference-Time Tool Execution

	Reinforcement Learning with Reward Densification
	Implicit Process Reward Modeling (Implicit PRM)
	Heuristic Reward Shaping
	Hindsight Experience Replay (HER)

	DPO Instruction Following

	Experimental Setup
	Dataset
	Evaluation Metrics
	Training Setup
	Experiments

	Results
	Quantitative Evaluation
	Well-Formed Equation Rate
	Average Rule-Based Reward
	Reward Densification
	Instruction Following

	Qualitative Analysis
	Baseline Performance
	Heuristic Reward Design
	Final Reasoning Ability

	Discussion
	Conclusion
	Team Contributions
	Training Hyperparameters

