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Behavioral cloning provides a straightforward framework for imitation learning by training policies
to mimic expert demonstrations. However, its vulnerability to compounding errors—arising from
deviations that accumulate over time—limits its reliability in stochastic or dynamically changing
environments. Recent methods have addressed this by employing action chunking, wherein the policy
predicts temporally extended action sequences rather than single-step actions. While this enhances
temporal consistency and captures higher-order behavior patterns, it introduces a tradeoff: longer
chunks reduce reactivity, especially under uncertain dynamics.

Bidirectional Decoding (BID) has been proposed as a solution to this tradeoff, selecting action chunks
based on a weighted combination of forward contrast and backward coherence. However, BID applies
these weights uniformly across timesteps, ignoring environmental context and test-time uncertainty.
In high-stochasticity regimes, this leads to suboptimal chunk selection.

We propose TV-BID, a test-time adaptive extension of BID that modulates its forward-backward
loss terms using a measure of stochasticity derived from Total Variation Distance (TVD) between
consecutive action chunk distributions. TVD offers a bounded, symmetric, and efficiently computable
proxy for test-time distributional drift, allowing the agent to adjust its planning strategy based on
observed temporal variability. We introduce both pairwise and sliding-window variants of TVD
estimation, enabling fine-grained control over how past action predictions influence current loss
weighting.

Our implementation discretizes the action space into b × b histograms and compares chunk-wise
distributions over overlapping timesteps. We evaluate our approach in both closed-loop (AH = 1)
and open-loop (AH = 3) control regimes on the Push-T manipulation task using the VQ-BET
policy. Across a range of noise levels, TV-BID consistently outperforms baseline BID, particularly
in high-stochasticity settings. Notably, our open-loop policy—augmented with TVD-based adap-
tation—achieves higher success rates than its closed-loop counterpart, demonstrating that adaptive
chunk selection can mitigate the reactivity limitations of chunked policies.

These results highlight the effectiveness of simple distributional statistics as signals for test-time
adaptation in imitation learning. By incorporating stochasticity-aware loss modulation, TV-BID
bridges the gap between stable long-horizon planning and reactive short-horizon correction without
requiring additional supervion or retraining.
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Abstract

Behavioral cloning (BC) is a widely used imitation learning method, but it suffers
from compounding errors caused by distributional drift at test time. Action chunk-
ing—predicting temporally extended sequences—offers improved consistency but
reduces responsiveness in dynamic environments. Bidirectional Decoding (BID)
aims to balance consistency and reactivity by selecting action chunks based on
forward contrast and backward coherence scores. However, BID statically weights
these scores, ignoring test-time uncertainty. We propose TV-BID, a simple ex-
tension that adapts this weighting based on the Total Variation Distance (TVD)
between consecutive action chunk distributions. TVD acts as a proxy for envi-
ronmental stochasticity, allowing the policy to dynamically prioritize reactivity or
stability. We introduce both pairwise and sliding-window TVD estimation schemes
and evaluate them under closed-loop and open-loop execution settings on the Push-
T manipulation task using the VQ-BET policy. Our method improves robustness in
high-noise conditions without requiring retraining, demonstrating that lightweight
test-time adaptation can significantly enhance chunked behavior policies.

1 Introduction

Behavioral Cloning (BC) offers a simple and effective paradigm for learning control policies from
demonstration. However, a long-standing limitation of BC lies in its sensitivity to covariate shift:
small deviations from expert trajectories can accumulate over time, leading to catastrophic distribution
drift and compounding error Ross et al. (2011).

Recent approaches address this issue by leveraging action chunking, in which the policy predicts
temporally extended sequences (at, at+1, . . . , at+ℓ) instead of stepwise actions. Chunking improves
temporal consistency and encodes latent structure across actions—such as subgoals or stylistic
behavior—but sacrifices short-horizon adaptability. In particular, long chunks may become unreliable
under stochastic transitions or perceptual noise, where frequent replanning is crucial.

Bidirectional Decoding (BID) Liu et al. (2024) was proposed to navigate this consistency-reactivity
tradeoff. At each timestep, BID samples multiple candidate chunks and selects the optimal one via
a weighted combination of two scores: Backward Coherence, which encourages alignment with
the previously executed chunk, and Forward Contrast, which favors distinguishability from weaker
decoders. However, BID applies these weights uniformly, regardless of context or uncertainty. This
potentially leads to overly rigid plans in volatile settings, or overly reactive plans in stable ones.

This paper introduces a simple yet effective extension to BID: adaptively mixing the backward and
forward terms based on the Total Variation Distance (TVD) between consecutive action distributions.
The key idea is to treat TVD as a proxy for test-time stochasticity—when predicted distributions are
stable across time, TVD is low, and the loss encourages backward continuity; when distributions shift
significantly, TVD rises, and the loss instead promotes contrastive replanning.
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To compute TVD, we discretize the continuous action space into b × b histograms and compare
distributions across overlapping chunk predictions. We consider both pairwise and sliding-window
variants, and evaluate under both closed-loop (AH = 1) and open-loop (AH = 3) policies.

Empirically, our TVD-augmented decoder outperforms baseline BID in stochastic environments,
showing improved robustness without retraining. Our results suggest that temporal distributional
shift is a strong signal for adaptive planning in chunked policies — and that even simple statistical
measures like TVD can yield powerful inductive biases when applied at test time.

2 Related Work

2.1 Behavioral Cloning and Compounding Errors

Behavioral cloning has been widely used for robot learning from human demonstrations due to
its simplicity and ability to leverage large-scale human-collected datasets (Atkeson and Schaal
(1997)). However, a fundamental challenge with BC is the phenomenon of compounding errors:
small prediction mistakes in a trajectory can lead to states outside the training distribution, causing
subsequent predictions to degrade further (Ross et al. (2011)). Several works have proposed strategies
to mitigate compounding errors, including data aggregation through expert interventions (Ross
et al. (2011); Mendonca et al. (2021)) and noise injection during training (Laskey et al. (2017)).
Nevertheless, these solutions require additional supervision or assumptions during training and do
not directly address test-time recovery.

2.2 Action Chunking and Temporal Dependencies

To improve temporal consistency and robustness to human demonstration variability, recent methods
have turned to action chunking (Zhao et al. (2023); Chi et al. (2024)). Rather than predicting a
single action at each timestep, the policy predicts a sequence of future actions, capturing long-
term latent strategies such as multi-step planning and style preferences. Action chunking has been
shown to mitigate short-term noise sensitivity and better model idle behaviors and latent subgoals
in human demonstrations (Chi et al. (2024); Lee et al. (2024)). However, by committing to longer
action horizons, action chunking also reduces the policy’s ability to react quickly to unexpected
environmental changes.

2.3 Bidirectional Decoding for Closed-Loop Operations

BID (Liu et al. (2024)) was proposed to address the trade-off between temporal consistency and
reactivity in action-chunked policies. Instead of committing to a single predicted action chunk, BID
samples multiple candidate chunks at each timestep and selects the best one based on two factors:

Backward Coherence: This parameter encourages continuity between successive action chunks
by favoring candidates that align closely with the previously executed chunk. It is computed as a
weighted sum of Euclidean distances over the overlapping steps:

LB(a) =

ℓ−1∑
τ=0

ρτ∥a(t)t+τ − a
(t−1)
t+τ ∥2

where:a(t)t+τ is the action predicted at time t + τ from the current chunk sampled at timestep t,
a
(t−1)
t+τ is the action at the corresponding timestep from the previously selected chunk, ℓ is number of

predicted future steps, or the length of the chunk, ρτ ∈ (0, 1] is a temporal decay factor that lowers
the importance of similar actions later in the action chunk.

Forward Contrast: This parameter promotes selecting chunks that are more similar to predictions
made by a stronger policy and dissimilar to those from a weaker policy from earlier points in training.
It is computed as:

LF (a) =
1

N

( ∑
a+∈A+

ℓ−1∑
τ=0

∥a(t)t+τ − a+t+τ∥2 −
∑

a−∈A−

ℓ−1∑
τ=0

∥a(t)t+τ − a−t+τ∥2

)
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where: A+ is the set of action chunks sampled from a strong policy π, A− is the set of action chunks
sampled from a weak policy π′, and N is the total number of sampled action chunks used to compute
the loss.

BID applies a uniform balancing of these two losses and selects action chunks that minimize a
combination of LB and LF . However, this method does not dynamically adapt based on environment
stochasticity. As such, BID especially struggles during closed loop operation in high stochasticity
environments.

2.4 Environment-Aware Decision-Making and Test-Time Adaptation

Several works have explored adjusting behavior at test time. These works utilize techniques based
on learned uncertainty estimators or other external guidance signals (Dhariwal and Nichol (2021);
Meister et al. (2023)). Recent work in value-guided sampling (Nakamoto et al. (2025)) shows that
conditioning sampling on reward estimates can improve robustness. However, there remains limited
exploration into dynamically adapting decoding strategies based on environment stochasticity during
execution. Our proposed method builds on these ideas by designing a stochasticity estimator that
modulates the BID loss dynamically, allowing the policy to intelligently trade off between consistency
and reactivity at each timestep based on situational awareness.

3 Method

Since BID’s rigidity is problematic in environments with varying levels of stochasticity, we propose
TV-BID and Sliding Window BID, both of which use Total Variation Distance (TVD) to estimate
the environmental stochasticity from action distribution shifts and adjust the ratio between forward
contrast and backward coherence.

Total Variation Distance. Total Variation Distance is a fundamental divergence measure between
probability distributions:

TVD(P,Q) = 1
2

∑
i

|Pi −Qi|

We chose TVD because it satisfies several key properties that make it particularly well-suited for
our test-time policy adaptation framework. First, it is both bounded and interpretable: it lies in the
interval [0, 1], and directly measures the maximal possible shift in probability mass between two
distributions, such that a value of 1 indicates total disjointness, and a value of 0 implies identity. This
makes the function smooth, predictable, and easy to tune, unlike alternatives such as KL divergence,
which can diverge or produce very large values under distribution mismatch. Furthermore, TVD is
symmetric, satisfying TVD(P,Q) = TVD(Q,P ). This symmetry allows us to compare past and
current action distributions in an unbiased manner, which is especially important in test-time settings
where neither distribution can be treated as the definitive reference. Finally, the computation of
TVD is efficient and scalable. It reduces to an ℓ1-norm over discretized histograms and requires no
additional model inference or gradient tracking. This makes it practical for real-time adaptation,
where we must compute divergence estimates from sampled actions under strict latency constraints.

Taken together, these properties make TVD not only theoretically principled but also empirically
stable.

TV-BID. At each timestep t, the model samples N action chunks:

A
(i)
t =

{
a
(i)
t , a

(i)
t+1, . . . , a

(i)
t+PH−1

}
, i = 1, . . . , N

where PH is the prediction horizon and a
(i)
t+τ ∈ Rd is a continuous action vector. The action horizon

AH ≤ PH specifies how many of the predicted actions are actually executed before resampling the
next chunk. We evaluate both closed-loop (AH = 1) and open-loop (AH = 3) policies.

To quantify temporal variation in predicted behavior, we convert each timestep’s N predicted actions
into a discrete distribution. Specifically, we bin the continuous actions into a b× b histogram over the
2D action space and normalize to form a distribution:

Pt+τ ∈ ∆b2 , where ∆b2 is the probability simplex over b2 bins.
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To detect distributional shifts between consecutive action chunks, we compute the Total Variation
Distance (TVD) between histograms at overlapping timesteps. Let Aprev

t and Acurr
t+AH be two chunks

sampled at times t and t + AH, respectively. Since each chunk spans PH future steps, these two
chunks overlap for PH − AH timesteps, specifically from t+ AH to t+ PH − 1.

We compute the TVD at each overlapping timestep ti = t+ AH + x− 1, for x = 1, . . . ,PH − AH:

TVDti =
1
2

∑
j

∣∣P curr
ti [j]− P prev

ti [j]
∣∣ .

Finally, we compute a temporally weighted average of the per-timestep TVDs:

TVD =

PH−AH∑
x=1

ρx · TVDt+x+AH−1, ρx =
γx∑PH−AH

j=1 γj
,

where γ ∈ (0, 1] is a decay factor that emphasizes more recent discrepancies.

This formulation generalizes to both frequent resampling (closed-loop) and temporally extended
execution (open-loop), enabling TV-BID to dynamically adapt to action distribution shifts regardless
of the policy horizon.

Sliding Window BID (Only for AH = 1). In this second variant, we attempt to smooth out
short-term noise and determine a more stable estimate of environmental stochasticity by comparing
current action distributions to a sliding weighted average over the past N timesteps, where N is the
prediction horizon.

At each timestep t in our chunk, we consider previously sampled action chunks that contain predictions
for timestep t. Each of these past chunks yields a distribution Pt−k that aligns with the current
timestep t, where k = 1, 2, . . . ,PH− 1 represents how far back the chunk was sampled. We compute
the Total Variation Distance (TVD) between the current distribution Pt and each of these overlapping
past distributions:

TVDt(k) =
1
2

∑
j

|Pt[j]− Pt−k[j]| .

To emphasize more recent chunks, we apply exponentially decaying weights:

ρk =
γk∑PH−1

j=1 γj
, and TVDt =

PH−1∑
k=1

ρk · TVDt(k).

For example, to compute TVDt5 , we compare the current distribution at t5 to distributions at the
same timestep generated from previous chunks sampled at t1 through t4. If we denote these past
chunk-aligned distributions as A,B,C,D, and the current one as E, then:

TVDt5 = ρ1 · TVD(D,E) + ρ2 · TVD(C,E) + ρ3 · TVD(B,E) + ρ4 · TVD(A,E).

This sliding window approach should help smooth out short-term noise and provides a more stable
estimate of temporal change.

Loss Mixing

Given the TVDt from these approaches, we compute a nonlinear mixing coefficient:

σt = tanh
(
s · TVDt

)
The final loss becomes:

Lt = σt · LF + (1− σt) · LB

where LF is the forward contrastive loss and LB is the backward coherence loss.
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4 Experimental Setup

4.1 Task and Policy

We evaluate TVD-BID and Sliding Window BID on the Push-T task from Diffusion Policy Chi et al.
(2024), where the robot pushes a T-shaped object to a goal pose using visual feedback. The underlying
policy is VQ-BET Lee et al. (2024), a latent autoregressive model producing chunked actions via
vector quantization. Success is measured by the Intersection-over-Union (IoU) between the final
block position and the target. To simulate environmental stochasticity, we adopt the action-space
noise injection scheme from Liu et al. (2024), which perturbs actions at with zero-mean, temporally
correlated Gaussian noise. We evaluate:

η = 0.0 (no noise), η = 1.0 (moderate), η = 1.5 (severe)

4.2 Closed-Loop and Open-Loop Modes

We evaluate our method in both closed-loop and open-loop settings. In the closed-loop regime
(AH = 1), the model is queried at every timestep, allowing for continuous resampling and rapid
responsiveness to environmental changes. In contrast, the open-loop regime (AH = 3) executes a
fixed sequence of three actions from each sampled chunk before the next resampling, introducing
temporal commitment and limiting reactivity.

4.3 Hyperparameter Sweeps

We perform a grid search for each {AH, η} combination:

Parameter Symbol Values

TVD sharpness s {1.0, 2.0, 3.0, 5.0}
Sliding window length CQ {1, 2, 3, 4}
Histogram resolution b× b {5, 8, 12, 16}

Each run is repeated with three random seeds and results are averaged.

5 Results and Analysis

Given the results of our hyperparameter sweep, we report the two best configurations for the closed-
loop and open-loop policy with the best average performance.

5.1 Policy Performance under Closed-Loop vs. Open-Loop Execution

Table 1: Task success rates (%) under varying action horizons and noise levels for BID and TVD-BID.
Bold indicates best performance for each setting.

AH Policy σ = 0.0 σ = 1.0 σ = 1.5

Closed Loop (AH = 1) BID 66.67 ± 12.06 44.67 ± 13.61 34.67 ± 11.02
TVD-BID 64.00 ± 19.00 50.67 ± 15.23 39.33 ± 6.11

Sliding Window-BID 66.0 ± 8.03 46.12 ± 13.07 38 ± 5.62

Open Loop (AH = 3) BID 62.00 ± 3.46 42.00 ± 5.29 32.67 ± 3.06
TVD-BID 72.00 ± 10.58 52.67 ± 8.08 36.00 ± 7.21

5.2 Qualitative Analysis

After our hyperparameter sweep, we found that s = 1.0, b = 12 yielded the best results for TV-BID
across both closed loop and open loop. However, open-loop performance exceeded that of the closed-
loop policy almost all noise levels. This was surprising, because we expected the sliding window
method to give us a more accurate estimation of our noise, thus helping us better weigh the backward

5



Figure 1: Average TVD vs noise for AH=1 under various grid resolutions and sliding-window lengths.

Figure 2: Average TVD vs noise for AH=3. Only histogram resolution is varied; CQ = 1 is fixed.

coherence and forward contrast. However, we expect that adding the extra windows might have
actually decreased the accuracy of our stochasticity estimate since adding more previous timesteps
dilutes the immediate stochasticity that the agent is observing. This can also be seen by the fact that
with increasing chunk length in Figure 1, the delta between average noise level TVD decreases. But
after plotting the average TVD across all three noise levels under various grid resolutions, we noticed
that the average TVD remains more varied even at higher bucket levels for ah_test = 3. Please see
Figures 1 and 2.
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Additionally, the optimized closed-loop policy showed improved stability at high noise, with a smaller
variance compared to the baseline. We also say improvements in the open loop policy across all noise
levels compared to the baseline.

While TVD scores improve robustness under noise, they do not fully recover success rates from lower
noise levels.

5.3 Quantitative Analysis

To examine these results further, we calculated the average TVD and average latent scores across
the different noise levels. The average TVD score is the mean TV D score across episodes. The
average latent difference is calculated by first averaging the latent embeddings across all N sampled
action chunks to obtain a mean latent trajectory then computing the ℓ2 distance between overlapping
segments of consecutive timesteps, averaged across the prediction horizon. Given these insights, we
propose the following conclusions:

Table 2: Average TVD, tanh(TVD), and latent difference across noise levels.

ah_test Noise Avg.TVD σ Avg. Latent Diff.

1 0.0 0.6306 0.5585 0.996
1.0 0.7022 0.6057 1.030
1.5 0.7431 0.6310 8.760

3 0.0 0.9038 0.7177 1.365
1.0 0.9510 0.7393 1.380
1.5 0.9674 0.7473 1.620

TVD reflects difficulty and guides adaptive loss. TVD increases consistently with noise under both
closed-loop (AH = 1) and open-loop (AH = 3) settings (Table 2), confirming its role as a proxy
for control difficulty. TVD is notably higher in the open-loop regime even at σ = 0.0 (0.9038 vs.
0.6306), reflecting increased uncertainty due to delayed feedback and longer action commitment.
This higher baseline suggests that adaptive loss modulation is more critical in open-loop policies.

Latent shift aligns with performance robustness. Latent differences grow with noise in both
regimes, but the trend is more dramatic in the closed-loop case, where the average latent shift jumps
from 1.030 to 8.760 between σ = 1.0 and σ = 1.5, indicating a breakdown in representation stability.
This corresponds with the baseline BID performance drop (Table ??), where success rate falls from
44.67% to 34.67%. In contrast, the open-loop regime shows more gradual increases in latent shift,
and TVD-BID maintains relatively high performance, suggesting that adaptive loss mixing helps
manage representational drift more gracefully in delayed feedback scenarios.

Tradeoffs between robustness and clean performance. While TVD-BID improves robustness
under noise, it slightly underperforms baseline BID at σ = 0.0 in the closed-loop setting (64.00% vs.
66.67%) and only marginally outperforms it at higher noise. This suggests that adaptivity can dampen
sharp decision-making in low-noise settings where deterministic planning is optimal. In contrast, in
the open-loop regime, TVD-BID outperforms baseline BID across all noise levels—including clean
settings—highlighting its greater benefit when feedback is infrequent. These results underscore the
need for noise-aware tuning of the loss modulation parameter to balance adaptivity with decisiveness.

6 Discussion

Limitations. Our experimental design was heavily constrained by compute availability. We initially
ran experiments on an AWS GPU instance, but frequent shutdowns interrupted progress. As a result,
we migrated to Google Cloud Compute and incurred out-of-pocket costs, which limited our ability
to exhaustively run all configurations across multiple seeds. While we selected the best-performing
configurations for closed-loop and open-loop settings, a more comprehensive sweep could yield
additional insights, particularly around hyperparameter sensitivity and robustness variance.

Broader Impacts. Our approach proposes a lightweight, distribution-aware mechanism for improving
robustness in learned control policies without additional training or supervision. This has positive
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implications for real-world deployment of robot policies in uncertain or dynamic environments,
where retraining is impractical. However, because our method dynamically adjusts behavior at test
time, care must be taken to ensure that such adaptation does not amplify instability in safety-critical
contexts. Future extensions should include safety guarantees or bounded behavior constraints to
ensure reliable deployment in human-centric environments.

7 Conclusion.

Our results demonstrate that adapting chunk selection using test-time distributional shift signals
can significantly improve the robustness of behavior cloning policies under noisy and delayed
feedback conditions. By using Total Variation Distance (TVD) as a proxy for stochasticity, TVD-BID
dynamically balances forward contrast and backward coherence, outperforming baseline BID in high-
noise regimes. While closed-loop execution provides stability through frequent feedback, open-loop
policies benefit more from adaptive mechanisms due to their inherent exposure to drift. However, in
low-noise settings, adaptivity may trade off with sharpness in decision-making, suggesting that future
work should explore more nuanced modulation strategies. Overall, our findings support the promise
of lightweight, distribution-aware adaptation at test time for chunked policy execution.

8 Team Contributions

• Sarosh Khan: Implemented action distribution TVD, ran hyperparameter sweeps
• Ellie Tanimura: Ran baselines, implemented latent rescoring
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