
Extended Abstract

Motivation Our goal is to enhance Qwen2.5-0.5B’s ability to generate high-quality answers with
reflection and reasoning. During such reflection, if the model identifies the confidence to be low, it
can invoke external tools like Tavily for accurate retrieval.

This advances the traditional one-shot answer generation, which may result in one of the two: 1. the
model could simply hallucinate, and produces inaccurate answers 2. the model simply refuses to
answer because it does not have the knowledge. Both are not as helpful.

To overcome the challenges above, we have designed two key components in the pipeline: a Generator
Model and an Evaluator Model, we experiment with diverse data mixtures to assess performance.

Method We train two components: a generator and an evaluator. The generator is first trained via
Supervised Fine-Tuning (SFT) on instruction-following data. We then generate QA pairs, score them
using OpenAI’s API, and train a reward model to predict those scores. Using this reward model, we
apply Proximal Policy Optimization (PPO) to align the generator’s outputs with human preferences.

The evaluator is trained via SFT to generate comments from QA pairs, using reasoning traces distilled
from DeepSeek-R1-14B. It then analyzes the sentiment of the comment to determine whether to
trigger an online search.

At inference, the generator produces an initial answer, and the evaluator generates a comment to
assess confidence. If the sentiment is high (positive), the system returns the generator’s response. If
low (negative), it calls Tavily’s API for external retrieval. This reflective-retrieval hybrid approach
improves answer accuracy while reducing unnecessary API calls and latency.

Implementation Our dataset merges HotpotQA, focusing on multi-hop and comparative questions,
with ScienceQA, emphasizing factual reasoning, providing ground-truth answers for supervised
training.

We conducted two experiments to assess reasoning and generalization. The first, using Qwen 411
(bridge-focused), includes 4,187 training and 1,795 test examples. The second, employing Qwen
111 (balanced question types), has 3,149 training and 1,349 test examples. Data was enriched via
OpenAI APIs and DeepSeek-R1:14B—OpenAI contributed scalar scores for reward modeling, while
DeepSeek provided reflective comments for richer evaluative feedback. Ground truth responses were
included as positive supervision during SFT and assigned a reward of 1.0 during PPO training to
enhance learning quality.

Results In our quantitative evaluation, we compared the performance of three models—Qwen2.5-
0.5B (base), Fine-tuned SFT, and Fine-tuned PPO—across a combined test set containing balanced
and bridge-focused distributions. Both fine-tuned models notably outperformed the base model,
achieving overall accuracy scores of 0.38 (SFT) and 0.39 (PPO) compared to the base’s 0.29.
Specifically, the PPO model excelled in comparison questions (0.60 accuracy), showcasing its
superior discriminative reasoning capabilities over the SFT (0.53) and base (0.45) models. In open
factual questions, both fine-tuned models significantly improved accuracy (0.40) over the base model
(0.34). Bridge questions, however, posed greater challenges, yielding modest accuracy gains (base:
0.10, SFT: 0.19, PPO: 0.18). Additionally, we explored the efficiency-accuracy tradeoff using a
confidence-based API calling policy. Using DeepSeek-r1:14b as an evaluator, we identified an
optimal threshold range (0.2–0.4), balancing high accuracy (around 80%) with efficient external
resource usage. These results underline the efficacy of fine-tuning methods, particularly PPO, and
highlight the practical advantage of confidence-aware strategies in model deployment.

Discussion Future work includes allowing the model to revise responses using its own generated
answers and evaluator comments. We also plan to investigate how data composition and question
types influence both generation quality and retrieval efficiency.

Conclusion By leveraging SFT and PPO, our approach achieves consistently better responses across
diverse query types. The addition of reflection-based evaluation allows the model to dynamically
balance internal reasoning with external search, leading to improved efficiency and robustness.

Reflection-Augmented QA: Reinforcement Learning
Meets Online Search

Zhulian Huang
Department of Computer Science

Stanford University
zlhuang@stanford.edu

Binbin Li
Department of Computer Science

Stanford University
binbinli@stanford.edu

Ying Lu
Department of Computer Science

Stanford University
yinglu01@stanford.edu

Abstract

We present a reflective-retrieval framework that enhances the Qwen2.5-0.5B
model’s ability to generate accurate, reasoned answers while dynamically lever-
aging external tools when confidence is low. Our system consists of a generator
trained via Supervised Fine-Tuning (SFT) and Proximal Policy Optimization (PPO),
and an evaluator trained to assess confidence through comment generation. At
inference, the evaluator determines whether to return the model’s answer or invoke
a retrieval API. Experiments on a combined dataset of HotpotQA and ScienceQA
show that both SFT and PPO fine-tuning significantly outperform the base model,
with PPO especially strong on comparison questions. Moreover, using evaluator-
guided retrieval based on DeepSeek-R1:14B, we identify an optimal confidence
threshold (0.2–0.4) that balances high accuracy (80%) with efficient API usage.
Our approach demonstrates the effectiveness of combining reflection with external
knowledge retrieval to improve robustness and response quality.

1 Introduction

Recent advancements in large language models (LLMs) have significantly improved the quality
of natural language generation. However, using smaller models to generate high-quality, reliable,
and well-grounded responses remains a challenging task. Smaller models often lack the capacity to
capture nuanced reasoning or handle complex queries without additional supervision or augmentation.

In this work, we aim to expand the capability of the base model, Qwen2.5-0.5B (with 494M parame-
ters), to generate accurate, reflective, and high-quality responses, while maintaining computational
efficiency. Our goal is to enable the model to reason about its outputs and, when necessary, invoke
external tools such as online search APIs to improve answer reliability.

To this end, we develop a two-model architecture Figure 1 based on Qwen2.5-0.5B: a generator
model and an evaluator model. The generator model is trained to produce coherent and grounded
answers. We begin with supervised fine-tuning (SFT) on curated open-source datasets. Then, we
leverage OpenAI-generated quality scores—based on alignment with ground truth responses—to train
a reward model using supervised learning. This reward model enables reinforcement learning through
Proximal Policy Optimization (PPO), guiding the generator to produce responses with improved
alignment to human preferences.

Stanford CS224R 2025 Final Report

In parallel, the evaluator model is trained to generate reflective comments that assess the quality of
the generator’s output. It is fine-tuned using distillation traces from the DeepSeek-R1:14B model,
learning to emulate reflective thinking. Additionally, we employ a sentiment classifier to evaluate
these comments. When low confidence is detected, the evaluator triggers an external search API (e.g.,
Tavily) to retrieve supplemental information before the generator issues a final response.

This architecture enables the system to combine internal reasoning with external knowledge sources
efficiently. When the model is confident, it answers directly. When uncertain, it augments its response
using real-time web search. This hybrid approach provides a lightweight yet robust solution for
building small-model assistants with dynamic reasoning and retrieval capabilities.

Figure 1: Architecture Overview

2 Related Work

There are a variety of work related to improving search capabilities via RL, especially on how to
enable the model to access external information. R1-searcher paper has been published to train the
model to invoke web search. It is an outcome-based reinforcement learning framework designed
to enhance LLMs’ ability to autonomously access external knowledge during reasoning via as two-
stage process. It involves no supervised fine-tuning or process supervision: Relies solely on RL for
training, promoting autonomous exploration and adaptation. It also leverages dynamic integration of
reasoning and retrieval and allows LLMs to decide when and how to use external knowledge based
on the reasoning context. The paper shows advantages to standard RAG, archives better results than
GPT–o4-mini.

Search-R1 paper trains large language models (LLMs) to autonomously conduct online searches as
they reason through problems, integrating search engine access directly into the reasoning process.
It is Multi-step, interleaved reasoning and retrieval and uses token masking and stable RL training,
which ensures robust learning and prevents overfitting to retrieved content.

R1-Searcher++ paper extends the R1-Searcher framework by teaching LLMs to adaptively leverage
both internal and external knowledge through a two-stage training strategy. Its key features include
two-stage training: Supervised fine-tuning (SFT) for format learning, and RL for dynamic knowledge
acquisition and memorization. It encourages the model to use internal knowledge when possible
and to efficiently memorize externally retrieved information. It achieves higher accuracy with fewer
search invocations compared to vanilla RL-based approaches.

Another very relevant work is STaR-GATE (Andukuri et al., 2024), which teaches language models
to improve their questioning strategy via self-improvement. STaR-GATE combines active preference
elicitation (GATE) with a self-improvement loop (STaR), training a model to ask clarifying questions

2

that significantly enhance its ability to generate personalized and high-quality responses. Through
iterative finetuning on conversations that maximize the probability of gold responses, STaR-GATE
models become more capable of resolving task ambiguity and tailoring answers to users’ needs.
This approach aligns closely with our goal of improving search personalization, suggesting that
encouraging models to ask targeted clarifying questions could further enhance the effectiveness of
personalized search results.

One interesting paper Adaptive Inference-Time Compute (Manvi et al, 2025) suggests in the middle
of generation, the model could be trained a new capability to predict that restarting the generation
will yield better response.

Our problem combines both generating a better answer and also allow the model to learn when to
invoke online search, which improves efficiency. Based on the idea of ReAct(Yao et al, 2024), Our
approach is through reflection and sentiment decision. We let the model to learn to generate better
answers, and in addition to that learn to generate better comment. From the sentiment of the comment,
model thinks and reflects, and makes a decision to leverage external search or not.

3 Method

3.1 Generator Model Pipeline

3.1.1 Problem Formulation

We model the fine-tuning of a language model as a two-stage optimization process: Supervised
Fine-Tuning (SFT) followed by Reinforcement Learning from Human Feedback (RLHF) using
Proximal Policy Optimization (PPO).

Given a dataset
D = {(xi, yi, ri)}Ni=1

where xi is a user query, yi is a model-generated response, and ri ∈ [0, 1] is a quality score produced
by a proprietary scoring model from OpenAI to approximate human preferences, our objective is to
learn a policy πθ that maximizes the expected reward:

Ex∼D, y∼πθ(·|x)[R(x, y)]

Here, R(x, y) is a learned reward function trained to approximate the quality scores from OpenAI’s
annotator model, serving as a proxy for human preference.

3.1.2 Supervised Fine-Tuning (SFT)

The base model used for SFT was Qwen2.5-0.5B, a 494M parameter autoregressive language model.
Training was conducted using a causal language modeling loss on query-response pairs.
Objective:

LSFT(θ) = −E(x,y)∼DSFT

 |y|∑
t=1

log πθ(yt | x, y<t)


where DSFT = {(xi, yi) | ri ≥ τ}, τ = 0.7.

Data Enhancement:

Denhanced = DSFT ∪ {(xi, y
∗
i) | r(xi, y

∗
i) = 1.0}

SFT was performed with a learning rate of 5e-5, batch size of 4 (with gradient accumulation), and a
maximum sequence length of 512 tokens. Training was conducted for 3 epochs using AdamW with
gradient clipping and checkpointing enabled for memory efficiency.

3.1.3 Reward Model Training

The reward model architecture consisted of a frozen Qwen2.5-0.5B encoder followed by a multi-layer
perceptron reward head. The head featured LayerNorm, dropout (0.1), and a sequence of decreasing
hidden dimensions ending in a scalar output. Training used a normalized Mean Squared Error loss
and early stopping based on validation RMSE.

3

Train reward model Rϕ(x, y) using:

Lreward(ϕ) = E(x,y,r)∼D
[
∥Rϕ(x, y)− r∥2

]
+ λ∥ϕ∥22

3.1.4 Proximal Policy Optimization (PPO)

PPO was initialized from the SFT-finetuned model and optimized with reward-weighted updates. The
reward signal was computed using the trained reward model, and KL divergence with a frozen SFT
reference model was used to prevent policy drift.
Objective:

LPPO(θ) = Ex∼D,y∼πθ
[Lpolicy(x, y) + β · LKL(x, y)]

Components:

• Policy Loss:

Lpolicy(x, y) = −
|y|∑
t=1

w(Rϕ(x, y)) log πθ(yt | x, y<t)

• Weight: w(r) = 1
1+max(0,r)

• KL Penalty:
LKL(x, y) = KL(πθ(·|x)∥πref(·|x))

PPO Algorithm: The training procedure begins by initializing the policy model πθ with the parame-
ters of the reference model πref. For each training batch, the current policy πθ is used to generate
a response yi conditioned on the input query xi. The generated response is then scored using the
reward model Rϕ(xi, yi), which approximates human preferences. Finally, the model parameters θ
are updated by applying a gradient step to minimize the PPO loss, denoted as LPPO, using a learning
rate α.

3.2 Evaluator Model Pipeline

3.2.1 Objective

Our goal is to base on Qwen2.5-0.5B as the base model, and prompt it to generate comments on a
given QA pair. We use SFT to train this model, where we collect (query, model response, training
response) tuples. Deepseek model is used to comment on the (query, model response) pair, as well as
(query, training response) pair. As you could imagine, given the 0.5B model, (query, model response)
generally do not yield good answers and deepseek comments have quite a lot of negative answers,
whereas for (query, training response) pair, since it is ground truth data, the deepseek response are
mostly positive.

3.2.2 Prompt

We prompt the Qwen2.5-0.5B using alpaca format with the following:

Below is an instruction that describes a task, paired with an input that provides
further context. Write a response that appropriately completes the request.
Instruction:
You are a knowledgeable analyst who has world knowledge and is skilled at
evaluating question–answer pairs. Please provide a comment on the input.
Input: {query + answer pair}
Comment: {model-generated evaluation}

In our experiment, 14,676 synthetic comments are generated according to the (query, model response,
comment) tuple and (query, training response, comment) tuples, with the help of distillation from
deepseek-r1:14b, including thinking traces and comments. Note that for (query, training response)
pair, the comment will naturally be positive, since training response is ground truth data. We observe

4

the same in our data with scores generally above 0.7. These serve as positive training examples in
addition to the correct model response. We trained 10 epochs each, with comment data including
thinking trace and without respectively. We use this data to train a SFT model that predicts the
next tokens of a comment given the instruction and input, with the input containing both query and
(model/training) response.

We have done two experiments, one with the thinking trace from deepseek distillation, and one
without the distillation. We find that training loss keeps decreasing for both experiments. The
experiment without the thinking trace decreases the training loss faster, starting with 2.55, and ending
with 0.1279, while the one with the thinking trace ending with 0.325, all other parameters remaining
equal as described in the above configuration.

After generating the comment, we assess its sentiment. We take a simple approach and use the base
model Qwen2.5-0.5B to judge the sentiment of the comment with prompting, and ask the model to
produce a score between 0 (highly negative) and 1 (highly positive).

Based on the sentiment score, the model switches to online search (e.g., Tavily API) if the score
is below the threshold; otherwise, the model produces its own response. This enables a form of
reflection for smart decision. However, in our training, we find that instruction following to generate
comments remains relatively weak and needs improvement.

Another experiment we have done is that we also study an ideal case if we leverage OpenAI-level to
give out sentiment. If the small model learns to comment and produce sentiment of the same quality
as openAI model, we see a clear gain and tipping point where the model choses to save calling online
search API when it is confident, and calls online search otherwise. The saving of calling online search
does not compromise answer quality, which is expected.

This hybrid approach shows an efficiency gain while preserving answer quality.

4 Experimental Setup

4.1 Data Distribution

To evaluate the model’s performance, we utilized data composed of three distinct question types, each
designed to test a different aspect of reasoning Figure 2:

• Bridge Questions: These questions require multi-hop reasoning by connecting different
pieces of information through an intermediate "bridge" entity. To find the answer, the model
must first identify this bridge and then use it to find the final fact.

• Comparison Questions: These questions require the model to compare two or more
entities along a specific attribute, often involving quantities or qualities. Answering them
involves retrieving facts for each entity and then performing a comparative operation.

• Open Factual Questions: These are direct, fact-based questions that can typically be
answered by retrieving a single piece of information from a broad knowledge source. They
test the model’s ability to locate and extract specific facts without complex reasoning chains.

To enhance learning quality, we incorporated ground truth responses in both supervised and rein-
forcement learning stages. Ground truth responses were used as high-quality positive samples during
supervised fine-tuning (SFT) to teach the model ideal response patterns. In PPO training, these
ground truth responses were assigned a reward score of 1.0, providing a consistent upper bound
signal to guide the policy optimization toward preferred answers.

4.2 Model Configuration

Base Model: The base model employed in this study is Qwen2.5-0.5B, a decoder-only transformer
architecture with approximately 494 million parameters. It supports a context window of up to
512 tokens and uses FP32 precision to ensure numerical stability during training. The tokenizer is
configured with <|endoftext|> as both the padding and end-of-sequence token. Padding is applied

5

on the right side of the input, truncation is enabled, and the maximum input length is set to 512
tokens.

4.3 Generator Model Training Hyperparameters

SFT Configuration: The supervised fine-tuning (SFT) phase used a learning rate of 5 × 10−5,
with a batch size of 4 and 4 gradient accumulation steps, resulting in an effective batch size of 16
samples per update. Training was performed over 3 epochs with a warmup ratio of 0.1, weight decay
of 0.01, and a maximum gradient norm of 1.0. Training used full-precision (FP32), with gradient
checkpointing enabled for memory efficiency.

Reward Model Configuration: The reward model was trained using a learning rate of 2× 10−5

and a batch size of 8 across 5 epochs. A validation split of 0.2 was applied, and early stopping was
triggered with a patience of 3 epochs. Regularization was achieved with a weight decay of 0.01 and
dropout rate of 0.1.

PPO Configuration: Proximal Policy Optimization (PPO) training was conducted using a very
low learning rate of 1 × 10−7 for stability, with a batch size of 4 and 2 training epochs. The KL
divergence penalty coefficient β was set to 0.2. Generation parameters included a maximum of 100
new tokens, temperature of 0.7, top-p sampling threshold of 0.9, and maximum gradient norm of 0.5.

4.4 Evaluation Protocol

Reward Model Evaluation: The reward model was evaluated using Pearson correlation
ρ(Rϕ, rtrue), root mean square error (RMSE) computed as

√
E[(Rϕ − r)2], and the R2 coefficient of

determination.

Policy Evaluation: The improvement in policy quality was measured by the change in expected
reward: ∆R = E[Rϕ(x, yPPO)]− E[Rϕ(x, ySFT)]. Manual response evaluation was also conducted
to assess the relevance and coherence of generated outputs.

4.5 Evaluator Model

We train the evaluator model to generate proper comments and provide sentiment score depends on
whether the evaluator thinks the model correctly, partially and incorrectly address the query.

Training:

• Model: Qwen2.5-0.5B

• Optimizer: adamw 8bit

• Batch size: 2

• gradient accumulation step: 4

• Epochs: 10

• Loss: Causal LM loss

• learning rate: 0.001

• max seq length: 1024

We experiment with comment data generation both with and without thinking trace.

4.6 Implementation Details

Software Environment: The experiments were conducted using the following software
versions: transformers==4.52.4, torch==2.7.0, datasets==3.6.0, pandas==2.2.3,
and scikit-learn==1.6.1, trl==0.15.2, unsloth==2025.5.2, pandas==2.2.3,
ollama==0.4.8.

6

Reproducibility: To ensure reproducibility, a fixed random seed was used across all training stages.
Model checkpoints were saved every 50 steps, and all configurations were logged in JSON format.
Library versions were kept consistent throughout the pipeline.

Memory Management: Gradient checkpointing was used to reduce memory consumption. Mixed-
precision training was disabled (fp16 = False) for stability, and torch.cuda.empty_cache()
was called between model stages to free up GPU memory.

5 Results

Figure 2: Three types of QA pairs

Figure 3: Accuracy Evaluation for Three Models

5.1 Quantitative Evaluation

We evaluate the performance of three models—Qwen2.5-0.5B (base), Fine-tuned SFT, and Fine-tuned
PPO—on a combined test set composed of both balanced and bridge-focused distributions. Evaluation
scores are reported for three question types: Bridge, Comparison, and Open Factual, as well as an
overall score. Figure 3 summarizes the average scores and corresponding 95% confidence intervals.
The Accuracy Store is generated by DeepSeek-r1:14b which is used an expert evaluator to assess the
correctness of each response relative to the provided ground truth. The model returns the numeric
score between 0 and 1, where 1 represents a fully correct response, and 0 represents a completely
incorrect answer.

Overall Performance. Both fine-tuned models significantly outperform the base Qwen2.5-0.5B
model. The base model achieves an overall score of 0.29 [0.22, 0.36], while the SFT and PPO models
reach 0.38 [0.33, 0.42] and 0.39 [0.37, 0.43], respectively. These results demonstrate the effectiveness
of both supervised and reinforcement learning in improving response quality.

Comparison Questions. The greatest improvements are observed in comparison questions, where
the PPO model performs best with a score of 0.60 [0.55, 0.66]. The SFT model follows closely at 0.53
[0.45, 0.61], both outperforming the base model’s 0.45 [0.29, 0.60]. This indicates that preference
modeling via reward-based fine-tuning is especially effective in scenarios that require discriminative
reasoning.

Open Factual Questions. For open factual questions, both SFT and PPO models perform equally
well with scores of 0.40, substantially improving upon the base model’s 0.34 [0.24, 0.43]. This shows
that both fine-tuning approaches contribute to enhanced factual accuracy in generated responses.

7

Bridge Questions. Performance on bridge questions remains lower across all models, though fine-
tuning still offers gains. The base model scores 0.10 [0.03, 0.17], SFT improves to 0.19 [0.12,
0.25], and PPO reaches 0.18 [0.14, 0.22]. The relatively modest improvements suggest that bridge
questions—often requiring multi-hop reasoning—remain a challenge for smaller models.

In summary, PPO shows the strongest results overall, particularly on comparison-type questions,
while SFT is competitive and slightly more stable across distribution shifts. Both methods provide
robust gains over the base model.

5.2 Qualitative Analysis

To complement the quantitative results, we conducted a qualitative analysis of model-generated
responses. We examined a sample of outputs from each model across question types and annotated
them based on coherence, relevance, groundedness, and reasoning depth.

Base Model. The base Qwen2.5-0.5B model frequently produces surface-level responses. While it
can answer straightforward factual queries, it often fails to deliver consistent or multi-step reasoning,
particularly for bridge and comparison questions.

Fine-tuned SFT. The SFT model shows notable improvements in coherence and fluency. Its responses
are more structured and grounded, especially in bridge-style queries where linguistic templates help
scaffold reasoning. However, it sometimes overfits to seen patterns and may hallucinate confidence
in edge cases.

Fine-tuned PPO. The PPO model generates the most nuanced and human-aligned responses. Its use
of a reward model appears to guide more cautious and reflective answers, especially in comparison
questions. We observe instances where the model explicitly references key distinctions, demonstrating
improved decision boundaries. That said, PPO outputs can occasionally be verbose or overly
conservative in uncertain contexts.

Overall, qualitative findings align with quantitative metrics: PPO fine-tuning leads to more accurate
and preference-aligned behavior, while SFT provides strong improvements with greater simplicity
and robustness. Notably, both fine-tuned models significantly improve answer quality and reasoning
fluency over the base model.

Figure 4: Model Efficiency and Answer Accuracy

8

Figure 5: Model Efficiency and Answer Accuracy

Figure 6: Model Efficiency and Answer Accuracy

5.3 Efficiency-Accuracy Tradeoff via API Calling Policy

To explore the practical utility of external knowledge integration, we evaluate how model confidence
can guide selective invocation of an online search API. Specifically, we use DeepSeek-r1:14b as
a reference to evaluate the response and provide a confidence level on the response. These scores
serve as proxies for response confidence, which in turn inform the decision to either provide a direct
answer or call an external search API (e.g., Tavily) for assistance. Note that the scoring mechanism
of DeepSeek exhibits slightly non-deterministic behavior, resulting in outputs with certain variance
across identical test cases.

Figure 6 is based on model evaluator, and Figure 5 is based on DeepSeek-r1:14b evaluator. The two
plots illustrate the tradeoff between model efficiency (defined as API call rate) and answer accuracy

9

as the API-calling threshold is varied based on model response score. The rule here is when the
confidence score is below the threshold, invoke online search.

Model Efficiency. For Figure 6 based on model evaluator, at the lowest threshold (close to 0), the
model never calls the API, yielding 100% efficiency but poor accuracy (34%). As the threshold
increases, the frequency of API invocation rises, reducing model-side computation but improving
answer quality. Efficiency drops steadily—from 66% at threshold ≤ 0.2 to 0% at ≤ 1.0—indicating
the model relies more heavily on external sources when uncertain.

On the contrary, based on Figure 5 based on DeepSeek-r1:14b evaluator, the starting point is same,
but as the threshold increases, efficency drops very quickly to 39.4% between 0.2 and 0.4.

Answer Accuracy. For DeepSeek-r1:14b evaluator, answer accuracy improves rapidly at first, from
0.34 at threshold < 0 to 0.79 at ≤ 0.2. It peaks around 0.81 at thresholds ≤ 0.8, before slightly
tapering off. This suggests that the evaluator model’s confidence score is well-aligned with response
correctness, making it an effective signal for triggering external knowledge retrieval. For model
evaluator, accuracy improves to 55% at the beginning, and slowly increases afterwards. This is due to
model evaluator tending to produce more extreme scores compared with DeepSeek, and the small
model tends to be less conversative. However, the internal knowledge of the 0.5B-parameter model
limits its capability, so answer accuracy overall is lower as threshold increases.

Optimal Tradeoff Point. We evaluate based on model’s scoring vs DeepSeek scoring. We see
a very interesting pattern: for the same set of (query, response) pair, DeepSeek tends to be more
conservative, and calls online API more aggressively(60% of calls when score is under 0.2), but
the good side is the answer accuracy is much higher, reaching around 80%. The model itself tends
to be less conservative, so efficiency is higher (33% of API calls at 0.2 threshold), but accuracy is
lower(around 55%) because of its internal knowledge’s limitation.

For both Figure 6 and Figure 5, the threshold range between ≤ 0.2 to ≤ 0.4 appears to offer the best
balance between efficiency and accuracy.

Implication. These results represent an interesting comparison to study our small model’s evaluator
vs DeepSeek model evaluator. In practice, our system is designed to use a lightweight internal
evaluator to generate and score these comments autonomously. In practice, for client side LLM, we
have strong need to deploy small but power LLM models. The findings demonstrate the promise of a
confidence-aware API calling mechanism, where model-generated uncertainty signals can effectively
balance response accuracy with efficiency and external resource usage.

6 Discussion

For future work, we plan to run another experiment by letting the model to regenerate the response
based on the query and its generated response and comments. This may enforce the model to rethink
and regenerate the response given additional signals. We could do so by modeling the probability
that the model can generate a better response, and invoke that rethinking when the probability is high.
This is also suggested by Manvi et al paper.

We also plan to study how different data mixture and types of questions will affect model’s per-
formance on answer accuracy, as well as on the efficiency of API call. We currently have more
bridge questions in the training data mixture, but it will be interesting to study the performance using
balanced training data, or training data that involves more of the other two types.

7 Conclusion

We conclude that by leveraging Supervised Fine-Tuning (SFT) and Proximal Policy Optimiza-
tion (PPO), we are able to achieve uniformly improved performance across all three question
types—bridge, comparison, and open factual—consistently outperforming the base Qwen2.5-0.5B
model. Among them, PPO shows particularly strong gains in comparison questions, likely due to its
alignment with preference-driven reward signals. SFT, on the other hand, demonstrates more stable
performance across different question distributions, making it a robust choice under varying data
conditions.

10

In addition to generation quality, we introduce a reflection and assessment mechanism in which
the model generates an evaluation comment for each response. By analyzing both the content and
sentiment of this evaluation, the system is able to intelligently determine whether to rely on its internal
knowledge or invoke an external online search API. This dynamic decision-making process leads to
measurable efficiency gains without compromising answer quality.

Together, these results highlight the effectiveness of combining fine-tuning techniques with reflective
self-assessment and selective retrieval. Our approach enables a lightweight language model to deliver
high-quality, context-aware responses while efficiently balancing internal reasoning and external
knowledge access.

Finally, our code is here for reference: https://github.com/yinglu1985/cs224r/tree/main

8 Team Contributions

• Zhulian Huang: was primarily responsible for the reinforcement learning component of
the project, including:

– Adapting the Supervised Fine-Tuning (SFT) checkpoint as the initialization for the
policy model.

– Designing and implementing the reward model to predict response quality based on
OpenAI-assigned scores.

– Applying Proximal Policy Optimization (PPO) to fine-tune the policy model for im-
proved response generation.

• Binbin Li :
– Led the data preparation and processing efforts, ensuring the quality and consistency

of both raw and structured inputs.
– Developed and implemented pipelines for synthetic data generation to supplement

limited real-world examples and enhance training coverage.
– Fine-tuned a Supervised Fine-Tuning (SFT) model using various data mixtures to

explore the impact of different training strategies.
– Designed and implemented an API calling process to generate online search results.
– Generated model evaluation metrics.

• Ying Lu:
– Overall system design for training and inference.
– synthetic data generation with deepseek and openAI scoring.
– SFT training for generator model on QA pair.
– evaluator model training on (query, response, comment) pair.
– Model evaluation and efficiency gain analysis.

References
Song, H., et al. R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning,

2025.

Jin, Bowen, et al. Search-R1: Training LLMs to Reason and Leverage Search Engines with Reinforce-
ment Learning, 2025.

Andukuri, C., et al. STaR-GATE: Teaching Language Models to Ask Clarifying Questions. 2024.

Song, H, et al. R1-Searcher++: Incentivizing the Dynamic Knowledge Acquisition of LLMs via
Reinforcement Learning, 2025.

Yao, S, et al. ReAct: Synergizing Reasoning and Acting in Language Models, 2024.

Manvi, R, et al, Adaptive Inference-Time Compute: LLMs Can Predict if They Can Do Better, Even
Mid-Generation

11

	Introduction
	Related Work
	Method
	Generator Model Pipeline
	Problem Formulation
	Supervised Fine-Tuning (SFT)
	Reward Model Training
	Proximal Policy Optimization (PPO)

	Evaluator Model Pipeline
	Objective
	Prompt

	Experimental Setup
	Data Distribution
	Model Configuration
	Generator Model Training Hyperparameters
	Evaluation Protocol
	Evaluator Model
	Implementation Details

	Results
	Quantitative Evaluation
	Qualitative Analysis
	Efficiency-Accuracy Tradeoff via API Calling Policy

	Discussion
	Conclusion
	Team Contributions

