
Extended Abstract

Motivation Molecular dynamics (MD) simulations provide the framework to explore important
biomolecular processes at the atomic-level but are limited by prohibitive computational costs when
capturing long-timescale events like ligand binding. Bridging this gap with efficient, accurate models
that preserve thermodynamic and kinetic realism is critical to advance drug discovery. This motivates
the development of reinforcement learning methods that can learn surrogate dynamics, enabling fast
generation of realistic protein-ligand trajectories over biologically relevant timescales.

Method Pipeline begins by preparing a protein-ligand system through structural cleanup, proto-
nation adjustment, and ligand placement within a scaled bounding sphere around the protein. The
combined system is solvated, ionized, and subjected to energy minimization and NPT equilibration,
followed by production MD using Langevin dynamics to generate time-resolved trajectories. Post-
processing filters out the solvent and surrounding ions, and converts the remaining protein and ligand
structures into graph representations and encodes the trajectory dynamics as state-action pairs. Two
graph convolutional neural network encoders, trained with supervised imitation learning, models
ligand displacement trajectories, with policy inference performed using both a multilayer perceptron
(MLP) policy and a diffusion-based policy.

Implementation Simulations are performed on the Human Serum Albumin (HSA)–Ibuprofen
complex in explicit solvent, using a scaled bounding sphere and water box with physiological
ionic strength and temperature settings. Langevin dynamics with a ps−1 friction coefficient and 1
femtosecond integration timestep are used to generate time-resolved MD trajectories. The model
architecture employs graph convolutional neural network (GCNN) encoders for both the protein and
ligand, with policy learning explored via an MLP and a diffusion-based policy, each with hidden
dimension 128. Training uses an AdamW optimizer with a learning rate of 1 × 10−3 and mean
squared error loss, without applying a learning rate scheduler.

Results Simulations of both charged and uncharged ibuprofen validates the MD pipeline, with
only the deprotonated form exhibiting stable binding to Human Serum Albumin (HSA), in line with
experimental observations. Subsequent model evaluation compared an MLP policy against a diffusion-
based policy. The MLP policy produced unstable and unphysical ligand motions, highlighting
its inability to model the complex near-field energy landscape. In contrast, the diffusion-based
policy generated smooth trajectories with stable binding configurations and an average prediction
error of 0.93 Å, comparable to experimental and AlphaFold baselines. Additionally, the learned
surrogate model provided 100–1000x faster inference speeds than conventional MD, enabling efficient
simulation of ligand dynamics. Together, these results demonstrate that pairing reinforcement learning
with a diffusion-based policy yields a physically accurate and computationally efficient model of
protein-ligand interactions.

Discussion While the diffusion-based policy achieved strong accuracy and physical realism, the
current MD training data’s 1 picosecond resolution may miss faster molecular fluctuations critical to
binding kinetics. Future work will incorporate higher-resolution simulations, richer state representa-
tions, more expressive architectures (e.g., LLMs, equivariant models), and offline algorithms (IQL,
CQL) to further improve surrogate model fidelity and efficiency.

Conclusion This work demonstrates that reinforcement learning with diffusion-based policies can
efficiently model realistic protein-ligand dynamics from MD data. The learned surrogate achieves
substantial acceleration while preserving key thermodynamic and kinetic properties of binding.
Future enhancements in simulation resolution, model expressivity, and learning algorithms will
further expand its utility for drug discovery applications.
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Abstract

Molecular dynamics (MD) simulations enable atomic-level exploration of biomolec-
ular processes but remain computationally prohibitive for capturing long-timescale
events such as ligand binding. To address this, I develop a reinforcement learn-
ing framework that learns surrogate dynamics for efficient generation of realistic
protein-ligand trajectories. The pipeline prepares protein-ligand systems via struc-
tural cleanup, solvation, equilibration, and production MD, converting resulting
trajectories into graph-based state-action pairs. Graph convolutional neural network
(GCNN) encoders, trained through supervised imitation learning, support both mul-
tilayer perceptron (MLP) and diffusion-based policy inference. Implemented on
the Human Serum Albumin (HSA)–Ibuprofen complex, the diffusion-based policy
outperformed the MLP and is comparable to AlphaFold3 and experimental PDB
binding poses, generating smooth, physically realistic ligand trajectories with an
average prediction error of 0.93 Å and 100–1000x faster inference than MD, while
preserving binding thermodynamics. Results demonstrate that diffusion-based RL
policies offer a computationally efficient, physically accurate alternative to conven-
tional MD for modeling protein-ligand interactions. Future work will incorporate
higher-resolution data, richer architectures, and advanced offline RL algorithms to
further enhance surrogate fidelity and accelerate drug discovery workflows.

1 Introduction

Molecular dynamics (MD) simulations capture the behavior of proteins and other biomolecules over
time and predict how each atom will interact with its local environment based on the governing
physics and interatomic action potentials. Karplus and McCammon [2002] These simulations can
model diverse and important biomolecular processes such as conformational changes, ligand binding,
protein folding, and can predict how biomolecules will respond to perturbations at the atomic level
and at a femtosecond temporal resolution. MD simulations have become increasingly more popular
and visible in recent years, with a key breakthrough in structural biology in AlphaFold2 Jumper et al.
[2021] for protein structure prediction and the advancement in GPU processors. Salomon-Ferrer et al.
[2013], Hollingsworth and Dror [2018]

An MD simulation takes the positions of all the atoms in a biomolecular system (e.g., a protein
in aqueous solution or positioned in a lipid bilayer) and calculates the force exerted on each atom
by all the other atoms. This computed, atom-specific net force is then stepped with Newton’s
Laws of motion to advance the simulation system. By iteratively updating the atomic positions
and velocities, MD generates a time-ordered series of molecular configurations — a trajectory
— that describes the dynamical evolution of the system. This trajectory captures rich temporal
information about the biomolecular system and can be analyzed to extract insights into structural
dynamics, interaction networks, thermodynamics, and kinetics. de Oliveira et al. [2006], de Groot and
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Grubmüller [2001] Modern MD simulation tools paired with GPU hardware speedups allow for the
generation of trajectories spanning hundreds of nanoseconds to milliseconds, making it possible to
observe biologically relevant timescales and phenomena that are often inaccessible via experimental
methods. Borhani and Shaw [2012]

MD simulations are especially relevant to modern drug discovery, where they can complement and
inform experimental screening by providing mechanistic insights into dynamic phenomena such as
ligand binding pathways, induced fit, allosteric modulation, and transient intermediate states. Dror
et al. [2011] Unlike traditional experimental assays, which typically offer static views of molecular
interactions, MD trajectories yield atomically detailed, time-resolved perspectives on binding events.
Moreover, when combined with enhanced sampling and free energy methods, MD can quantitatively
predict binding affinities and elucidate the the kinetics of molecular recognition. Abel et al. [2017]

A major limitation of MD, however, is its inherent computational inefficiency. While simulations
operate at femtosecond time steps to maintain physical accuracy and numerical stability, many
biologically relevant processes — such as ligand binding and unbinding — occur on timescales
of microseconds to seconds or longer. Consequently, observing such rare events through brute-
force MD requires prohibitively long simulations that demand extensive computational resources.
Hollingsworth and Dror [2018] This time-scale gap severely limits the practicality of MD for routine
exploration of protein-ligand interactions, especially in the context of high-throughput drug screening
and discovery.

This work addresses the problem of computational inefficiency in MD simulations by employing
reinforcement learning (RL) to learn a surrogate model of the protein’s near-field potential energy
landscape. The core idea is to represent the MD trajectory as a sequence of state-action pairs, where
the state encodes the spatial configuration of the protein-ligand system and the action specifies the
ligand’s displacement through space and time. In this framework, the protein implicitly defines
the energy landscape over which the ligand moves, and the RL model learns to predict these
dynamics. The resulting surrogate aims to generate realistic protein-ligand trajectories that preserve
key thermodynamic and kinetic properties, while achieving orders-of-magnitude improvements in
computational efficiency over brute-force MD.

2 Related Work

Existing work in predicting protein-ligand interactions include more conventional deep learning
approaches like AlphaFold3 Abramson et al. [2024], Diff Dock Corso et al. [2022], among other
docking models trained on crystallographic 3D structures in the Protein Data Bank. Fan et al. [2019]
Recently, reinforcement learning (RL) has also been applied to rigid ligand docking prediction (where
the protein structure is fixed). Wang et al. [2022] developed an asynchronous advantage actor–critic
model for protein–ligand docking within a unified framework for pose exploration and scoring. This
RL method addresses static pose optimization but does not capture the temporal evolution of binding
and unbinding events. Wohlwend et al. [2024], Passaro et al. [2025] leverage similar architecturial
components to that in the AlphaFold3 model but focus more specifically on protein-ligand binding
with Passaro et al. [2025] using equilibrium MD to train the model over an ensemble of bound
crystallographic structures.

These works demonstrate the potential of deep learning and RL-based methods to improve pose
prediction and binding affinity estimation. However, they largely rely on static crystallographic
structures or equilibrium MD snapshots, and do not explicitly model the full dynamical trajectory of
protein-ligand interactions over time. They do not address the challenge of learning the continuous,
temporally coherent dynamics of ligand binding and unbinding pathways across the protein’s complex
potential energy landscape. Furthermore, while RL has shown promise in static docking optimization,
its application to learning dynamic, time-resolved ligand trajectories remains largely unexplored.

Learning a protein’s potential energy landscape and predicting full dynamic trajectories are important
for a multitude of reasons including (1) accurately predicting equilibrium dissociation constants (Kd),
which inherently depend on both thermodynamic and kinetic properties; (2) enabling the simulation of
complex biological systems involving multiple proteins, co-factors, and regulatory elements; and (3)
facilitating the construction of comprehensive virtual cell models, where understanding the temporal
behavior of molecular interactions is essential.
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Figure 1: Method Overview. Part 1 (top) refers to setting up the molecular dynamics simulation for
data generation, Part 2 (bottom) refers to processing the collected data and RL model development.

This represents a key gap in the literature: there is currently no established framework for using RL
to generate realistic, time-continuous ligand trajectories that preserve both the thermodynamic and
kinetic properties of molecular recognition—while achieving orders-of-magnitude speedup relative
to conventional molecular dynamics simulations. Addressing this gap opens the door to scalable,
high-throughput simulation pipelines that can bridge the accuracy of MD with the efficiency required
for modern computational drug discovery. Yang et al. [2025]

3 Method

In developing the Protein-Agent, which is aimed to learn the near-field potential energy landscape of
a specified protein with respect to surrounding water molecules and ions, the following molecular

3



dynamics simulation pipeline is established to generate high-quality training data and system configu-
rations. This approach addresses notable challenges arising from existing molecular dynamics (MD)
datasets, which often suffer from inconsistencies such as varied sampling frequencies and inherent
biases toward specific protein–micromolecule complexes or binding pockets. Such variability in
sampling frequency leads to large discontinuities between consecutive state-action pairs, disconnect-
ing the underlying physical behavior from the training data. Additionally, the limited and biased
availability of MD data necessitates generating trajectory data to effectively train the model.

Method Part 1: Simulation Data Generation

The pipeline begins with preprocessing the input protein structure file (PDB), where the protein
undergoes spatial ‘clean up’ to resolve missing atoms, incomplete residues, and other structural
irregularities. Protonation states of ionizable residues are assigned based on a specified pH to
accurately reflect physiological or experimental conditions, ensuring realistic electrostatics for the
downstream simulation.

Next, a minimum bounding sphere is computed around the protein structure to spatially constrain the
region of interest. Starting from the protein’s center of mass (COM), the smallest radius encompassing
all protein atoms is determined, and then this sphere is scaled to define a sampling volume for the
ligand’s initial placement. This approach ensures the ligand’s initial position lies within a biologically
relevant vicinity of the protein, avoiding unrealistic initial configurations.

The small molecule ligand is instantiated from its SMILES representation and placed at a randomly
sampled position within the scaled bounding sphere. To capture conformational diversity and
eliminate bias, a random conformer is generated and an arbitrary rotation is applied about the ligand’s
COM prior to insertion. This step ensures a physically plausible starting geometry and orientation.

Subsequently, the protein and ligand topologies are merged into a single system topology, parame-
terized with an appropriate force field to model bonding and nonbonding interactions. Hydrogens
are added to complete valences, and the complex is solvated explicitly with a water box to mimic
physiological conditions forced with periodic boundary conditions. Ions are included to neutralize
the system and maintain ionic strength. This assembly produces a unified simulation system with all
molecular components and parameters.

Prior to production MD simulations, the system undergoes energy minimization to resolve steric
clashes or unfavorable contacts, constrained by an interatomic cutoff of 1 nanometer. Atomic
velocities are then initialized by sampling from the Boltzmann distribution at the target temperature,
establishing thermodynamic fidelity. A subsequent equilibration phase under the NPT ensemble
(constant number of particles, pressure, and temperature) stabilizes density, temperature, and pressure,
allowing the system to relax to spatial and thermal equilibrium.

Figure 2: Spatial equilibration of the system to 37 °C for 20,000 femtoseconds.

Finally, production MD is performed using Langevin dynamics (see Equation (1)) to incorporate
stochastic thermal fluctuations and maintain temperature control. Throughout these runs, system
metrics like potential and kinetic energy, temperature, and pressure are logged to monitor simulation
stability and convergence. The resulting trajectories capture the time-resolved motions of the
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protein-ligand system, providing detailed insight into binding dynamics, conformational changes,
and interaction networks – data for training the agent to accurately model the energy landscape and
dynamics.

m
d2r

dt2
= −∇U(r)− γm

dr

dt
+
√

2γmkBT R(t) (1)

where m is the mass of the particle, r its position vector, U(r) the potential energy, γ the frictional
decay coefficient, kB the Boltzmann constant, T the temperature, and R(t) represents a Gaussian
thermal fluctuations with zero mean and unit variance.

Method Part 2: Simulation Data Post-Procesing and Model Development

Following the production MD simulations, the saved protein-ligand checkpoint structures (PDB files)
are post-processed to construct temporally ordered trajectories. These trajectories are first visualized
as a sanity check, ensuring the structural continuity and physical realism of the system’s evolution
over time. To prepare data suitable for learning, each checkpoint frame is filtered to retain only the
protein and small molecule components, discarding solvent and surrounding ions.

The filtered structures are then converted into graph representations for both the protein and the ligand.
In these graphs, atoms act as nodes characterized by the features of atom type and 3D coordinates,
while covalent bonds define the edges that capture the molecular topology. The temporal trajectory
is reformulated as a sequence of state-action pairs: each state comprises of the protein and ligand
graphs at a specific time step, and the corresponding action is the displacement vector of the ligand’s
atoms from the current to the next time step, effectively encoding the system’s dynamic behavior.

The next stage of the pipeline involves constructing the model architecture to learn from this data.
Graph convolutional neural networks (GCNNs) are employed to encode the structural inputs of both
protein and ligand. The model is trained with supervised imitation learning to predict the small
molecule’s atomic-level dispacement vector and policy inference is carried out with both a multilayer
perceptron (MLP) policy and a diffusion-based policy. The action space is three-dimensional,
representing the (x, y, z) coordinates of the displacement vector.

Finally, the training setup is completed by initializing an optimizer, defining the regression loss
criterion, and establishing a training loop to iteratively update the model. Training is performed on a
single prepared trajectory, with the first 80% of the trajectory used for training and the remaining 20%
reserved for validation. This approach enables the Protein-Agent to learn and generate physically
plausible ligand trajectories within the protein’s near-field environment, as desired.

4 Experimental Setup

The experiment is instantiated using the well-studied protein Human Serum Albumin (HSA) and its
specific interacting drug, Ibuprofen. This system occurs in human blood (where Ibuprofen works as a
pain reliever!), so its biological conditions are closely mimicked in the simulation. The minimum
bounding sphere is scaled to 1.25 times its smallest enclosing radius, and the explicit water box is
padded with a 25 Å margin. Simulations are conducted at 37 °C, with an ionic strength of 0.15 M,
and a Langevin dynamics (1) friction coefficient of 1 ps−1. The simulation logging time resolution is
1 picosecond, with integration performed using a 1 femtosecond timestep.

The model architecture uses a graph convolutional neural network (GCNN) encoder block for both
the protein and the ligand. Policy learning is explored with two configurations: a simple multilayer
perceptron (MLP) with hidden dimension 128, and a diffusion-based policy architecture composed
of a timestep embedding MLP and a noise predictor MLP, each with hidden dimension 128. The
optimizer used is AdamW with an initial learning rate of 1× 10−3 and mean squared error (MSE)
loss is the regression training criterion. No learning rate scheduler is applied.

5 Results

To validate the MD simulation pipeline, simulations were performed on both charged and uncharged
forms of ibuprofen under biologically relevant conditions. Ibuprofen, a weak acid with a pKa of
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4.91, predominantly exists in its negatively charged (deprotonated) form at physiological pH 7.4.
Yamin et al. [2024] Visualization of the resulting trajectories revealed stable binding interactions
between the deprotonated ibuprofen and Human Serum Albumin (HSA), consistent with experimental
expectations and confirming the accuracy of the simulation setup. In contrast, the neutral (uncharged)
ibuprofen failed to exhibit specific and stable binding events, further supporting the validity of the
force field parameterization and simulation conditions. This preliminary analysis ensured that the
data used to train the model reflected physically realistic interactions.

Subsequent experiments evaluated the performance of the Protein-Agent model with two distinct
policy architectures: a multilayer perceptron (MLP) policy and a diffusion-based policy. The
MLP policy demonstrated significant limitations in modeling the complex, multimodal potential
energy landscape characteristic of protein-ligand systems. Trajectories generated by the MLP policy
displayed irregular motions, unphysical ligand displacements, and a tendency to escape the protein’s
near-field environment. Such artifacts reflect the inability of simple feedforward architectures to
capture the interatomic forces and temporal coherence required for a realistic simulation.

In contrast, the diffusion-based policy yielded far better results. The generated trajectories exhibited
smooth, continuous ligand motions that closely mirrored the corresponding MD trajectories. The
diffusion model produced an average mean squared error of approximately 1 Å relative to the ground-
truth MD trajectories, a level of accuracy comparable to the resolution of AlphaFold2 and 3 Jumper
et al. [2021], Abramson et al. [2024] and experimental PDB crystallographic structures. Importantly,
the diffusion-based model demonstrated specific and stable binding configurations to the true binding
sites. This emphasizes the gained expressivity with the diffusion policy to capture the (1) binding
and unbinding equilibrium fluctuations and (2) the near-field potential energy minimum near the true
ibuprofen binding site.

Figure 3: Training and Testing Logs. Training (top) plots the training MSE loss for both the MLP
and diffusion policy, Testing (bottom) plots the testing MSE loss for both policies.
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Table 1: Performance Comparison (Inference-Time)

Method Binding Site Prediction Error (Å)

PDB Experimental Baseline 1.00
AlphaFold3 0.96
MLP Policy 2.63
Diffusion Policy 0.93

In addition to improved physical fidelity, the surrogate model achieved significant computational ac-
celeration. Once trained, the Protein-Agent generated ligand trajectories several orders of magnitude
faster than conventional MD. Inference speeds were approximately 100-1000 times faster than MD
simulations executed on identical GPU hardware. This acceleration enables near real-time simulation
of ligand dynamics and opens new possibilities for high-throughput virtual drug screening and rapid
exploration of protein-ligand interaction landscapes.

These results demonstrate that reinforcement learning, when paired with a diffusion-based policy
architecture and supervised with high-quality MD data, can learn a surrogate model of a protein’s near-
field potential energy landscape. The resulting model preserves both the thermodynamic and kinetic
features of ligand binding trajectories while dramatically reducing computational cost, representing
an exciting direction for accelerating structure-based drug discovery.

6 Discussion

While the diffusion-based policy demonstrated great accuracy and physical fidelity, several limitations
remain. The current MD training data is constrained to a temporal resolution of 1 picosecond,
which may obscure faster protein and solvent fluctuations that influence binding kinetics. Improving
simulation resolution (e.g., sub-picosecond time steps) will be critical for capturing high-frequency
molecular motions and providing richer supervision for learning more expressive policies. Future
work will also explore enhancing state representations with more atom-specific properties, and in-
creasing policy expressivity via an LLM or equivariant architectures. Additionally, offline algorithms
will be employed like IQL and CQL. These improvements aim to further close the gap between
surrogate model trajectories and full-scale MD, enabling even more accurate and efficient simulation
of protein-ligand dynamics.

Table 2: Summary of Current Implementation

Component Current Implementation

Data Resolution One picosecond resolution (1,000 femtoseconds)
Node-level Graph Attributes PDB residue label and (x, y, z) atomic positions
State Representation Graph for both the protein and micromolecule only
Action Representation Displacement information from current state to next state
Policy Expressivity MLP and diffusion model PDF per-state

Some of the major challenges in developing the pipeline appeared in the simulation and data pro-
cessing stages. Determining the appropriate sampling resolution required careful experimentation to
balance computational cost with the need to capture relevant molecular dynamics. Setting up the MD
pipeline and tuning the various simulation parameters – such as temperature control, solvent models,
and force field settings—also demanded significant iteration. Additionally, efficiently handling the
large volume of generated data posed technical hurdles. Processing over 5,000 trajectory files required
developing optimized file I/O pipelines and post-processing workflows to extract usable training
data at scale. Addressing these challenges were important for ensuring the quality and utility of the
resulting data for policy learning.
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7 Conclusion

This work demonstrates that reinforcement learning, when combined with diffusion-based policies
and high-quality MD supervision, can produce fast, accurate surrogate models of protein-ligand
dynamics. The resulting models preserve essential thermodynamic and kinetic properties while
achieving orders-of-magnitude computational speedup. These capabilities open new opportunities for
high-throughput virtual screening and dynamic modeling of biomolecular interactions. Continued
improvements in simulation resolution, model architecture, and learning algorithms will further
enhance the fidelity and applicability of this approach in structure-based drug discovery.

8 Team Contributions

• Chetan Chilkunda: As a solo team, I ideated and implemented all aspects of the MD-RL
pipeline, with feedback from TA Jensen Gao over simplifying some of the imitation learning
steps to meet the time constraints of the course.

Changes from Proposal A major change from the initial project proposal was in the data used
to train the model. Upon evaluation of existing datasets, I realized that much of the existing MD
trajectory data wasn’t at a high enough resolution and sampled initial configurations based on prior
knowledge about the known binding site. In order to develop an unbiased RL model to surrogate
atomistic MD, I decided to generate my own data from scratch. This took significant effort and, thus,
I was only able to experiment over policy expressivity and show proof-of-concept of the surrogate.
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A Additional Experiments

Experiments were run over many different HSA-ibuprofen configurations as well as HSA with
warfarin (another known interacting small molecule). Models were trained over multiple configuration
trajectories, but after TA feedback from the poster session, I ended up training the models over a single
trajectory to show proof-of-concept of RL as a new paradigm to model protein-ligand interactions.

B Implementation Details

Please see the attached code for full implementation details of (1) MD pipeline, (2) data post-
processing, and (3) imitation learning with the MLP and diffusion-based policies.
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