
Extended Abstract

Motivation Language models are known to have issues with backtracking during generation. There
has been a lot of recent work that explores how we can create models that think and self-reflect during
inference. The goal of this work is to explore how one can incentivize self correcting behavior in
language models during training so that they perform self correction when generating output. In
practice, the model proposes some facts, follows logic to its conclusion, realizes there is an issue, and
goes back to the root of the error before it continues.

Method We use the game, Countdown as a simplified environment for training and analysis of
Qwen2.5-0.5B’s ability to learn backtracking and self-reflective behaviors. Countdown is a simple
but hard game where the player is given numbers and a target, and may use +,-,*, and / to reach the
target. We can quickly and easily verify that a solution is correct or incorrect. Further, we can identify
why the answer is incorrect. We have devised a scheme where the model plays Countdown, submits a
solution, and is given feedback in the form of self-correction. This feedback is injected into its chain
of thought as if it realized the issue with its solution. Importantly we don’t tell it how to fix the issue,
just what the issue is. We leave it up to the model to discover a strategy for making forward progress.
We explore two variants of this scheme: SFT only and RLOO RL loop.

In our SFT experiments, we generate new datasets of positive samples that demonstrate self correction
and perform SFT on the dataset. We show that we are able to improve model performance on a
holdout dataset.

In the RL setup, we sample new positive and negative samples at each iteration with the new policy.
This allows us to perform online reinforcement learning.

Implementation We implemented the experiments in pytorch. We created data loaders using
Huggingface datasets library and use Huggingface transformers for the model implementation. The
training loop and loss function calculation was manually implemented. This involves creating:

• A modified countdown verifier.
• A solution traversal routine that produces linearized search traces.
• An RL loop that creates traces and then performs gradient updates.

Results The experiment results are inconclusive, they don’t show that the proposed methods result
in better model performance. We do show that the proposed methods cause the model to exhibit
a small amount self correcting behavior at the expense of potentially reduced accuracy. This is an
unfortunate downside of training on partially incorrect data. We suspect that we could get around
this issue through more training iterations or per-thought reward weighting. This is a potential future
direction.

Discussion We have seen examples of improved backtracking behavior after post training the model
with verifier feedback, but were unable to outperform RLOO on correct traces from a larger model
(Warmstart). It is possible that our model is not able to bootstrap this type of self corrective behavior
without the help of a larger model or that this method is not very compute/sample efficient. To gain
more insight we could perform the search procedure with a larger model and fine tune on the resulting
dataset.

Conclusion We’ve demonstrated that we are able to train the model to generate solution traces that
resemble the backtracking behavior created by our sampling procedure. We believe that the proposed
methods show promise, but don’t strongly suggest that our approach results in a more generalized
and performant model at this model scale.
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Abstract

LLMs often struggle to recover from errors introduced by sampling during genera-
tion. Previous work has shown that teaching the models self-correcting behavior
can lead to tangible performance improvements [2]. We build on this work by
constructing self-sampled correction, backtracking, and self-verification traces. We
implement a fan-out sampling/search procedure to generate thought traces that
demonstrate the desired behavior. We use a verifier to provide feedback that guides
the thought trace before continuing completion. It’s similar to an interactive tree-of-
thought style search where the model explores multiple trajectories. This approach
to trace generation is beneficial as it is expensive and complex to design heuristic
based traces that have high signal-to-noise ratio. Simulating correction, back-
tracking, and verification behavior through hybrid generation is a straightforward
and extensible solution to improve LLM performance. By training on linearized
fan-out-trees we encourage the model to exhibit improved self correction during
inference. We show mixed improvements with this method in our experiments, but
are optimistic about the general idea.

1 Introduction

The primary goal of my extension is to instill backtracking behavior into Qwen 2.5 0.5B Base through
data augmentation and post-training via reinforcement learning. As demonstrated by Gandhi et al.
(2024) and others, the ability for humans to backtrack is valuable to reasoning and intelligence.
Humans routinely walk through a chain of reasoning, spot an error or contradiction, trace back to the
source of the mistake, and continue to the correct solution. This type of behavior has been shown to
improve model performance on specific tasks and may potentially lead to better generalization.

Our work explores this line of research by exploring how model verifier interaction can be used to
generate synthetic data that can be used to train the model to have this desired self-reflective behavior.
We further extend this by creating the dataset in an on policy manner.

2 Related Work

This section surveys key lines of research that inform our approach to backtracking and chain-of-
thought (CoT) reasoning.

The concept of CoT reasoning was first introduced by Wei et al. (2023), where they demonstrated that
prompting large language models to generate intermediate thought processes can lead to better final
solutions. Building on this idea, among others, Zelikman et al. (2022) proposed StAR, a technique for
self-bootstrapping reasoning language models by creating a loop that uses previous thought traces to
iteratively teach a model to reason. StAR has been extended to work on a corpora of text in [Zelikman
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et al. (2024)] and employed to improve the effectiveness of RL training models to backtrack and
exhibit other cognitive behaviors [Gandhi et al. (2025)]. A similar line of work focuses on self
correction [Welleck et al. (2022), Kumar et al. (2024)]. DeepSeek-R1 [DeepSeek-AI et al. (2025)]
showed that RL techniques can yield cutting-edge reasoning capabilities. Our work extends this line
of research by exploring methodologies of data augmentation to instill backtracking behavior through
problem specific engineering.

Other research has shown that the idea of test time compute has the ability to improve model
performance [Snell et al. (2024)]. Thus, efficiency of test time compute has become an important line
of research [Arora and Zanette (2025)]. Recently, Qu et al. (2025) proposed the MRT framework,
which introduces the notion of cumulative regret over the model output tokens at inference time
and proposes a methodology to optimize for "progress" during test time compute. While we don’t
implement or extend this framework, we do introduce a similar notion by weighting paths differently
depending on the number of failed solutions as detected by our verifier.

In the following sections, we will explore the details of how we will investigate and extend these
insights and ideas to build more robust backtracking capabilities.

3 Method

3.1 Verifier Modification

We modify the verifier to provide additional detailed feedback when validating and evaluating
proposed solutions. We can enumerate and classify the possible issues that a proposed solution has
and generate a signal to feedback into training.

Case Data for template
Missing Solution -
Invalid Equation -
Extra and Missing Numbers Extra numbers, missing numbers
Extra Numbers Extra numbers
Missing Numbers Missing numbers
Incorrect solution Provided equation, evaluated equation
Unbalanced Parentheses -

Table 1: Verifier provides the following feedback.

The modified verifier provides detailed error information, as opposed to generic information, to allow
the model to adjust its approach. This provides a more nuanced signal for the model to backtrack on
based on its own internal representation of the problem space.

We note that the Countdown verifier is deterministic; this work can be extended to the non-
deterministic verifier setting by using a LLM policy to provide textual feedback and a reward
signal. This can even be implemented efficiently by reusing the hidden embedding representation and
feeding to a causal language modeling head and a reward head.

3.2 Linearized Search Trace Generation

To generate search traces we have the LLM play Countdown and interact with the modified verifier.
Each game play episode is given a token budget of 1024 new tokens. To start, we prompt the model
and generate (N) candidate solutions. We use the modified verifier to score and classify each error
scenario. From here the completion chain continues until we:

• Run out of token budget

• Hit maximum search depth

• Produce the correct answer

At each step we perform half of the amount of samples, this is an exponential back-off. We can
visualize the search in figure 1. From the model’s point of view, it decided to output a think tag
followed by a self correction instead of the EOS token.
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Figure 1: For each model input RL sample completions are generated iteratively.

Now that we have a verifier that tells us how our partial solution was incorrect we can generate
linearized search traces that exhibit backtracking behavior. As an illustrative example, consider the
"Extra and Missing Numbers" case, where we would update the thought trace as follows

{partial_solution}\n<think>
That was incorrect, I can only use the numbers {ground_truth.numbers} once
each number, I am missing {error.missing}, and I accidently used
{error.extra}. Let’s backtrack

This new partial solution would then be passed back into the model for completion. This has the effect
of looking like the model realized it had made an error and self corrected. This new formatting has
the important property where it has multiple tagged sections that differentiate thought and proposed
answers; this will allow us to programmatically analyze the generated results.

During trace generation we want to account for incorrect attempts in some manner as traces that have
multiple incorrect answers should have lower reward than traces that get the correct answer after one
try. To solve this we introduce path depth weighted reward. We divide the verifier reward by the path
depth when storing the solution trace in the replay buffer.

Rmodified(x) =
Rverifier(x)

path depth
(1)

This incentivizes short correct paths. It also provides positive signal for the model to continue
generation after it produced the final <\answer> tag if it suspects that the proposed answer was
incorrect.

It is important to note that the trace generation procedure results in very slow iterations during the on
policy RL experiments. The implementation would benefit from performance optimizations due to
the large amount of generation.

3.3 Dataset Augmentation

We use the search procedure that we have previously described to generate an SFT style dataset of
ground truth completion pairs:

y(i), . . . , y(k) ∼ Search(x;πθ, V ). (2)

Each game instance potentially contains multiple solutions if multiple were found. Note that they do
not contain per reward weighting in this setup. Therefore a solution that is correct on the first attempt
is as correct as a solution that is of depth three.

In our experiments we generate a dataset called Backtrack, that only contains games and solutions
that were generated using a model that was SFT’d on Warmstart. This intentional decision to sample
from the same model could potentially explain why we don’t see dramatically increased model
performance. Had we sampled thought traces using our procedure from a larger model, we could
have potentially collected more high fidelity examples to further train on.
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3.4 Reinforcement Learning

We can then extend the SFT setup to an RL loop! Rather than applying StAR Zelikman et al. (2022),
we opted to setup RLOO for on policy training as follows:

• Each trace is weighted by its final reward divided by its depth to incentivise shorter traces
and provide a more dense reward signal.

• The buffer includes the “negative” traces so that RLOO will update the model appropriately.
This gives the effect of per thought reward weighting.

Figure 2: Method Overview.

We use the RLOO Objective

1

k

k∑
i=1

[
R(y(i), x)−

1

k − 1

∑
j ̸=i

R(y(j), x)

]
∇ log π(y(i)|x) for y(1), . . . , y(k)

iid∼ πθ(·|x) (3)

where we break independence of samples and propose a modification such that,

y(i), . . . , y(k) ∼ Search(x;πθ, Rwith feedback). (4)

This search results in lots of trajectories per game, so we sample to reduce the computational overhead.
We do this so that the model is able to see a wider variety of scenarios in the same wall-clock time.
Using all of the traces results in prohibitively slow iterations. Since the model is trained on policy,
we sample at each iteration.

An interesting observation is that partial solutions are valid completions from the model, in the sense
that we can assign a reward to them. We opted to store the partial solutions in the replay buffer along
with their associated reward from the verifier. This is important so that the model is not just trained
on correct completions that contain incorrect reasoning.

This setup makes the RLOO act like a thought-weighted reward without explicitly associating reward
weight to each thought. The tokens associated to each thought and answer receive different reward
(and advantage) depending on if they are correct. In further detail, the incorrect partial solutions will
help cancel out the positive weighting of correct solutions that include the incorrect partial solution.
In effect this prevents the model from learning wrong thoughts too much even if the trace gets the
right answer in the end.

4 Experimental Setup

The experimental setup builds up from standard training methodologies on the provided datasets.
These experiments are representative of state of the art methods for LLM fine tuning within reason.
The parameter and configuration was chosen based on other similar works and represents a conserva-
tive starting point maximizing model performance. Due to time and resource constraints we did not
tune the parameters beyond an arbitrary success threshold.
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The experiments are built up from the baseline Qwen2.5-0.4B model. I first SFT on Warmstart, where
this model is then used as the starting point for the RL experiments. The SFT parameter configuration
was chosen based on [star]. Additionally, I explored continued training, but this did not yield an
improvement in model performance.

After training, we sample the model on a holdout dataset using vLLM and evaluate the performance
using the countdown verifier. Working in the verifier context provides a nice signal of model
performance, which simplifies our analysis.

SFT RLOO RL experiment
Dataset Warmstart Countdown 3-to-4 Countdown 3-to-4
Optimizer AdamW AdamW AdamW
Epochs 5 1 1
LR Schedule Cosine Annealing Cosine Annealing Cosine Annealing
LR 0.0001 0.00003 0.00003
Batch Size 2 32 1
Gradient accumulation - 8 8 (due to wallclock time)
Effective batch size 2 256 8

Table 2: Configuration and hyperparameters.

During training we measure loss and reward to get a picture of model convergence and performance.
To measure model generalization we compare average reward on two hold-out datasets prided by the
course staff.

5 Results

5.1 Quantitative Evaluation

We will evaluate model performance on the two course-provided holdout datasets. These are game
examples that were not seen during training and represent two levels of problem difficulty. The
numbers used in the 1st dataset are considerably more in training distribution than in the 2nd dataset.
This is evidenced by manual inspection as well as through performance metrics. Out of distribution
data, like in the 2nd dataset, tests the model’s ability to manipulate abstract symbols (in our case
numbers) as opposed to memorizing facts. Therefore, when we see reduced performance on the 2nd
dataset we can infer that the model didn’t generalize well.

Method Mean Test Reward (1st holdout) Mean Test Reward (2nd holdout)

SFT 0.4180 0.1949
SFT Backtrack 0.5540 0.1604
RLOO 0.6370 0.3097
RLOO Backtrack 0.7430 0.1945
My RL Backtrack 0.6107 0.2460

Table 3: Performance Comparison

We see increased performance with SFT on Backtrack compared to the baseline SFT on WarmStart.
Further, we see that RLOO on Backtrack results in increased performance on the 1st hold out dataset,
but does not on the 2nd hold out dataset.

RL increases performance beyond SFT when primed with Backtrack. We see in the sample trace
(from the holdout dataset) that the model generates a candidate solution, identifies the issue instead
of terminating generation, and proceeds to fix its answer.

This behavior is not overwhelmingly present in solutions, but it leads to a tangible increase in
performance. We analyze the frequency of this behavior by counting the think and answer tags from
the generated solutions to dataset 2.

We see that when the model is trained on Backtrack it produces more think and answer tags on
average! This shows that the model does at least stylstically mirror the linearized traces. Despite this
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<think> <\think> <answer> <\answer>
SFT 1.007 1.007 1.007 1.007
SFT Backtrack 1.416 1.431 1.394 1.394
RLOO 1.0 1.0 1.0 1.0
RLOO Backtrack 1.435 1.451 1.404 1.404
My RL 1.0057 1.0057 1.0057 1.0057

Table 4: Mean number of tags in correct generated solutions on dataset 2.

<think> <\think> <answer> <\answer>
SFT 1.011 1.011 1.030 1.030
SFT Backtrack 2.253 2.269 2.179 2.179
RLOO 1.003 1.003 1.006 1.006
RLOO Backtrack 2.423 2.453 2.369 2.369
My RL 1.004 1.006 1.006

Table 5: Mean number of tags in incorrect generated solutions on dataset 2.

,

<think> <\think> <answer> <\answer>
SFT 1.471 0.7353 0.5221 0.471
SFT Backtrack 2.686 1.833 1.721 1.668
RLOO 1.126 0.255 0.198 0.123
RLOO Backtrack 2.842 2.103 1.944 1.845
My RL 1.0 0.045 0.027 0.0

Table 6: Mean number of tags in improperly formatted generated solutions on dataset 2.

positive result, we see mixed performance improvement when training on Backtrack vs Warmstart.
We see that Backtrack improves performance on the easier problems, but does not lead to increased
performance on the harder problems. While disappointing, we still believe that there is value to our
proposed approach as we could extend Backtrack to include more difficult game configurations.

The "My RL" experiments are actually quite interesting despite not producing a large number of
traces with multiple tags; the model did produce 1 correct multi thought solution and 5 correctly
formatted but incorrect multi-thought solutions. It is hard to say if we can draw any conclusions from
this, but it does appear that the model retains its single thought behavior from Warmstart more with
this training method. This is potentially a positive and could be due to the simulated thought reward
weighting induced by including both partial solutions and full solutions in the replay buffer.

5.2 Qualitative Analysis

The goal of this work is to train the model to identify inconsistencies in its proposed solution. We’ve
thought a bit about the difference between training the model to mechanistically jump back to marked
points in its chain of thought versus training it to generate introspective phrases followed by more
generated output. We decided that it would be a more promising direction to explore introspective
phrases as they embed semantic meaning more so than mechanistic jumps. We view this as the the
difference between teaching an algorithm as opposed to teaching to think.

We see in the generated outputs that the model generates chain of thought traces that contain
multiple think/answer tags, and self reflective behavior in similar flavor to the templates that were
used during training. We believe that this formatting is beneficial for analysis and interoperability
reasons. Unfortunately, the model does not output each individual thought in thought tags, but entire
search/exploration attempts inside the tags. This limits the utility of tag based analysis to measure the
impact of post-training on formatting. Potentially, more structured post-training could result in more
fine grained thought tags that are easier to parse.

In figure 3 we see that RLOO leads to increased reward during training in both experiments, but we
don’t see the same behavior on our search based RL setup. We associate this instability with the
smaller gradient accumulation size for the experiment. This leads us to believe that we could improve
our model through additional hyperparameter tuning.
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Figure 3: Moving average of training reward (k=8).

6 Discussion

We have demonstrated that we are able to post-train the model to generate text that is similar to the
linearized search traces. We have seen both through manual inspection and through analysis of output
format tags that this was successful. It is not clear that the backtracking behavior is a net positive, due
to continued training on partially incorrect rollouts. It is possible that the model is learning to make
incorrect spatial solutions due to the sequence weighting of RLOO. We suspect that thought/answer
weighted training would likely result in increased performance as we could weight chunks, denoted
by tags, differently depending on their factuality and contribution to the correct solution. Currently
the training setup may update the model parameters to generate sequences that don’t entail the correct
solution.

Similar to StAR Zelikman et al. (2022), we generate samples from the model, interact with the
verifier/critic, and then perform a gradient update. Similar to SoS Gandhi et al. (2024), we use
linearized search traces to iteratively improve model performance. Instead of SFT in a loop with
dataset generation we use RLOO on batched samples to form the policy gradient. Using SFT in the
loop felt like a natural choice as we were exploring this idea, but using RLOO seemed interesting as
it uses advantage estimates to update the policy. There are a variety of interesting implementation
details that likely affect performance, like how to best batch and compute advantage.

This method has a very natural extension to the non-verifier setting, where a “critic LLM” is used to
generate the textual suggestions. The model can be asked to provide new thoughts with additional
context and inject them into the CoT as if the model under training had output them.

7 Conclusion

We’ve demonstrated and discussed mixed but narrowly positive results for our experiments. We were
unsure if the model has the capacity to learn the advanced reasoning capabilities needed to capture
the semantics of the self-correction behavior. I believe that this hypothesis could be fully explored in
a more rigorous and thorough manner. I believe that with decreased sampling latency through more
complex engineering that the overhead of the online search could become a more tractable approach.

8 Team Contributions

• Jacob Householder: Hi!

Changes from Proposal

• Reduction in scope from Countdown and Ultra-Feedback to just Countdown.

• Shift from MRT to RLOO + online data augmentation.
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A Reproduction steps

To train run

uv run main.py train ./cfgs/train/countdown/sft.toml

Train will save the model to a unique path in "./artifacts".

Then update model_name in

./cfgs/evaluate/countdown/sft.toml

to

./artifacts/<model_id>/models/<epoch_idx>

and run evaluation

uv run main.py evaluate ./cfgs/evaluate/countdown/sft.toml

The "logs.jsonl" file in the unique artifacts dir has the events for the run. To view the logs use the
following commands:

uv run plot.py train ./artifacts/<model_id>/logs.jsonl
uv run plot.py reward ./artifacts/<model_id>/logs.jsonl

B Sample Trace

<think>
Let me analyze this step by step:
1. First, let’s look at numbers close to 82:
- 89 is closest, being 7 more than target
- 61 is next closest, being 11 less than target
- 48 is 14 less than target
- 20 is much smaller

2. Since 89 is close to our target 82, let’s try to get from 89 to 82:
- We need to subtract 7 somehow
- We could try to create 7 using the other numbers
3. Looking at the remaining numbers (61, 48, 20):
- 61 - 48 = 13
- 13 - 20 = -7
- If we subtract this from 89, we’ll get 82!

4. Let’s verify:
- First: 61 - 48 = 13
- Then: 13 - 20 = -7
- Finally: 89 - 7 = 82

This gives us our target of 82.
</think>
<answer> (61 - 48) - 20 </answer>
<think>
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That was incorrect, I need to use 89. Let me try again.

1. Let’s look at it differently:
- 89 - 20 = 69
- 69 + 48 = 117
- 117 - 89 = 38
2. Another approach:
- 89 - 61 = 28
- 28 + 48 = 76
- 76 + 20 = 96
3. Let’s try:
- 89 - 48 = 41
- 41 + 61 = 102
- 102 - 20 = 82

This works perfectly! Let’s use each number exactly once and reach 82.
</think>
<answer> (89 - 48 + 61) - 20 </answer>
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