Extended Abstract

Motivation The recent rise of interest in large language models (LLMs) has also led to developments
in reinforcement learning, and applying ground paradigms to better fine-tune LLM learning. Two
main paradigms have been: training on preference datasets, where ground truth rewards are ambiguous
and instead responses are compared in relative quality, and training on verifier datasets, such as math
and logical reasoning.

Method Two pipelines were implemented to enhance the Qwen 2.5 0.5B Base’s reasoning capa-
bilities. On the preference dataset of Ultrafeedback, we implemented a paradigm that comprises
supervised fine-tuning (SFT), direct preference optimization (DPO) that incorporated the Bradley-
Terry reward modeling objective, and an extension of weighted rewards using the OpenAssistant
deberta large reward model. On the verifier dataset of Countdown, we partially implemented a
paradigm that comprises SFT and Reinforce Leave One Out (RLOO).

Implementation First, we implemented SFT for a pre-trained language model. We then
implemented the DPO objective using the SFT model as a reference policy, and then implemented
the Bradley-Terry reward modeling objective. We separately implemented the RLOO online
policy-gradient algorithm for the Countdown dataset (Pan et al.[(2025))

For the Ultrafeedback preference dataset, we used the VLLM library to produce responses from
our model. To evaluate the performance on Ultrafeedback, we used the parametric reward model
(the Llama 3.1 Nemotron 70B Reward Model) to evaluate the performance of a given prompt and
response. We constructed a win-rate binary label for each prompt and computed the win-rate as the
mean of the binary label over all prompts.

For the verifier dataset, we first implemented SFT to warmstart the model using the cognitive
behaviors dataset. We used a two-stage reward model to evaluate any answer from the Countdown
dataset: 1) a format score to verify if a properly-formatted answer was provided, and 2) a verification
score to ensure if the answer was correct or not

Results We see a considerable increase of performance in the SFT fine-tuned model, the SFT +
DPO fine-tuned model, the DPO fine-tuned model, and the SFT + DPO + extension fine-tuned model.

Discussion A hybrid implementation of SFT + DPO + extension, as opposed to sole SFT
fine-tuning, the base model training, or the SFT + DPO training, yields a better loss. While RLOO
was not fully implemented,when compared to a naive Qwen model, the SFT-fine-tuned Warmstart
dataset surpassed the baseline metric. This indicates that a paradigm of joined learning algorithms
will perform both more effectively and more efficiently than any baseline model given.

A significant limitation we encountered throughout our work:for the weighted reward approach, we
also encountered large variations in reward differences that destabilize the model. Ultimately, we
would aim to improve on hyperparameter tuning for both DPO and RLOO, and integrate an SFT
+ RLOO + weighted-reward extension paradigm to measure the model’s performance metric on
mathematical and logical reasoning. We would also curate a more robust methodology for effective
exploration such as retrospective replay.

Conclusion In sum, improving and implementing hybrid paradigms in fine-tuning reinforcement
learning allows us to achieve higher performance and efficiency metrics amongst large language
models. Difficulties arise in the implementation of weight-based reward models, which come at the
risk of destabilizing the model and creating large variation in observed rewards. Further research
would be to inspect how different parts of the hybrid paradigms can be connected together, such as an
SFT + RLOO approach on a preference-based dataset, or an SFT + DPO approach on a verifier-based
dataset. For our weight based reward model extension, we can also test different reward models to
inspect similarities or differences in reward stabilization.
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Abstract

The recent rise of interest in large language models (LLMs) has also led to develop-
ments in reinforcement learning, and applying ground paradigms to better fine-tune
LLM learning. In this project, we introduce a hybrid paradigm called RECAP
(Retrospective Exploration with Critic-Augmented Progress), which consists of
performing SFT on a preference or verifier dataset, and subsequently applying
DPO or RLOO to the fine-tuned model, as well as a weighted reward extension
that would additionally permit us to explore more successful methodologies in
efficient exploration or overall improved reasoning. Our results showed that our
paradigm consistently outperformed baseline model metrics, even with the lim-
itation of reward destabilization, opening up our efforts to replay or reasoning
research endeavors.

1 Introduction

The recent rise of interest in large language models (LLMs) has also led to developments in
reinforcement learning, and applying ground paradigms to better fine-tune LLM learning. Two main
paradigms have been: training on preference datasets, where ground truth rewards are ambiguous and
instead responses are compared in relative quality, and training on verifier datasets, such as math and
logical reasoning.

Research has been conducted on retrospective replay-based reinforcement learning (RRL), which
enables a model to revisit earlier promising states and rewards |Dou et al.| (2025). This approach
also allows the model to dynamically replay promising states when the LLM’s exploration ability
decreases, maintaining a high exploration efficiency through the training period.

A current limitation of RRL is that potential states may still contain errors, and thus, if the model
generates trajectories from these erroneous states, it will not find the correct trajectories. By imple-
menting a supervised fine-tuning (SFT) + direct preference optimization (DPO) or SFT + Reinforce
Leave One Out (RLOO) design to our model, and thus enhancing the SFT-only trained model, we
aim to show that the more precise approach will create a stronger value model to find more promising
intermediate states and overall yield a higher performance.
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2 Related Work

2.1 Exploration Efficiency

Similar research has been dedicated to enhancing exploration efficiency: for example, it has shown to
be possible to incentivize LLM reasoning capability without using SFT, with the DeepSeek-R1-Zero
pipeline utilizing self-reflection and long chains of thought (CoT) generations (DeepSeek-Al et al.
(2025))). This paper also introduces the DeepSeek-R1 pipeline, which collects a small amount of CoT
data to fine-tune the model as an initial RL actor. On exploration thoroughness, research has also
been conducted on proximal policy optimization (PPO) and reinforcement learning from human
feedback (RLHF) frameworks, which also included annotated datasets in both English and Chinese.

In terms of future incorporation, we would aim to further fine-tune our model and improve our
paradigm on non-English annotated datasets. What distinguishes our approach from previous
approaches on exploration efficiency is that we are combining the replay buffer and performance
optimization on both SFT and DPO trained datasets.

2.2 Experience Replay

In terms of retrospective replay, a similar but contrasting concept is the idea of experience replay,
which is storing states and actions in a buffer and replaying them to update policy and value
functions; RRL, meanwhile, replays potential intermediate states for exploration. Ongoing research
in experience replay suggests that both a small or a large size for a replay buffer hinders the learning
rate, and that this must be fine-tuned for as a hyperparameter for memory buffer size (Zhang and
Sutton| (2018))). Researchers presented the paradigm of the combined experience replay (CER), a
special case of prioritized experience replay (PER) where the latest transition is given the largest
priority. CER’s main advantage is its O(1) extra computation compared to PER’s O(logn) extra
computation.

A current limitation of this approach is that experience replay is not a complete algorithm on its
own and must be paired with other learning algorithms, so it is difficult to test how useful CER’s
implementation is without confound. Its tested learning algorithms are also not as robust as the SFT +
DPO paradigm or the SFT + RLOO paradigm, allowing us to further explore performance metrics on
top of a foundationally stable fine-tuning paradigm.

3 Method
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Figure 1: Method Overview.

Regardless of the dataset being classified as preference or verifier, a standard fine-tuning pipeline
generally starts with supervised fine-tuning (SFT), which is the adaptation of a pre-trained LLM onto
a labeled dataset, allowing the model to predict outputs for specific inputs. We modeled our SFT
objective as:
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The SFT objective was applied to a preference dataset (SmolTalk) and a verifier dataset (WarmStart)
(Allal et al.|(2025)), Gandhi et al.| (20254)).

We present two pipelines on fine-tuning our model. We used Qwen 2.5 0.5B Base (Teaml (2024))) for
all requirements in this project.

The first pipeline is for a preference dataset, where after applying SFT to the model, we use an
implicit reward model to further fine-tune the model. Here, we use the direct preference optimization
objective (DPO) (Rafailov et al.|(2023))), which uses reward parameterization to perform supervised
preference classification on human preference datasets. The loss for DPO is modeled as:
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We also utilize the Bradley-Terry reward modeling objective, which can be represented as follows:
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The second pipeline is for a verifier dataset, where after applying SFT to the model, we use an explicit
reward model to further fine-tune the model. Here, we use the Reinforce Leave One Out (RLOO),
which estimates policy gradients to reduce variance of the averaged weighted rewards of the policy’s
other samples (Ahmadian et al.|(2024))). The objective for RLOO is modeled as:
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The model’s policy gradient is fine-tuned on this trajectory, where ¢ is defined as the programming
problem and where (y1, y2, ...y, ) represents the generated solution y with n tokens:

max E(qy)~Dro [Z A'log P(ag|si; 0)] ®)]

Assuming that n* is the correct solution’s token number, the probability that a policy will generate
the correct solution in order to obtain a positive reward to optimize is:
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Addressing the possibility of errors in promising states, the optimization objective of the policy model
is modeled as:

Objective(0) = E(s 1), [r — Blog(mg(7]s)) /7" (]s)] @)
where s and 7 are the starting state and the policy model generated parts.
In addition to the RRL extension, we also implemented a weight-based reward model on the

Ultrafeedback dataset by using the OpenAssistant/reward-model-deberta-v3-large-v2, which was
used to score responses corresponding to the weights on DPO loss:
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4 Experimental Setup

All training and evaluation pipelines were constructed in either AWS Instances or Lambda Cloud.

As an overview, our experimentation setup consists of the following: we devised a baseline for
fine-tuning a LLM by implementing a set of popular fine-tuning algorithms for aligning parametric
and rule based reward models with human preferences: supervised fine-tuning (SFT), direct
preference optimization (DPO), REINFORCE Leave One-Out (RLOO), and the Bradley-Terry
reward modeling objective. We then compared the performance of the response to a reference model
(the Qwen 2.5 0.5B Instruct) Team| (2024) by evaluating the learned policies and the baseline policies.
We then extended our project with an Exploration extension by comparing the model’s performance
on our novel implementation, RECAP (Retrospective Exploration with Critic-Augmented Progress).

Our approach includes the following: we first generated a dataset for supervised fine-tuning (SFT) by
using the SmolTalk dataset (Allal et al.|(2025)). The SmolTalk dataset is formatted as follows in an
example:

messages source

["content": "You are an AI chatbot playing | smol-summarize-5k
the role of a charismatic rogue in a
medieval role-playing game. You are
quick-witted, charming, and skilled in
stealth and thievery", "role": "system"]

Table 1: Example of a Smoltalk dataset row

For the DPO algorithm, we also use the Ultrafeedback dataset (Cui et al.|(2023)). The Ultrafeedback
dataset is formatted as follows in an example:

prompt prompt_id chosen

Which animal has | d169f4610d69b... | ["content":

two hands, a "Neither a hyrax
hyrax or a dog? nor a dog has

hands. Hyraxes
have four legs
with feet that
are adapted
for...", "role":
"system"]

Table 2: Example of an Ultrafeedback dataset row

rejected messages

["content": "Thank ["content": "Neither
you for your question. | a hyrax nor a dog has
I’m happy to help you | hands. Hyraxes have

with that! However, four legs with feet

I must point out...", that are adapted

"role": '"assistant"] for...", "role":
"system"]

Table 3: Example of an Ultrafeedback dataset row (cont.)



First, we implemented SFT to finetune the Qwen/Qwen2.5-0.5B baseline model. We then imple-
mented the DPO objective using the SFT model as a reference policy, incorporating Bradley-Terry
reward modeling objective. We separately implemented the RLOO online policy-gradient algorithm
for the Countdown dataset (Pan et al.| (2025)))

For the Ultrafeedback preference dataset, we used the VLLM Kwon et al.|(2023)) library to produce
responses from our model. To evaluate the performance on Ultrafeedback, we used the parametric
reward model (the Llama 3.1 Nemotron 70B Reward Model) to evaluate the performance of a
given prompt and response Wang et al.[(2024). We utilized the recommended evaluation approach
by scoring the learned model’s response with the reward model and compare the reward/score
with a reference model to compute a win-rate. We did this by collecting prompts to evaluate,
using VLLM to produce responses from our trained model and the Qwen/Qwen2.5-0.5B-Instruct
reference model. After generating a reward score for both models, we constructed a win-rate bi-
nary label for each prompt and computed the win-rate as the mean of the binary label over all prompts.

For the verifier dataset, we first implemented SFT to warmstart the model using the cognitive
behaviors dataset, of which an example is formatted as follows:

Query Completion
...User: Using the <think> Let me try
numbers [60, 37, 40], to find a path to 17
create an equation using these numbers.
that equals 17. You First, let me try
can use basic working with the
arithmetic operations larger numbers: 60 -
40 = 20...

Table 4: Example of a Warmstart dataset row

After implementing SFT on the cognitive behaviors dataset, we implement RLOO on the Countdown
tasks, of which an example is formatted as follows:

target nums
98 [44, 19, 35]

Table 5: Example of a Countdown dataset row

We used a two-stage reward model to evaluate any answer from the countdown task: 1) a format
score to verify if a properly-formatted answer was provided, and 2) a verification score to ensure if
the answer was correct or not (Gandhi et al.| (2025Db)).

For our RRL-based extension, we evaluated the performance of our model across SFT implementation,
SFT + DPO implementation, DPO implementation, and DPO + extension implementation using the
loss. Within the different normalization techniques in the weighed reward model, we compare the
weighted and unweighted losses, the mean, min, max, and standard deviation of the reward difference,
and the effective batch size.

For the preference datasets, SFT was implemented on the entire dataset of SmolTalk, and both DPO
and the extensions were subsequently implemented on the entire Ultrafeedback dataset. Each was
completed with 1 epoch of training.

For the verifier datasets, SFT was implemented on the entire dataset of Warmstart, trained over two
epochs. RLOO was subsequently implemented on 1500 data points from the Countdown dataset over
1 epoch of training.



5 Results

We see a considerable increase of performance in the SFT fine-tuned model, the SFT + DPO fine-tuned
model, the DPO fine-tuned model, and the SFT + DPO + extension fine-tuned model.

5.1 Quantitative Evaluation

Comparison to SFT

0.64

Win-Rate

On the collective project leaderboard, our SFT implementation of Smoltalk and Cognitive Behaviors
significantly passed the baseline metric. On the hybrid paradigm implementation of SFT + DPO
+ weighted reward extension, the SFT + DPO outperformed against the SFT implementation and
the SFT evaluative model on the leaderboard submissions, and the SFT + DPO + weighted reward
outperformed both against the SFT + DPO and against the extended evaluative model conducted on
leaderboard submissions.

We note that, regarding the model’s performance on SFT, both the performances of the DPO imple-
mentation and the DPO + extension was higher than the SFT + extension, and the SFT + extension
outperformed the SFT-trained-only model.

5.2 Qualitative Analysis

In our SFT + DPO model, we can observe a decrease in loss and an increase in reward.

train/unweighted_loss [0 I S
0.7
0.6
0.5
0.4
0 200 400 600 800 1,000 1,200 1,400 1,600 1,1900 %
7z
Run ™ Smoothed Value Step Relative
© clamped_relu 0.5868 0.4261 1,900 1.13 hr
® clamped_zscore 0.5787 0.4269 1,900 1.078 hr

In our SFT + DPO + weighted reward extension model, we can observe a decrease in loss and
increases and decreases in reward through steps.
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We also include a loss decrease in the RLOO training for the Countdown dataset:

While not visualized, the RLOO reward increased from -17 to -10 over 125 batches.

6 Discussion

We can see through the performance metrics that a hybrid implementation of SFT + DPO + extension,
as opposed to sole SFT fine-tuning, the base model training, or the SFT + DPO training, yields a



RLOO Loss
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better loss. While RLOO was not fully implemented, we also noted that when compared to a naive
Qwen model, the SFT-fine-tuned Warmstart dataset surpassed the baseline metric. This indicates that
a paradigm of joined learning algorithms will perform both more effectively and more efficiently
than any baseline model given.

We encountered several limitations throughout our work: in the implementation of RLOO, there
were tokenization errors in the evaluation pipeline, as well as the model having difficulty performing
arithmetic on numbers into the thousands. For the weighted reward approach, we also encountered
large variations in reward differences that destabilize the model. Ultimately, we would aim to
improve on hyperparameter tuning for both DPO and RLOO. If we were to expand our work, we
would also integrate an SFT + RLOO + extension paradigm to measure the model’s performance
metric on mathematical and logical reasoning. We would also curate a more robust methodology for
retrospective replay.

7 Conclusion

Improving and implementing hybrid paradigms in fine-tuning reinforcement learning allows us to
achieve higher performance and efficiency metrics amongst large language models. Difficulties arose
in the memory usage, runtime, and parametrization of such paradigms; additionally, implementing
weight-based reward models and retrospective replay comes at the risk of destabilizing the model,
or creating large variation in observed rewards. Further research would be to inspect how different
parts of the hybrid paradigms can be connected together, such as an SFT + RLOO approach on a
preference-based dataset, or an SFT + DPO approach on a verifier-based dataset. For our weight
based reward model extension, we can also test different reward models to inspect similarities or
differences in reward stabilization.

8 Team Contributions

* Caroline Van: We implemented SFT together. I implemented DPO and the extension. We
debugged the code and wrote the final report together.

» Natalie Wang: We implemented SFT together. I implemented RLOO. We debugged the
code and wrote the final report together.

Changes from Proposal We focused our extension on weighted rewards, and also conducting
research on how retroactive replay would be incorporated. We removed meta reinforcement fine-
tuning from our pipeline due to computational and time costs. We also split the pipeline into two
smaller approaches on separate datasets: SFT + DPO + extension on the Ultrafeedback preference
dataset, and SFT + RLOO on the Countdown verifier dataset.
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