
Extended Abstract

Extensions Curriculum Learning, Synthetic Data, Incorporating Test Time Inference

Motivation While small language models (LLMs) like Qwen2.5-0.5B are efficient and easier to
deploy, they often struggle with alignment and reasoning performance. Reinforcement learning (RL)
methods such as Direct Preference Optimization (DPO) and REINFORCE Leave-One-Out (RLOO)
offer potential improvements, but are unstable in low-resource settings. Motivated by human learning
processes, we explore curriculum learning and test-time self-correction as strategies to improve
learning stability and generalization in compact models.

Method We propose a curriculum-guided RL framework targeting two tasks: instruction follow-
ing and math reasoning. For instruction following, we adopt a three-stage pipeline consisting of
supervised fine-tuning (SFT), DPO, and curriculum learning based on prompt length. For math, we
implement a staged training process including synthetic warm-starting, curriculum-based RLOO with
arithmetic difficulty levels, and a test-time self-correction module that refines model outputs using its
own prior errors.

Implementation We fine-tune Qwen2.5-0.5B using LoRA (r = 8 or 16, α = 32) for both
instruction following and math reasoning. For SFT, we use 10k SmolTalk samples; for DPO and
Curriculum-DPO, 5k preference pairs from UltraFeedback are split into three stages based on prompt
length: <256, 256–512, and ≥512 tokens. Math reasoning uses a 3-stage pipeline: a 3.2k-sample
warm-start via GPT-4o distilled examples, a 100k-sample synthetic curriculum of arithmetic tasks,
and a 10k-sample self-correction dataset derived from model-generated failures. Training uses batch
sizes of 4–8, gradient accumulation up to 256, and learning rates of 3e-5 (SFT), 5e-5 (DPO), and
2e-7 (RLOO). Inference adopts temperature 0.4, top-p 0.95, and max 256 tokens. Evaluation relies
on win rate using Nemotron 70B and success rate on a held-out math benchmark.

Results Instruction following shows consistent improvement: SFT reaches 0.63 win rate, DPO
improves to 0.71, and Curriculum-DPO further to 0.75, despite a rise in evaluation loss—indicating
better alignment not reflected by raw loss. Training curves confirm that curriculum staging smooths
convergence and mitigates overfitting. In math reasoning, accuracy progresses from 14.9% (SFT)
to 22.1% (Curriculum+SFT), 36.6% (Curriculum+RLOO), and peaks at 85.6% with self-correction.
Iterative revision proves highly effective, especially in early correction rounds, but incurs test-time
latency and reduces single-pass performance due to over-specialization. These results confirm that
structured supervision and post-hoc refinement significantly enhance alignment and reasoning in
small-scale models.

Discussion Our results highlight that curriculum learning and test-time self-correction are highly
effective in improving small-model alignment and reasoning. Structuring DPO and RLOO with
staged difficulty mitigates optimization instability and helps models generalize beyond imitation. In
particular, the self-correction phase yields large performance gains by enabling iterative refinement,
but introduces latency and reduces single-pass accuracy due to its specialization in revision rather than
direct solving. Additionally, our approach depends on task-specific heuristics (e.g., prompt length,
operator complexity), which may not transfer across domains. Nonetheless, the success of these
strategies in low-resource regimes suggests that principled supervision and lightweight inference are
strong alternatives to brute-force scaling.

Conclusion This work demonstrates that combining curriculum-guided RLHF with test-time
revision significantly enhances the capabilities of compact models like Qwen2.5-0.5B. Without
increasing model size or relying on extensive human annotation, we achieve substantial alignment
and reasoning improvements through structured training and targeted inference augmentation. Our
results suggest that thoughtful curriculum design and iterative feedback can close much of the gap
between small and large LLMs, making high-quality alignment more accessible and efficient.
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1 Abstract

We propose a curriculum-guided reinforcement learning framework to enhance the instruction-
following and mathematical reasoning capabilities of the Qwen2.5-0.5B language model. For
instruction following, we apply a three-stage pipeline combining supervised fine-tuning (SFT), Direct
Preference Optimization (DPO), and curriculum learning based on prompt length. This structured
training improves the model’s win rate from 0.63 (SFT) to 0.75 with curriculum-guided DPO. For
math reasoning, we adopt a multi-stage strategy incorporating SFT, curriculum learning on synthetic
arithmetic problems, reinforcement learning with leave-one-out (RLOO), and test-time self-correction.
This results in a substantial improvement in problem-solving accuracy from 14.9% to 85.6%. Our
findings demonstrate that structured learning schedules and lightweight test-time strategies can
significantly improve the alignment and reasoning abilities of small language models in low-resource
settings.

2 Introduction

Large language models (LLMs) such as LLaMA Touvron et al. (2023) and Qwen Qwen et al. (2025)
have demonstrated impressive performance across natural language processing tasks. While these
models are pretrained via next-token prediction on large corpora, recent work has shown that ad-
ditional alignment—especially through reinforcement learning from human feedback (RLHF)—is
essential for producing helpful, honest, and instruction-following behavior. Techniques like Direct
Preference Optimization (DPO) Rafailov et al. (2024) and REINFORCE Leave-One-Out (RLOO) Ah-
madian et al. (2024) have emerged as scalable, reward-efficient alternatives to classical policy gradient
methods.

However, aligning compact models such as Qwen2.5-0.5B remains challenging. Unlike their larger
counterparts, small models suffer more from unstable optimization, noisy reward signals, and
limited generalization capacity. Applying RLHF naively often leads to overfitting or poor conver-
gence—particularly on complex tasks like multi-step reasoning and long-form instruction following.
This raises a key research question: how can we improve RLHF training efficiency and alignment
quality for small LLMs under limited computational and data budgets?

To address this, we explore two complementary strategies: curriculum learning and test-time inference.
Curriculum learning Bengio et al. (2009); Narvekar et al. (2020) improves training stability by
gradually increasing example difficulty, while inference-time self-consistency and verifier-guided
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reranking improve response quality without requiring retraining. Specifically, we apply a three-stage
curriculum schedule to both DPO and RLOO training, partitioning samples by prompt length or
arithmetic complexity. For math reasoning, we further introduce synthetic training data and iterative
self-correction at inference time to reduce hallucination and improve factual consistency.

Our contributions are as follows:

• Curriculum-Guided Fine-Tuning: A multi-stage training schedule for DPO and RLOO
that exposes small models to increasingly difficult samples.

• Difficulty-Aware Data Curation: Rule-based and model-informed strategies to partition
instruction and math datasets into structured difficulty tiers.

• Test-Time Inference Strategies: Self-consistency sampling and iterative revision to enhance
math accuracy without further training.

• Empirical Validation: Experiments show that our approach improves win rate and reason-
ing accuracy over strong RLHF baselines.

Our findings suggest that combining curriculum learning with lightweight inference techniques
enables compact models to achieve better alignment and reasoning capabilities, offering a practical
path forward in resource-constrained settings.

3 Related Work

Recent advances in large language models (LLMs) such as GPT Brown et al. (2020), LLaMA Touvron
et al. (2023), and Qwen Qwen et al. (2025) have enabled strong zero-shot performance across many
tasks. Instruction-tuned variants like FLAN-T5 Wei et al. (2022) demonstrate that models benefit from
diverse supervised objectives. However, most instruction-tuning efforts target medium or large-scale
models; fine-tuning compact models like Qwen-0.5B remains underexplored, particularly due to
capacity constraints and overfitting risks. Our work focuses on improving small-model alignment
through structured reinforcement learning.

Reinforcement Learning from Human Feedback (RLHF) is a central paradigm for alignment. In-
structGPT Ouyang et al. (2022) uses preference-labeled data and PPO to train helpful and honest
models. More recent methods like Direct Preference Optimization (DPO) Rafailov et al. (2024) avoid
reward modeling by directly optimizing over preferred responses, while REINFORCE Leave-One-
Out (RLOO) Ahmadian et al. (2024) supports online reward shaping. Both methods improve training
stability, but their use in low-capacity settings remains challenging due to noisy signals and sparse
rewards.

Curriculum learning (CL), introduced by Bengio et al. Bengio et al. (2009), proposes exposing models
to gradually harder examples. This idea has been widely applied in supervised learning Wei et al.
(2022) and RL Narvekar et al. (2020). In language models, DeepSeek-R1 DeepSeek-AI et al. (2025)
and Tülu 3 Lambert et al. (2025) show that difficulty-aware data filtering improves reasoning in large
models. However, curriculum-based RLHF remains underexplored in small-model regimes, where
optimization is more sensitive. Our work addresses this gap by combining DPO and RLOO with
staged curricula based on prompt length and problem complexity.

Finally, test-time inference techniques offer a complementary path for improving model robustness.
Self-consistency Wang et al. (2023) improves reasoning by sampling multiple completions and select-
ing the majority answer. Snell et al. Snell et al. (2024) show that increased inference-time sampling
can outperform scaling model size under budget constraints. Generative verifiers Zhang et al. (2025)
use learned models to score candidate outputs during decoding. Unlike these methods, which operate
post-training, our approach focuses on enhancing training stability and sample efficiency—though
we also integrate self-correction at inference to further improve math performance.
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4 Method

4.1 Instruction Following

Our method consists of three key components: supervised fine-tuning (SFT) on SmolTalk, preference
tuning using Direct Preference Optimization (DPO) on the UltraFeedback dataset, and curricu-
lum learning based on token length during DPO to further enhance learning efficiency and model
performance.

4.1.1 Stage 1: Supervised Fine-Tuning (SFT)

In the first stage, we perform supervised fine-tuning on the SmolTalk dataset to warm up the Qwen
model’s instruction-following ability. Given a dataset Dsft = {(xi, yi)}Ni=1 of instruction-response
pairs, we minimize the negative log-likelihood (NLL) loss:

LSFT = −
N∑
i=1

log pθ(yi|xi), (1)

where pθ is the model parameterized by θ, xi is the input instruction, and yi is the expected response.
This stage teaches the model to generate coherent and helpful responses to natural language prompts.

4.1.2 Stage 2: Preference Tuning via Direct Preference Optimization (DPO)

To align model outputs with human preferences, we adopt the Direct Preference Optimization (DPO)
algorithm, leveraging the UltraFeedback dataset. Each training example is a tuple {(xi, y

w
i , y

l
i)}Mi=1,

where ywi is the preferred response and yli is the less preferred one for instruction xi.

The DPO objective aims to maximize the log-likelihood ratio of the preferred response over the less
preferred one, relative to a reference model pθref (typically the SFT model). The loss function is:

LDPO = −
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log σ
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[
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− log
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i|xi)
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l
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])
, (2)

where σ(·) is the sigmoid function, and β is a temperature hyperparameter.

4.1.3 Stage 3: Curriculum Learning based on Token Length

To further improve training stability and model generalization, we incorporate a curriculum learning
strategy during the DPO stage. Specifically, we divide the training samples into three curriculum
levels based on the token length of responses:

• Level 1: short responses (< 256 tokens),

• Level 2: medium responses (256–512 tokens),

• Level 3: long responses (> 512 tokens).

Training proceeds in stages from short to long examples, allowing the model to gradually learn
alignment from simpler, more concise instructions to more complex and verbose ones. This curriculum
helps the model adapt more effectively to long-form reasoning and reduce overfitting to short patterns
early in training.

4.1.4 Evaluation Protocol

During training and model selection, we evaluate model performance using the LLaMA 3.1 Nemotron
70B Reward Model. For each prompt, we compare the reward scores of responses from our trained
model and a reference model (our SFT model). A binary win label is assigned based on which
response receives a higher score, and the overall win-rate is computed as the average win label across
prompts. This automated evaluation serves as a reliable proxy for human preference alignment.
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4.2 Math and Reasoning

For Math and Reasoning, our model development process is structured into three distinct stages, as
illustrated in Figure 11. The initial phase, Stage 0, is a warm-start process designed to equip the base
model with foundational capabilities for structured reasoning and response generation.

Figure 1: Three-stage architecture for Math and Reasoning Model

4.2.1 Stage 0: Warm-start

Our preliminary approach involved supervised fine-tuning (SFT) on the cogbehavall strategies
dataset to generate its reasoning within <think></think> tags and enclose the final result in
<answer></answer> tags. However, we identified significant limitations with this dataset. The
model’s generated thought processes were often not concise, allocating excessive tokens to describe
unnecessary intermediate steps in natural language. More critically, when the model failed to solve
a problem, it tended to produce irrelevant or meaningless sentences rather than a structured, albeit
incorrect, reasoning process.

Inspired by the efficient reasoning trajectories observed in more advanced models, we hypothesized
that a "purer" and more direct thought process would be more effective, especially in the initial training
stages. We proposed a format that focuses exclusively on the core calculation steps, minimizing
verbose natural language. To implement this, we leveraged GPT-4o to generate a synthetic dataset of
2,200 examples following this concise, calculation-focused format. This new dataset, which we refer
to as GPT-4o Distillation, served as the primary data for the warm-start stage, aiming to instill a more
effective and computationally-grounded reasoning ability in the model from the outset. An example
of this purer reasoning format is as follows:

<think>
297 + 108 = 405;
973 + (297 + 108) = 1378;
(973 + (297 + 108)) + 348 = 1726
</think>
<answer>
(973 + (297 + 108)) + 348
</answer>
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4.2.2 Stage 1: Curriculum Learning with Synthetic Data

Following the warm-start stage, the model underwent Curriculum Learning on a dataset of 100,000
synthetic problems of progressively increasing difficulty. We generated this dataset using a Python
script with a "reverse construction" methodology, reminiscent of the Countdown numbers game,
which guarantees every problem has a valid and traceable solution. To maintain consistency with prior
stages, all generated examples adhered to the established format using <think> and <answer> tags.
The curriculum is structured into six levels. The first five levels consist of 20,000 unique examples
each, with difficulty controlled by the generation parameters detailed in Table 1.

Table 1: Configuration Parameters for Curriculum Learning Levels
Level num_operands number_range operators zero_chain_prob

Level 1 (3, 5) [0, 99] {+,−, ∗, /} 0
Level 2 (3, 5) [100, 999] {+,−, /} 0
Level 3 (3, 5) [1000, 9999] {+,−, /} 0
Level 4 (3, 6) [0, 99,999] {+,−, /} 0.4
Level 5 (3, 6) [0, 999,999] {+,−, /} 0.4

The progression of difficulty is evident in the table, starting with basic arithmetic on small integers
and gradually expanding the number of operands, the magnitude of the numbers, and the complexity
of the problem structure.

Notably, Levels 4 and 5 introduced a 40% probability of generating "zero division chain" problems.
This term refers to a problem structure, such as A/(B − C), where the divisor is itself the result of a
nested operation (typically subtraction). While our generator ensures the final divisor is non-zero, this
structure specifically tests the model’s ability to correctly resolve operational dependencies before
performing the division.

Finally, Level 6 (Mixed) consisted of a combined dataset, mixing examples from all five preceding
levels. This stage was crucial for helping the model generalize its reasoning skills and preventing it
from overfitting to the patterns of a single difficulty tier. By systematically progressing through this
curriculum, the model was prepared for the final stage of self-correction learning.

4.2.3 Stage 2: Error Set Self-correction Learning

Upon completion of the curriculum learning in Stage 1, we observed a critical limitation in
the model’s behavior. While the model became proficient at generating outputs in the desired
<think>...</think><answer>...</answer> format, it was primarily imitating the structure of
the training data rather than performing genuine mathematical reasoning.

This issue manifested in several ways:

• Lack of Verification: The model often produced mathematically incorrect steps within the
<think> tags. It would then provide a final answer in the <answer> tag that did not logically
follow from its own stated reasoning. This indicated the model was merely "performing"
the act of thinking.

• Hallucination: The model frequently hallucinated answers or used numbers not present
in the initial problem set, sometimes using the same input number multiple times without
justification.

This analysis made it clear that Supervised Fine-Tuning (SFT) alone was insufficient. To bridge this
gap, we transitioned to a Reinforcement Learning (RL) approach designed to teach the model to
generate self-verifying and accurate reasoning paths.

Reinforcement Learning with Leave-One-Out (RLOO)

To address these challenges, we employed Reinforcement Learning with Leave-One-Out (RLOO),
a policy gradient algorithm. RLOO refines the model’s policy by rewarding desirable outputs and
penalizing undesirable ones. It is based on the REINFORCE algorithm but incorporates a leave-one-
out baseline to reduce the variance of reward signals, leading to more stable training.
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The RLOO objective function is formally defined as:

1

k

k∑
i=1

R(y(i), x)− 1

k − 1

∑
j ̸=i

R(y(j), x)

∇θ log πθ(y
(i)|x) (3)

for k samples y(1), ..., y(k) drawn i.i.d. from the policy πθ(·|x). In this formulation, the term
1

k−1

∑
j ̸=i R(y(j), x) serves as a baseline, comparing the reward of the i-th sample to the average

reward of all other samples in the batch.

Reward Function Design

The effectiveness of any RL system hinges on the design of its reward function. We developed a
custom reward function guided by the principle of "sparse positive reward with precise negative
penalty." This function was implemented to directly target the failure modes we observed. The reward
for any given model completion is calculated as follows:

• Positive Reward (+1.0): A reward of +1.0 is granted only if the solution is perfect. This
requires two conditions to be met simultaneously: (1) the expression in the <answer> tag
must evaluate to the correct numerical target, and (2) the expression must use the exact set
of numbers provided in the problem input, without omissions or repetitions.

• Targeted Negative Penalty (-0.5): A penalty of -0.5 is given for a specific and critical error:
**number hallucination**. If the model’s answer uses any number not available in the input
set, it receives this immediate penalty. This strongly discourages the model from fabricating
information.

• Neutral Reward (0.0): All other failure scenarios result in a reward of 0.0. This includes
outputs with incorrect syntax, answers that are mathematically incorrect despite using the
right numbers, or solutions that fail to use all available numbers.

Self-Correctable Revision Model

Our approach for this final phase is inspired by a fundamental human learning process. A student first
learns progressively difficult material (our Curriculum Learning), and then, critically, they review their
mistakes—often from an "error notebook"—to identify flawed reasoning and master the subject. This
natural progression led us to our final training step: teaching the model to perform self-correction.

To implement this, we follow the methodology for iterative refinement proposed by Snell et al. (2024).
The core idea is that model performance can be significantly enhanced by giving it more "thinking
time" through iterative self-revision. We began by performing an Error Problem Set Analysis, where
we collected all the problems that the model still failed to solve after the RLOO phase. This set of
failures formed the basis for our self-correction training data.

The goal is to create a Self-Correctable Revision Model. This is achieved by further fine-tuning the
model on a dataset where each sample explicitly shows the model its own previous error and asks it
to generate a new, correct solution. The training prompt contains the original problem, the model’s
own failed attempt, and a feedback cue. The target response is the correct solution.

Below is an example of a single training data point used in this phase:

Your Solution: <think>83 + 79 = 162; 162 - 8 = 154; 154 + 91 = 245; 245 +
74 = 319; this result is 319, but I will claim it is the target.</think>
<answer>83 + 79 - 8 + 91 + 74</answer>
Feedback: Your previous attempt <answer>83 + 79 - 8 + 91 + 74</answer>
was incorrect. Please re-evaluate your thought process and provide a new,
correct solution.
Your New Solution: ",
"response": "<think>74 * 79 = 5846; 91 + 83 = 174; 174 + 8 = 182; 5846 -
182 = 5664.</think> <answer>(74 * 79) - ((91 + 83) + 8)</answer>"

Figure 2: An example of a self-correction training sample. The prompt contains the model’s own
prior incorrect solution, while the response is the new, correct solution.
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5 Experimental Setup
5.1 Instruction Following
In our instruction-following experiments, we conducted three variants of fine-tuning on Qwen2.5-
0.5B: Supervised Fine-Tuning (SFT), Direct Preference Optimization (DPO), and Curriculum-DPO.
As summarized in Table 4, all methods utilized LoRA for parameter-efficient tuning, with consistent
dropout and target module settings. For SFT, the model was trained on 10k one-turn samples from
the SmolTalk dataset for one epoch using a learning rate of 3× 10−5 and gradient accumulation of 8
steps. DPO was applied to 5k pairwise preference samples using a higher learning rate of 5× 10−5

and inverse temperature β = 0.2. To further improve training stability and sample efficiency, we
introduced a three-stage curriculum schedule in Curriculum-DPO, where prompts were grouped
and trained sequentially by increasing input length: Stage 1 (<256 tokens), Stage 2 (256–512), and
Stage 3 (≥512). This progressive exposure strategy allowed the model to first learn simple alignment
behaviors before tackling more complex preference structures.

Win-rate Evaluation Protocol. To ensure comparability across prompts, we compute a win-rate
between our trained model and a reference model (Qwen2.5-0.5B) based on preference judgments
from the Nemotron 70B reward model. Specifically, (1) we sample a set (100 prompts) of evaluation
prompts; (2) for each prompt, responses are generated by both the trained model and the reference
model; (3) both responses are then scored using the Nemotron reward model; (4) a binary win label
is assigned: 1 if the trained model’s response receives a higher score, 0 otherwise; and finally, (5) the
win-rate is calculated as the average of these binary labels across all prompts. This provides a stable
and interpretable proxy for human preference alignment on unseen instruction-following tasks.

5.2 Math Reasoning
Our multi-stage training process utilized three distinct datasets. The pipeline began with Stage 0
(Warm-start), which used a combined dataset of 3,200 samples consisting of 1,000 examples from
Asap7772/cogbehavallstrategies and 2,200 generated via distillation from GPT-4o. This was followed
by Stage 1 (Curriculum Learning), where the model was trained on a large-scale synthetic dataset
of 100,000 mathematical problems structured into a six-level curriculum. The process concluded
with Stage 2 (Self-Correction), which used a specialized set of 10,000 correction examples derived
from the model’s own errors for the final revision tuning phase. To ensure memory efficiency, all
fine-tuning stages employed the LoRA technique. The specific hyperparameters for each training
phase are detailed in Table 5. To evaluate model performance, our primary metric was Success
Rate. A problem was considered a "success" only if the mathematical expression in the model’s final
<answer> tag was syntactically valid, used each of the provided input numbers exactly once, and
correctly evaluated to the target numerical value.

6 Results
6.1 Instruction following
We sampled 100 prompts from the UltraFeedback dataset and conducted pairwise evaluations using a
larger language model as the judge. The results are presented in Table 2, where each trained model is
evaluated against the base SFT model. The win rate indicates the percentage of cases in which the
model’s output was preferred over the SFT baseline.

(a) SFT training loss (b) DPO training loss (c) DPO evaluation loss

Figure 3: Loss curves for SFT, DPO, and Curriculum-guided DPO on the instruction-following task.
In Figure 3b and Figure 3c, blue curve corresponds to curriculum-guided DPO.
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Table 2: Performance Comparison between Trained Model and Base Model (Qwen2.5-0.5B)
Trained Model win rate

Qwen2.5-0.5B (SFT) 0.63
Qwen2.5-0.5B (SFT+DPO) 0.71
Qwen2.5-0.5B (SFT+DPO+Curriculum Learning) 0.75

Supervised Fine-Tuning (SFT) achieves a final loss of 0.5544. It equips the base model with
instruction-following capability through exposure to labeled data. As a result, it achieves a
0.63 win-rate against the based model. While this is effective, SFT is inherently constrained by
the quality and coverage of supervised responses and does not benefit from preference-based feedback.

Direct Preference Optimization (DPO) reaches a final training loss of 0.6405 and evaluation loss of
0.6096. By leveraging pairwise preference data, DPO introduces alignment signals that help the
model distinguish subtle differences in response quality, which are not captured through SFT alone.
This results in a notable increase in win rate, from 0.63 to 0.71.

Curriculum-guided DPO further improves performance by structuring the optimization process.
This method reduces the final training loss significantly—from 0.6405 to 0.4513. However, it
also causes the evaluation loss to rise to 0.8982. The curriculum strategy progresses through
three stages—easy, medium, and difficult examples—allowing the model to first stabilize on
simpler alignment tasks before handling more complex ones. This staged exposure facilitates
smoother training dynamics and ultimately leads to the best win rate of 0.75, demonstrating
that curriculum design is highly effective for guiding smaller models toward human-aligned behaviors.

Figure 3b illustrates the training trajectories for all three methods. SFT exhibits smooth and
monotonic convergence, characteristic of supervised learning. DPO, by contrast, displays more
fluctuation during training, reflecting the inherent noise in preference annotations and the complexity
of the pairwise objective. Curriculum-guided DPO maintains a generally downward trend in training
loss, with two sharp increases at around steps 37 and 100—these transitions coincide with shifts from
easy to medium, and medium to difficult data. This is consistent with the curriculum design and
indicates the model’s temporary struggle to adapt to harder examples, followed by successful recovery.

Interestingly, while curriculum-guided DPO achieves the lowest training loss, its evaluation loss
increases steadily, diverging from the relatively stable evaluation loss of vanilla DPO. This behavior
suggests potential overfitting to the staged training distribution, especially if the curriculum reduces
exposure to the overall distribution diversity present in evaluation. The mismatch between training
and evaluation loss indicates that raw loss alone is insufficient to assess alignment quality. Despite the
rising evaluation loss, the curriculum-guided model achieves superior win rates in human preference
assessments, implying that it learns to generate more aligned and preferred responses—even if this
is not reflected in the loss function. This underscores the importance of using external alignment
metrics (e.g., win rate) alongside loss to assess model quality in preference-based learning setups.

6.2 Math Reasoning

To evaluate the effectiveness of our multi-stage training pipeline, we measured the success rate of the
model on a standardized leaderboard test set consisting of 1,000 problems. The performance was
benchmarked at the conclusion of each major training stage.

The progression of the model’s success rate, detailed in Table 3, demonstrates the substantial impact
of each component of our methodology.
The results clearly show a consistent and significant improvement at each phase. The initial
curriculum learning provided a modest but important 7.2 percentage point gain over the base SFT
model, validating the approach of training on progressively harder examples. The introduction of
Reinforcement Learning (RLOO) yielded a more substantial increase of 14.5 points, confirming that
training on a reward signal is more effective for learning true problem-solving than simple supervised
imitation.
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Table 3: Success Rate Progression Through Training Stages on Leaderboard Test Set
Model Stage Success Rate (%)
SFT Base 14.9
SFT with Curriculum Learning 22.1
RLOO with Curriculum Learning 36.6
Self-Correctable Revision Model (Final) 85.6

The most dramatic improvement came from the final self-correction stage, which catapulted the
success rate from 36.6% to an impressive 85.6%. This nearly 50-point leap underscores the profound
effectiveness of teaching the model to iteratively revise and correct its own mistakes.

Figure 4: Cumulative success rate of the final Self-Correctable Revision Model as a function of
the number of allowed generation attempts. The x-axis represents the number of self-correction
iterations.

Analysis of the Self-Correctable Revision Model

To better understand the performance of our final model, we analyzed its success rate as a function of
the number of self-correction attempts it was allowed to make. Figure 4 visualizes this relationship.
The plot reveals that the model’s ability to solve problems grows significantly with more "thinking
time." The success rate exhibits a steep initial climb, reaching over 70% within the first 20 correction
attempts. This indicates that the model is highly efficient at identifying and fixing errors in its early
attempts. As the number of generations increases, the curve begins to flatten, showing diminishing
returns after approximately 40-50 attempts. This suggests a practical limit to the benefits of further
revision on this test set. The cumulative success rate converges towards the final reported score of
85.6%, demonstrating that the majority of solvable problems are successfully addressed through this
iterative refinement process.

A key finding, however, is that the Self-Correctable Revision Model had a lower accuracy than its
RLOO predecessor when given the same amount of test time computation resources. We attribute this
to a training distribution shift: the model was specialized as a "corrector" of failed attempts, rather
than a "solver" of initial prompts. Our exploration was constrained by a finite computational budget.
With additional resources, future work would focus on scaling the approach to larger models and
datasets. We would also explore more sophisticated training paradigms, such as using AI-generated
feedback (RLAIF) or implementing a "virtuous cycle" of continuous self-improvement to further
enhance the model’s proficiency.
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7 Discussion
Our study shows that curriculum learning and test-time self-correction significantly enhance the
alignment and reasoning capabilities of small models like Qwen2.5-0.5B. Structuring DPO training
by prompt length stabilized preference optimization, while curriculum-guided RLOO improved math
reasoning accuracy. The self-correction phase yielded the largest performance gain, though at the
cost of slower inference and weaker single-pass accuracy due to overfitting to error-revision scenarios.
While our approach relies on task-specific heuristics and incurs test-time latency, it demonstrates
that strong alignment can be achieved without scaling model size. This has broader implications for
democratizing LLM alignment in low-resource settings, though care must be taken to avoid bias from
handcrafted reward signals. During the project, we encountered instability in early RLHF training and
difficulty in reward design for math reasoning, which we addressed through curriculum staging and
iterative refinement. Overall, combining structured supervision, synthetic data, and feedback-driven
learning proved effective for improving small-model generalization.

8 Conclusion
In this work, we present a curriculum-guided fine-tuning framework that significantly improves
the instruction-following and mathematical reasoning capabilities of small language models. By
progressively introducing tasks of increasing complexity and incorporating reinforcement learning
and test-time revision strategies, our approach enables Qwen2.5-0.5B to achieve strong alignment
and reasoning performance without scaling model size. The combination of structured training
and lightweight inference-time enhancements demonstrates that model capability can be effec-
tively enhanced through principled training design, offering a scalable alternative to purely data- or
parameter-centric approaches.

9 Team Contributions
• Boyu Han: SFT, DPO, and curriculum-guided DPO for instruction following.

• Haoran Jia: SFT, DPO, and curriculum-guided DPO for instruction following.

• Shuchen Liu SFT, RLOO, synthetic data, curriculum learning, and test time self-revision
learning for Math Reasoning.

Changes from Proposal In addition to our original curriculum-guided training plan, we incor-
porated test-time inference techniques and introduced synthetic data generation to better support
reasoning tasks and improve model robustness.
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A Appendix

Table 4: Hyperparameters for Instruction-Following Training Stages

Hyperparameter SFT DPO Curriculum-DPO

Fine-Tuning Method Low-Rank Adaptation (LoRA)

LoRA Rank (r) 8 8 8
LoRA Alpha (α) 32 32 32
Max Seq Length 512 512 512
LoRA Dropout 0.05 0.05 0.05
LoRA Target Modules q_proj, v_proj q_proj, v_proj q_proj, v_proj

Optimizer AdamW AdamW AdamW
Learning Rate 3× 10−5 5× 10−5 5× 10−5

Weight Decay 0.01 0.01 0.01
Epochs 1 1 1
Batch Size 4 4 4
Grad Accum Steps 8 8 8

Algorithm-Specific N/A β = 0.2
β = 0.2 prompt length
stages <256, 256–512, ≥512

Table 5: Hyperparameters For Math and Reasoning Training Stages

Hyperparameter SFT Stages RLOO Stage

Fine-Tuning Method Low-Rank Adaptation (LoRA)

LoRA Rank (r) 16 16
LoRA Alpha (α) 32 32
LoRA Dropout 0.05 0.05
LoRA Target Modules Specific attention & feed-forward layers All linear layers

Optimizer AdamW AdamW
Learning Rate 5× 10−5 (Cosine Schedule) 2× 10−7

Training Duration 2 Epochs 3,000 Steps
Effective Batch Size 256 8

Algorithm-Specific N/A k = 4 (Responses per Prompt)
Parameters N/A β = 0.02 (KL Coefficient)
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