Extended Abstract

Motivation The pursuit of creating versatile, autonomous robots has long been a central goal
in artificial intelligence and robotics. While significant progress has been made in quadruped
locomotion, achieving robust and adaptive locomotion in humanoid robots remains a formidable
challenge. Humanoids, by their nature, can exhibit a much richer and more complex set of behaviors,
from bipedal walking and running to crawling and climbing. Each of these behaviors demands a
sophisticated level of coordination between the arms, legs, and torso that is not typically required
for four-legged robots. This project undertakes a foundational step toward enabling such complex
locomotion on the ToddlerBot, a small, 3D-printed, open-source humanoid robot designed for
machine learning research |Shi et al.| (2025). Our central aim is to develop a stable and effective
training pipeline capable of teaching the ToddlerBot to imitate complex reference motions, laying the
groundwork for a unified, egocentric policy that can navigate diverse and unstructured environments.

Method Our methodology is rooted in the principles of example-guided deep reinforcement
learning, inspired by the DeepMimic framework |Peng et al|(2018)), and implemented within the
Brax physics engine (MJX). The training regimen is structured as a two-step process. First, the robot
undergoes pre-training in a fixed environment (f ixed_env), where it learns to follow a reference
motion without external disturbances. This phase is critical for establishing a foundational motion
prior. Second, the agent is moved to a regular, interactable environment for fine-tuning, where it
must learn to maintain the reference poses while adapting to the challenges of balance and survival.
This phase introduces domain randomization, random initializations, and terrain perturbations.

Implementation To guide the learning process, we implemented a suite of reward functions
loyal to the original DeepMimic paper. These include: a Reward_pose that tracks the orienta-

tion of body parts using quaternion differences and an exponential reward function (e’(k'em’rz));
a Reward_end_effector_pos for aligning the hands and feet to the reference trajectory; a
Reward_com_pos to ensure torso alignment; and velocity-based rewards (Reward_joint_lin_vel,
Reward_ang_vel) computed via finite differencing of positions and quaternions. These are imple-
mented using MJX-compatible state variables and verified on ground-truth replay trajectories. We
also explored action scale normalization, policy output rescaling, and learning rate sweeps during
finetuning.

Results Our experiments revealed that successful pretraining was possible only when using a high
action scale of 2.0, which led to reasonable motor tracking rewards (final error near -20). However,
this high action range resulted in jittery arm motions and poor foot-ground alignment. Reducing
the action scale below 1.5 caused the position tracking reward to plateau early, failing to learn
the reference motion at all (final reward near -100). Finetuning in the interactable environment
proved more difficult. At a low learning rate (1 - 10~?), the policy retained some motion prior but
failed to survive. At a higher learning rate (5 - 10~°), survival rewards improved briefly but caused
catastrophic forgetting: the policy abandoned its pre-trained reference behavior, and motor position
rewards collapsed entirely. Additional changes—such as replacing motor tracking with pose-based
rewards—showed promise in offline GT evaluation but still failed during online PPO training. We
consistently observed instability across multiple runs.

Discussion Through extensive ablations, we concluded that reward structure alone is insufficient to
overcome policy instability. One key insight is that survival and imitation objectives often compete in
the optimization process, especially without proper observation scaling. Our current PPO setup lacks
asymmetric observation handling, leading to poor generalization in dynamic environments. Despite
implementing reward components that track pose, velocity, and end-effectors, the learning still fails
without careful normalization and architecture-level adjustments. The failure modes point toward
deep conflicts between precision tracking and robustness, and resolving this requires improved input
representations and stable critic targets.

Conclusion To address these limitations, we plan to migrate to the latest version of Brax, which
natively supports asymmetric actor-critic architectures with normalized observations. This should
improve the stability of both imitation and survival training. Once the pipeline is stabilized, we aim to
train a library of expert behaviors (e.g., crawling, walking, climbing) and integrate them into a unified
policy via behavior stitching or Adversarial Motion Priors (AMP). This will enable whole-body
control from egocentric vision in unstructured terrain, moving us closer to general-purpose humanoid
locomotion on real hardware.
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Abstract

Achieving robust and adaptive locomotion in humanoid robots remains an open
challenge due to the complexity of coordinating full-body motions across arms, legs,
and torso. In this work, we take a step toward enabling whole-body behaviors such
as crawling on ToddlerBot, a compact, 3D-printed humanoid platform designed
for learning-based control. We develop a reinforcement learning pipeline inspired
by the DeepMimic framework, implemented in the Brax (MJX) simulator. Our
approach consists of two stages: (1) pretraining the agent in a fixed environment to
follow handcrafted reference motions, and (2) fine-tuning in a domain-randomized
environment with survival and balance constraints. We implement a suite of re-
wards including pose alignment via quaternion error, end-effector tracking, and
joint velocity matching. While the agent successfully learns short-horizon crawl-
ing behaviors in the fixed environment, fine-tuning in dynamic settings reveals
significant instability, including catastrophic forgetting and degraded tracking. We
identify the lack of observation normalization and adversarial reward conflict as
primary causes. To address these issues, we plan to adopt asymmetric actor-critic
architectures and train multiple expert behaviors to be composed into a unified,
vision-conditioned locomotion policy.

1 Introduction

Humanoid locomotion remains one of the most ambitious goals in robotics, demanding precise whole-
body coordination and adaptability to diverse environments. Unlike quadrupeds, whose locomotion
patterns largely rely on synchronized leg motion, humanoid robots can exhibit a wide spectrum of
behaviors—such as walking, crawling, and climbing—each of which requires dynamic use of arms,
legs, and torso for balance, propulsion, and contact reasoning. The ability to switch between such
modes based on terrain context is essential for enabling versatile, real-world humanoid navigation.

Recent advancements in reinforcement learning (RL) have shown promise in enabling humanoid
robots to learn complex locomotion behaviors. For instance, Radosavovic et al. introduced a
transformer-based controller trained via RL that enables real-world humanoid locomotion across
diverse terrains without fine-tuning [Radosavovic et al.|(2023). Similarly, Thibault et al. demonstrated
velocity-based RL locomotion policies for the REEM-C robot using Brax/MJX for fast, parallel
training [Thibault et al.| (2024).

This project investigates the problem of learning such whole-body locomotion behaviors on Toddler-
Bot, a compact, open-source, 3D-printed humanoid robot designed for learning-based control |Shi
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et al, (2025). Our ultimate goal is to create a unified, egocentric locomotion policy that allows
ToddlerBot to traverse complex environments using diverse motor skills. As a first step, we focus
on training the robot to imitate short reference crawling motions using reinforcement learning in
simulation, and analyze the challenges involved in transferring these skills to more realistic, perturbed
environments.

We adopt a two-stage pipeline: (1) pretraining in a fixed environment to learn a reference motion
from keyframed trajectories, and (2) fine-tuning in an interactable environment using Brax (MJX)
with domain randomization and survival objectives. To guide the agent, we employ a DeepMimic-
style reward formulation that tracks pose, velocity, end-effector alignment, and
center-of-mass stability. Keyframe animations are manually engineered and tested in MuJoCo before
being used as ground-truth reference trajectories (Figure [T).

Figure 1: Interpolated keyframe-based crawling motion visualized in MuJoCo. These sequences
form the reference trajectory for RL pretraining.

While the agent is able to reproduce short crawling motions in the fixed environment, we observe
significant instability during the fine-tuning stage. For example, policies trained with a high action
scale (2.0) achieve reasonable tracking performance (final error ~ —20), but suffer from jittery and
imprecise limb placement. On the other hand, reducing the action scale below 1.5 causes the learning
process to stall entirely, with position tracking rewards plateauing above —100.

Additionally, as shown in Figure [2] fine-tuning in the regular environment reveals an adversarial
interaction between survival and tracking objectives. PPO policies often forget the reference motion,
failing to maintain torso stability or consistent reward signals over time. These instabilities suggest a
systemic optimization issue rather than a reward misconfiguration.

(a) Catastrophic forgetting of (b) Collapse of motor position re-
reference motion. wards in regular environment.

Figure 2: Training instability observed during fine-tuning.
We hypothesize that the root cause lies in a lack of proper observation normalization and architectural

rigidity in the current PPO implementation. To address this, we propose migrating to the latest version
of Brax, which supports asymmetric actor-critic architectures and observation normalization. This



architectural shift is expected to improve stability by separating privileged reference inputs from
learned policy observations.

Our longer-term plan is to extend this framework to multiple expert behaviors (e.g., crawling, walking,
climbing) and combine them into a unified high-level controller via policy distillation or adversarial
motion priors (AMP). This work lays a foundation for scalable whole-body motion learning in
humanoids and emphasizes the importance of robust policy architecture and motion priors for
general-purpose control.

2 Related Work

Deep Reinforcement Learning for Humanoid Locomotion. Deep reinforcement learning (DRL)
has significantly advanced the capabilities of humanoid robots in performing complex locomotion
tasks. Peng et al.’s DeepMimic framework Peng et al.| (2018)) introduced a modular reward design
enabling physics-based characters to imitate motion capture data effectively. Building upon this,
Radosavovic et al. Radosavovic et al.[(2023)) developed a transformer-based controller trained via RL,
achieving real-world humanoid locomotion across diverse terrains without fine-tuning. Additionally,
Figure AI demonstrated natural walking controllers learned purely in simulation using end-to-end
RL, facilitating rapid engineering iterations for their humanoid robots |AI (2025)).

Whole-Body Humanoid Motion and Multi-Behavior Integration. Achieving whole-body coor-
dination in humanoid robots necessitates integrating various motor skills. The AMP framework |[Peng
et al.| (2021)) leverages adversarial motion priors to learn stylized physics-based character control,
enabling the synthesis of diverse behaviors. Similarly, the SMAP framework |Zhao et al.| (2025)
introduces self-supervised motion adaptation for physically plausible humanoid whole-body control,
bridging the gap between human and humanoid action spaces. The AMO framework |Li et al.| (2025)
combines sim-to-real RL with trajectory optimization for real-time adaptive whole-body control,
demonstrating superior stability and an expanded workspace.

Simulation Frameworks for Scalable Training. Efficient simulation environments are crucial for
training complex locomotion policies. MJX, a JAX-compatible, GPU-accelerated physics engine built
on Brax, enables fast parallel rollout and backpropagation, facilitating large-scale training Google
Research|(2021). Humanoid-Gym Gupta et al.|(2025) provides an easy-to-use RL framework based
on Nvidia Isaac Gym, designed to train locomotion skills for humanoid robots with an emphasis on
zero-shot transfer from simulation to real-world environments.

Vision-Based Control and Teleoperation. Integrating vision into control policies enhances the
adaptability of humanoid robots. The H20 framework He et al.| (2024) enables real-time whole-body
teleoperation of a full-sized humanoid robot using only an RGB camera, employing a scalable "sim-
to-data" process to filter and select feasible motions. This approach allows for dynamic whole-body
motions in real-world scenarios, including walking, back jumping, and kicking.

Curriculum Learning and Gait Conditioning. Curriculum learning strategies have been employed
to facilitate the acquisition of complex locomotion behaviors. The DeepWalk approach Rodriguez
et al.| (2021)) utilizes a novel DRL method to enable omnidirectional locomotion for humanoid
robots, introducing a curriculum that gradually increases task difficulty. Additionally, a unified
gait-conditioned RL framework [Chen et al.| (2025) allows humanoid robots to perform standing,
walking, running, and smooth transitions within a single recurrent policy, employing a compact
reward routing mechanism to support stable multi-gait learning.

In summary, our work builds upon these advancements by adapting modular reward designs and
scalable simulation frameworks to the ToddlerBot platform. By focusing on whole-body motion
imitation and addressing the challenges of training stability and multi-behavior integration, we aim to
contribute to the development of versatile and robust humanoid locomotion policies.
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Figure 4: The four key-frames that created the crawling motion.

3 Method

3.1 Reference-Motion Acquisition

We developed a MuJoCo key-frame editor with PyQt to create the crawling motion (see Fig.3). Poses
are first hand-placed, then interpolated with cubic splines, and exported as NumPy arrays of joint
angles, velocities and root quaternions for every 10 ms step. These files serve simultaneously as
imitation targets and as privileged inputs for the critic.

3.2 Reinforcement-Learning Formulation

We pose whole-body crawling as a continuous-control task in Brax (MJX) |Google Research| (2021).
The actor takes the observation o; and produces bounded joint-position targets. These are rescaled
and blended with the reference command:

a; = s, tanh(fy(or)) + af, ()

where s, =2.0 during pre-training and fy is a shared MLP policy. Attempts to lower s, below 1.5
caused learning to stall, confirming the sensitivity to actuation range.

We adopt Brax’s default PPO implementation. Advantage estimates are computed with Generalised
Advantage Estimation (GAE):
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The actor is updated with the clipped surrogate objective
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Observations are standardised online via an exponential moving average.
3.3 Reward Functions
We adopt three exponential tracking terms from DeepMimic and add three robot-specific terms:
1. Pose: tracks body-part orientations via quaternion error.
2. Joint velocity: tracks linear and angular joint velocities.
3. End-effector position: tracks hand and foot positions.
4. Torso: tracks torso position and orientation.
5. Velocity tracking: tracks overall body velocity.
6. Motor regularisation: penalises excessive torque and acceleration.
Each term has the exponential form
re = oxp( =k exdl3), ®)
and the total step reward is
Ty = Z W Tkt + Tsurvive (6)
k

where wy, are term-specific weights and rgyive =1 if the torso height exceeds 7 cm.

3.4 Two-Stage Training Pipeline

Stage 1 — Pre-training (fixed_env). The policy is trained for 100 PPO updates on a flat plane,
tracking the reference motion only.

Stage 2 — Fine-tuning (regular_env). Domain randomisation is enabled—random pushes, vari-
able friction, randomised initial poses and Perlin-noise terrain. Because the actor output is already
tanh bounded, we leave network weights untouched and tune only the learning rate.

3.5 Stereo Depth Estimation

Using ToddlerBot’s fisheye stereo cameras, we implemented depth estimation with Foundation-
Stereo Wen et al.|(2025) (Fig. E[) To meet the 10fps budget on an NVIDIA Jetson Orin Nano, we
compiled a TensorRT FP16 engine at 96 x 128 resolution. Figure[6|compares simulated and real-world
depth on YCB objects |Calli et al.| (2015)).

4 Experimental Setup

We conduct all experiments using the Brax simulator with the MJX physics backend. The robot
model used is the ToddlerBot, a 30-active-degree-of-freedom quadruped approximately 0.56 meters
in height. Control signals are issued at 100 Hz, and each training episode is 500 steps long, which
matches the upper bound of the exponential reward terms used in the imitation loss. This duration
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Figure 5: Depth estimation pipeline. Raw fisheye images are rectified and undistorted before
inference.

Figure 6: Left: simulated depth; right: estimated depth from FoundationStereo.

ensures that the agent experiences the full temporal context of the reference motion during training
and evaluation.

Two environments are used throughout training. The first, fixed_env, contains a flat ground plane
and no external disturbances. This environment is used exclusively for pre-training the policy to
track the reference motion without needing to worry about balance or perturbations. The second
environment, regular_env, introduces a variety of perturbations: Perlin-noise terrain, randomized
initial root poses, randomized friction coefficients drawn from the interval [0.8, 1.2], and random
lateral pushes of up to =5 Newtons. This environment is used for fine-tuning, where the agent
must not only imitate the motion but also survive under domain randomization and environmental
variability.

Optimization is performed using PPO with Brax’s default settings. We experiment with two learning
rates during fine-tuning: 1 x 10~°, which preserves the crawling behavior but fails to adapt to
disturbances, and 5 x 10~°, which improves survival but degrades imitation fidelity. No other
PPO parameters were changed, and the same actor and critic architectures were maintained across
experiments. The actor network outputs joint position targets, bounded by a tanh layer; the action
scale is fixed at 2.0 throughout, as lower values were found to prevent convergence in the pre-training
stage.



For evaluation, we track imitation quality using the negative mean squared error between the agent’s
joint angles and those in the reference trajectory. Additionally, we measure survival time and provide
a reward breakdown across components to evaluate the agent’s robustness and policy generalization.
These metrics are logged and visualized across multiple random seeds to assess consistency and
performance variance. All experiments are conducted with the goal of isolating the effects of fine-
tuning under increasing environmental complexity while preserving the quality of motion learned
during imitation pre-training.

5 Results

5.1 Pre-training in Fixed Environment

We apply a negative mean-squared-error between target and actual joint positions as the motor
tracking reward, and set the action scale to 2.0 to ensure sufficient control amplitude.

Quantitative Results

e Action Scale: 2.0

* Arm MSE Reward: converges to approximately —21.4 by 1000 steps, indicating accurate
arm joint tracking (see Fig.[7b).

* Leg MSE Reward: also reduces steadily, plateauing at a similar order of magnitude (see
Fig.[7h), though with higher variance across seeds.

Qualitative Observations

* Despite adding torque and energy penalties to smooth controls, the resulting motion is still
noticeably jittery.

» End-effectors (hands and feet) do not align precisely with the reference trajectory, suggesting
that position-only supervision is insufficient for full pose fidelity.
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Figure 7: Negative MSE joint-tracking rewards during pre-training (action scale = 2.0).

Failure under Low Action Scale To assess sensitivity to action magnitude, we repeated the
negative-MSE pre-training with action scales below 1.5. In this regime, both arm and leg tracking
rewards flatten out at very high losses (worse than —100) and never improve over 400 steps, indicating
that the policy entirely fails to learn the reference crawl when control amplitudes are too small. (see

Fig [8)
5.2 Fine-Tuning in the Interactable Environment

Starting from the 1000 steps pre-trained checkpoint (action scale = 2.0), we fine-tune the policy in
the full Brax environment with an added survival objective. Because the actor’s final layer remains
tanh—activated, we did not alter the network output directly but instead reduced the learning rate to
encourage stable adaptation.
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Figure 8: Negative MSE joint-tracking rewards during pre-training (action scale < 1.5).

Learning Rate = 1 x 10~°
* Survival reward: Remains at zero throughout fine-tuning, showing that the agent fails to
acquire any survival behavior (Fig. ).

* Leg motor position reward: After an initial transient increase, it steadily declines over
350 steps, indicating the policy abandons the reference gait when pressured by survival loss
(Fig. ).

* Reference motion retention: Qualitatively, the agent still recalls the pre-trained crawling
pattern to some extent but cannot execute it stably in the interactive environment—Ilikely
due to the overly small learning rate.
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Figure 9: Fine-tuning dynamics in the interactable environment at Ir = 1 x 107°.

Learning Rate =5 x 10~°
* Survival reward: Stays at zero throughout fine-tuning, confirming that the agent never
acquires any survival behavior at this learning rate (Fig. [I0).

* Leg motor position reward: Exhibits a brief uptick before continuously decaying to
near zero by step 350, indicating that under survival-driven gradients the pretrained gait is
progressively unlearned (Fig. [10).

* Reference gait stability: Although the agent initially echoes the pretrained crawling pattern,
it quickly loses stability and cannot execute the motion reliably (Fig. [I0).
5.3 Different tracking rewards

Additionally, we test different types of motoy tracking reward in fixed environment:

MSE-based Motor Tracking Reward Using a negative mean-squared-error tracking reward, the
learned policy exhibits:

* Leg motor position reward: Fails to converge, plateauing near —90 (versus —15 when
using action scale = 2.0), showing poor leg tracking under MSE loss (Fig. [TT).
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Figure 10: Fine-tuning dynamics in the interactable environment at Ir = 5 x 10~°.

* Training stability: Suffers from large oscillations, reflecting unstable learning dynamics in
the static environment.
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Figure 11: Arm and leg motor tracking rewards under MSE reward in the fixed_env.

Exponential-form Motor Tracking Reward Switching to an exponential-shaped tracking reward
(episode length = 500, so max possible reward = 500), we observe:

* Leg motor position reward: Stagnates near 80 with intermittent catastrophic drops, indi-
cating highly unstable leg tracking even in this non-interactive setting (Fig.[T2).

6 Discussion

Our ablations reveal that simply reshaping the reward structure fails to stabilize our PPO policy:
although multi-component motor-tracking signals (pose error, end-effector/COM alignment, ve-
locity matching) reliably converge on static reference trajectories, they collapse under dynamic
perturbations—and neither tuning action scales nor adjusting learning rates prevents torque collapse.
Furthermore, survival and imitation objectives inherently conflict when processed under the same
observation scaling: privileged reference inputs overwhelm the policy’s native observations, inducing
adversarial training dynamics and episodic reward collapse. Finally, forcing both precision- and
robustness-focused signals through a single encoder exacerbates these tensions, as conflicting gradient
directions derail convergence and prevent generalization to dynamic environments.



rew_leg_motor_pos

80
60
40
20
Step
0 200 400 600 800

Figure 12: Arm and leg motor tracking rewards under exponential reward in the fixed_env.

7 Conclusion

Based on our experiments with ToddlerBot in Brax, the two-stage DeepMimic-inspired pipeline,
pretraining on fixed reference motions followed by fine-tuning under survival and domain randomiza-
tion—yields accurate motion tracking but suffers significant instability and catastrophic forgetting
when faced with dynamic perturbations . These failures stem from competing imitation vs. survival
objectives, a monolithic actor—critic architecture, and the absence of decoupled observation scaling.
To overcome these limitations, we will migrate to the latest Brax release, leveraging its native support
for asymmetric actor—critic architectures and built-in observation normalization. This will allow us to
separate privileged reference inputs from policy observations and stabilize critic targets. Once the
core training pipeline is robust, we will train a library of specialized expert behaviors (e.g., crawling,
walking, climbing) and integrate them into a unified, egocentric vision-conditioned locomotion policy
via behavior stitching or Adversarial Motion Priors (AMP). This approach paves the way toward
versatile whole-body control of humanoid robots in unstructured environments and sets the stage for
real-hardware deployment on the ToddlerBot platform.

8 Team Contributions

* Tae Yang: Assisted with reinforcement learning training and environment setup.
* Daniel Jinag: Developed the stereo depth estimation pipeline and camera calibration setup.

e Zhicong Zhang: Simulation environment setup and experiment implementation.
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