
Training Super Smash Bros. Melee Agents (Extended Abstract)

Motivation Super Smash Bros. Melee (SSBM), a 2001 crossover fighting video game developed by
HAL Laboratory and published by Nintendo for the GameCube, is a fast-paced, multiplayer fighting
game with complex physics, high-dimensional continuous controls, and strategic depth. Existing
successes of reinforcement learning (RL) on games like Atari, Go, and Chess are not fully applicable
to SSBM given its higher temporal resolution and partial observability. Our goal is to explore the
extent to which large-scale offline data in the form of replays files from Project Slippi and modern
RL techniques can bootstrap competent SSBM agents, and to identify the combination of behavior
cloning and reinforcement learning needed to approach human-level performance given data and
compute constraints.

Method We first perform offline behavior cloning (BC) on human replay data to initialize agent
policies that mimic expert input distributions. We process 525 curated Slippi .slp files (where player
1 is always the character Fox and player 2 is another high-skill opponent) into 5-frame state-action
windows and train an MLP policy network. Next, we inject the policy into a Dolphin emulator loop
for evaluation through key SSBM performance metrics again CPU competition. We then experiment
with with two RL policies, namely implicit Q-learning (IQL) and proximal policy optimization (PPO),
to refine the policy with reward signals based on win/loss, damage dealt, and stage control in order to
learn strategies beyond what can be offered by BC .

Implementation We build infrastructure to process Slippi files and extract frame-wise game
state and controller inputs, breaking this dataset 98/1/1 into our train/val/test split. We tested our
implementation on smaller MLP models, gradually scaling to a 15 layer and 1024 layer size MLP
with leaky-ReLU, optimized via Adam at a learning rate of 1× 10−4. For RL finetuning, we employ
a parallelized PPO implementation running 32 simultaneous matches, collecting trajectories of length
500 steps. We train on a a c4x4 large and a Google cloud (whatever the specific is). We also built
extensive layer between libmelee (an API for interfacing) with an Dolphin emulator in Python with
the inputs and outputs of our model architecture.

Results Our BC agent achieves surprisingly impressive performance considering the limited data
it was trained on, being able to execute basic combinations and building towards taking off a stock.
However, it demonstrates a lack of recovery (taking actions that bring the agent back into the game
stage when knocked off) that prevents it from winning against the CPU player (0.375 ± 0.484 kills).
Both of our RL techniques (IQL and PPO) make moderate gains above this baseline across a range of
performance metrics, but continue to struggle with the issue of recovery.

Discussion Our experiments indicate that BC alone rapidly captures human-like micro-actions but
plateaus in competitive performance. RL finetuning yields improvements in strategy and adaptability,
validating our hypothesis that hybrid BC + RL pipelines can be effective for training performant
agents at smaller scale. Scaling data remain critical, however: deeper architectures and richer reward
functions along with that could further enhance performance.

Conclusion We present a framework for training SSBM agents by combining expert offline data
with deep reinforcement learning techniques. Our research shows surprisingly promising initial
results on trained SSBM agents despite constraints in data and compute, and outlines key challenges
such as data scale, reward design, and model architecture design, that will guide future work toward
achieving human-level expertise in complex, real-time multi-agent games.



Training Super Smash Bros. Melee Agents

Matthew Lee
Department of Computer Science

Stanford University
mattglee@stanford.edu

William Hu
Department of Computer Science

Stanford University
willhu@stanford.edu

Samuel Do
Department of Computer Science

Stanford University
samdo@stanford.edu

Abstract

Super Smash Bros. Melee (SSBM) is a fast-paced, real-time fighting game with
complex physics, high-dimensional continuous controls, and rich strategic depth,
characteristics that move beyond traditional reinforcement learning achievements
(Atari, Go, Chess). In this work, we explore a hybrid pipeline combining offline
behavior cloning (BC) on Project Slippi replay data with deep reinforcement
learning (RL) finetuning (IQL and PPO) to train competent SSBM agents under
realistic data and compute constraints. We preprocess 525 curated Slippi replays
into 5-frame state–action windows, train MLP policies via BC and then refine
these policies with RL within a Dolphin emulator using reward signals for wins
and damage dealt. While BC agents exhibit strong micro-action imitation, they
struggle with recovery and win-rate, which our RL methods partially mitigate
to yield moderate performance gains. Our results suggest the potential of BC +
RL pipelines for long-horizon, high-frequency control tasks. We highlight key
challenges like evaluation, reward design, and model architecture that will guide
future efforts toward human-level expertise in complex multi-agent environments.

1 Introduction

Achieving human-like and superhuman performance in games has long served as a benchmark for
progress in artificial intelligence. From mastering perfect-information, turn-based board games like
Go and Chess with AlphaZero Silver et al. (2017), to tackling high-dimensional visual environments
like Atari through Deep Q-Networks and model-based agents like DreamerV2 Hafner et al. (2020),
reinforcement learning has proven to be a powerful tool in advancing game-playing AI. However,
these successes often depend on environments with low temporal complexity, full observability,
and relatively straightforward reward structures. In contrast, real-time fighting games like Super
Smash Bros. Melee (SSBM) present unique challenges: high-frequency continuous control, partial
observability, sparse and delayed rewards, and complex, multi-agent interactions.

SSBM is a 2001 crossover platform fighter developed by HAL Laboratory and published by Nintendo
for the GameCube. Over the past two decades, it has cultivated a devoted competitive scene
and an active ecosystem of developers who have built tools for replay logging (Slippi), emulator
instrumentation (libmelee), and game state introspection. These advances make SSBM not only a
compelling environment for studying advanced decision-making strategies but also an increasingly
viable testbed for reinforcement learning research.

Stanford CS224R 2025 Final Report



Despite this promise, prior work in training agents for SSBM has faced significant hurdles. Firoiu
et al. Firoiu et al. (2017) pioneered early RL agents by training directly from pixels, but lacked
access to large-scale replay data or efficient simulator APIs. More recently, Gu et al. Gu (2025)
employed behavior cloning (BC) on billions of frames of expert gameplay, showing strong action
prediction but limited in-game success without further reinforcement learning. These works hint at
a critical insight: while BC captures expert-like behavior patterns, it struggles with generalization,
long-horizon planning, and recovery, all elements crucial to winning in SSBM.

In this paper, we investigate whether combining imitation learning with reinforcement learning
under realistic compute and data constraints can produce competitive SSBM agents. Specifically, we
explore a hybrid offline learning pipeline: we first train policies using behavior cloning on 525 curated
Slippi replays (approximately one million frames) focused on Fox, a fast-paced, combo-oriented
character. We then finetune these policies using either Implicit Q-Learning (IQL) or Proximal Policy
Optimization (PPO) within a Dolphin emulator loop, using a reward function that balances stocks
taken, damage dealt, and game outcomes.

Our contributions are fourfold:

1. We integrate Slippi-Ishiiruka and libmelee into a Gym-style training environment for efficient
RL in SSBM.

2. We curate a dataset of Fox vs. high-level opponents and process it into a structured replay
buffer for offline learning.

3. We implement and evaluate both offline (IQL) and online (PPO) RL methods atop BC, under
tight compute constraints.

4. We conduct quantitative and qualitative analyses of agent performance, identifying key
bottlenecks like failure to recover.

Through this work, we aim to understand not only what current RL pipelines can achieve in high-
frequency multi-agent environments, but also what is still missing in terms of data, algorithms, and
evaluation practices to reach truly expert-level performance.

2 Related Work

2.1 Beating the World’s Best at Super Smash Bros. Melee with Deep Reinforcement Learning

Firoiu et al. approached the same task much earlier in 2017, essentially predating the crucial data and
infrastructure later efforts were built on (including ours) Firoiu et al. (2017). Without access to a large
corpi of expert demonstration data or an API such as libmelee to interact with the SSBM emulator, the
authors trained an agent off of the raw pixels of a game frame. They developed their own environment
wrappers around the Slippi emulator, collected data via expert replays, and trained using a standard
convolutional neural network and reinforcement learning techniques such as PPO. Ultimately, the
authors showed that it was feasible to derive vision-based policies for SSBM notwithstanding the key
challenges of sample efficiency and frame prediction accuracy.

2.2 Training AI to play Super Smash Bros. Melee

Gu et al. approached training a SSBM bot from a pure behavior cloning perspective (though the
authors are currently working on offline and online reinforcement learning methods for the same
task) Gu (2025). In particular, Gu et al. used 3 billion frames of SSBM from professional Fox
replays to train an agent using behavior cloning. The authors notably discretize controller analog
stick input and preprocess the data to transform the task (of predicting controller inputs) to a single-
label classification rather than multi-label. For training, the authors used a 20 million parameter
decoder-only transformer architecture and set up a harness for closed loop evaluation. While our
task and initial approach are extremely similar, we limit ourselves to a much smaller subset of data
and computational resources while asking: is it possible to train an agent that does just as good with
less data and compute but a smarter approach? Namely, we limit our data set to only contain 525
Slippi .slp files (roughly a million frames) in comparison to the 3 billion Gu et al. used Gu (2025).
Furthermore, SSBM poses an especially sparse reward landscape.

2



2.3 Mastering Atari Games with Discrete World Models

Hafner et al. extended their work in the original DreamerV1 paper (which targeted tasks from the
MuJoCo physics simulator) to the task of playing Atari games, achieving state-of-the-art performance
at the time Hafner et al. (2020). In DreamerV2, the authors extended previous reinforcement learning
methods based on latent-dynamics by learning discrete latent representations for planning and control.
They enable the agent to perform long-horizon planning without interacting with the real environment
(essentially imagining or dreaming up future states). This proves to be especially sample-efficient
since the agent is now able to explore states through its world model rather than wait on a simulator.
Furthermore, the agent can attribute positive rewards to actions that, in its imagination, leads to
positive future states; this helps address the all-too-common issue of sparse-rewards in reinforcement
learning. While we do not adopt a model-based reinforcement learning approach, we grapple with
some of the key problems that it aims to address.

3 Method

At a high level, our metholodigcal contributions are fourfold. First, we curate an effective set of
train/validation/test data for expert learning of a specific SSBM character. Secondly, we extensively
integrate a GameCube emulator into our codebase by building upon open-source libraries towards our
specific model constraints so that we can train and evaluate policies. Thirdly, we implement several
RL techniques for training agents under relevant policies. Finally, we integrate these pieces into a
single train + evaluate workflow.

3.1 Data

3.1.1 Raw Data Format (.slp files)

When Melee is played on a certain emulator known as Slippi Dolphin, completed matches are
automatically saved as .slp (Slippi) files for personal replay and review. These files contain frame-
wise game state data, player inputs, etc. without storing the video of the match. .slp files are
an effective and efficient data representation to which we can apply RL techniques, because the
frame-by-frame game state data and player inputs naturally lend them to observation and action
samples.

Generating the data ourselves this way would be far too time-consuming, so instead, we rely on a rich
existing .slp dataset that we believe originated from the project in Gu (2025). This dataset floats
around subreddits and Discord servers that research machine learning techniques for Melee, and an
anonymous Reddit post notes some important attributes of the dataset:

• "95,102 SLP files."

• "Unzips to 200GB."

• "All tournament sets, with varying skill levels."

• "Pruned to remove handwarmers, doubles, less than 30 second matches."

• "CC0 Licensed, so use it however you want."

The Google Drive link to the dataset is here. This is not our link, so please exercise caution when
accessing. The uncompressed form is very large, so we selectively extracted replays using zip
command line tools and shell magic.

3.2 Data Curation

The scale of the dataset was beyond what was feasible for us to handle due to training constraints,
which is also what inspired our approach for data efficiency and smarter methods. Thus, we pruned
the dataset to 525 select replays from the original dataset to train the agents for our project. This also
gave us the chance to ensure that our agent was playing the same Melee character each time; the
replays were filtered so that Fox was always the first player i.e. Fox versus some other character. We
pick Fox as his tactics rely on fast combos with minimal projectiles, traits that we felt would lend to
more easily trainable and expressive behaviors.

3

https://drive.google.com/file/d/1ab6ovA46tfiPZ2Y3a_yS1J3k3656yQ8f/view?usp=sharing


3.2.1 Data Pipeline

As mentioned, we believe this existing dataset originated from Gu (2025), so we also used Gu’s
existing replay processor and data loader for processing the .slp files in to Numpy arrays of
observations and actions per frame. Since Gu was working with the dataset in full, Gu used a data
sharding algorithm, but we opted to save the processed data as .pkl objects since we were working
at a much smaller scale for our project.

The data pipeline saves each processed replay as a .pkl object, where each object is a dictionary
of fields to Numpy arrays. Each array contains values for that field on each frame. Some example
observation fields include p1_position_x, p1_position_y, p1_facing, p1_action, etc. Some
example action fields include p1_main_stick_x, p1_main_stick_y, p1_button_a, etc.

The replay buffer is then populated by extracting the observations and actions at each frame index
from the Numpy arrays.

The default split provided by the data processor was 98% for training, 1% for validation, and 1% for
testing i.e. 513 replays for training, 6 for validation, and 6 for testing, knowing the size of our pruned
dataset.

3.3 Emulating SSBM

Emulating SSBM is crucial to not only evaluating trained agents on the actual task (i.e. playing
SSBM); it is necessary to enable other reinforcement learning techniques beyond behavior cloning.
We use a prebuilt Linux emulator AppImage from vladfi1 et al. (2025) of Slippi-Ishiiruka as well as a
melee.iso file (that represents a digital copy of the SSBM game). These resources are then specified
to libmelee AltF4 et al. (2025), which exposes different functions that enable us to perform game
actions (i.e. selecting stages and characters or specifying controller input). In addition to performing
actions in the SSBM environment, libmelee also exposes per-frame observations after each timestep.
We combine these to form an Gym-like environment for standardized interaction.

Mapping model outputs to controller inputs is simple enough, as we simply map an space of twelve
continuous values between 0 and 1 to the twelve GameCube controller inputs relevant to SSBM
(main joystick x and y, camera stick x and y, left and right trigger, and six buttons: X, Y, A, B, Z,
and D-pad up). Likewise, our model receives as input a vector containing the positions, damage
percentages, facing directions, and action states for both player 1 and player 2.

3.4 RL Methods

In order to devise a baseline of performance, we decided to train an agent via our implementation
of behavior cloning. We then attempted refining performance with two techniques that we also
implemented: implicit Q-learning and proximal policy optimization.

3.4.1 Behavior Cloning

Given the reasonably substantial amount of SSBM replays we have access to, which translates
to roughly a million (observation, action) pairs each mapping to a frame of game-play, behavior
cloning is a natural option to serve as a good baseline of performance. As mentioned previously,
these (observation, action) pairs are grouped into windows of 5 consecutive frames. Groups are
then shuffled randomly through the replay buffer, and the model is trained to minimize the negative
log likelihood of the ground truth action taken at the last frame based on a normal distribution
parameterized by a mean and standard deviation output by the model. The mean-prediction network
is a standard MLP with leaky-ReLU as the activation function. The deviation-prediction network is a
simple trainable 1D tensor representing the log of the standard deviation.

3.4.2 Reward Function

The reward function is defined as the difference in value between the current and previous states
for both players, where the state value incorporates stocks, health, and a large penalty for losing the
game. Formally, the state value for a player is:

4



V (s) = 400 · stock(s) + health(s)− 10000 · ⊮loss(s),

where stock(s) is the number of remaining stocks, health(s) represents the current percent health
(inverted such that lower health implies a higher value), and ⊮loss(s) is an indicator function equal to
1 if the player has lost the match in state s, and 0 otherwise.

The reward at timestep t is the change in state value between the current and previous states, computed
as the delta between Player 1 and Player 2:

rt =
(
V (s

(1)
t )− V (s

(1)
t−1)

)
−
(
V (s

(2)
t )− V (s

(2)
t−1)

)
,

so that higher rewards correspond to improvements for Player 1 relative to Player 2. This reward
function was our best attempt at explicitly modeling all the behaviors we thought were important:
getting kills, preserving health, and not losing.

3.4.3 Implicit Q-Learning

Implicit Q-Learning (IQL) is an offline reinforcement learning algorithm introduced by Kostrikov
et al. (2021) that addresses the distributional shift problem inherent in learning from fixed datasets.
Unlike standard actor-critic methods that rely on policy improvement via maximizing the Q-function,
IQL avoids explicit policy updates and instead fits a value function and uses it to weight behavior
actions. This approach minimizes overestimation and instability from out-of-distribution action
queries. The key idea is to train the critic using conservative Bellman updates and compute a value-
weighted regression onto actions from the dataset, implicitly biasing learning toward high-value
actions without requiring policy gradients.

The Q-function in IQL is trained via a modified temporal-difference loss that omits the policy
improvement step:

LQ = E(s,a,r,s′)

[
(Q(s, a)− (r + γV (s′)))

2
]
,

where V (s) = Ea∼πβ

[
exp

(
Q(s,a)−V (s)

β

)]
implicitly defines the soft value function. IQL’s strengths

lie in its simplicity, strong empirical performance on offline tasks, and robustness to hyperparameters.
However, it may underperform on online or highly exploratory tasks due to its reliance on behavior
data and lack of explicit exploration. However, we take advantage of this for SSBM as environmental
rollouts are highly costly from a time and compute perspective.

3.4.4 Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a widely used on-policy reinforcement learning algorithm
proposed by Schulman et al. (2017) that balances learning efficiency and stability. PPO improves
upon vanilla policy gradient methods by introducing a clipped surrogate objective that limits how
much the policy can change at each update step, thereby preventing destructive policy updates. It is
especially favored in simulated environments where reliable exploration is feasible, and sample reuse
is limited.

The core objective optimized by PPO is:

LCLIP(θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
,

where rt(θ) = πθ(at|st)
πθold (at|st) is the probability ratio and Ât is the advantage estimate. The clipping

mechanism controls variance while still allowing sufficient policy updates. PPO is sample inefficient
compared to off-policy methods like IQL and struggles in sparse-reward or offline settings. Neverthe-
less, its stability, simplicity, and performance in high-dimensional continuous control has established
it a strong choice for many real-world tasks, and we hypothesized this would generalize to SSBM.

5



Figure 1: System diagram overview of our method for training SSBM agents.

3.5 System Integration

Visualized in Figure 1, our overall system for training and evaluating policies on SSBM can be
described as follows:

• Collect all training Slippi files, preprocessing them and loading them into a replay buffer.

• Use the training data to train a baseline MLP using behavior cloning.

• (Optional) Use RL techniques like IQL or PPO to further refine the MLP policy with the
Dolphin emulator.

• Use the Dolphin emulator to evaluation final performance metrics.

4 Experimental Setup

4.1 Behavior Cloning

For BC, we experiment with a number of different model sizes and learning rates for the mean-
prediction MLP, iterating between (2, 4, 8) for the number of layers, (128, 256) for the layer sizes,
and (1e − 3, 2e − 4, 5e − 4) for the learning rate. As a basic sanity check, we evaluate each BC
sub-experiment based on the percentage of predicted actions that matches the ground truth action, up
to a set threshold of 0.05, 0.1, and 0.2.

4.2 Evaluating In-Game Performance

After we finished iterating on our baseline model, we proceeded to train three policy classes of
agents: (1) BC, (2) BC + IQL, (3) BC + PPO. After training each policy, we play the agent ten times
against the default CPU, an effective baseline since it is known for its simple and rather deterministic
behavior. We tracked five metrics that are used in SSBM (and in specific, the Slippi project) from
these matches to measure performance of our agents:

• Kills: The number of stocks that the player is able to take off the other player.

• Damage: The percentage damage that the player is able to inflict on the other player.

• Opening Conversion Rate (OCR) : The success percentage at turning a hit into another hit.

• Openings / Kill (O/K) : How many openings are needed on average before the player takes
a stock?

• Damage / Opening (D/O): How much damage is done per opening?

Our hyperparameter configuration was as follows: a 15-layer MLP policy network, 1024 hidden units
per layer, and a learning rate of 1e-3 with the Adam optimizer, processing 5 frames per observation
with a batch size of 512 over 5000 iterations. Training uses a replay buffer of 1 million samples,
saves checkpoints every 10 iterations, and validates every 10 iterations.

6



5 Results

5.1 Behavior Cloning

As shown in Figure 2, a large enough model is capable of predicting sensible actions given game-state
observations when the model. Through out experiments, we discovered the key differentiator between
models that succeeded and those that did not was the number of layers - MLPs with only 2 layers
struggled to output actions that were within 0.1 of ground truth 50% of the time. On the other hand,
those with more than 2 layers were within threshold 80% of the time (a MLP trained with 8 layers
seemed to learn much faster than the 4-layer variant but tapered off to around the same level of
performance). For a threshold of 0.05, models with 2 layers were within threshold only 30% of
the time whereas those with more than 2 layers reached roughly 60% as shown in Figure 4. For
an even greater threshold of 0.2, 2-layer MLPs were within threshold roughly 75% of the time;
MLPs with greater than 2 layers were within threshold 85% of the time as shown in Figure 5. These
results ultimately suggest that we need a large enough model to provide it with enough capacity to
learn the mapping between observations and actions in SSBM. With that being said, this measure of
performance does not necessarily translate to real, in-game performance and motivates more means
of evaluation through environment interaction.

Figure 2: Percentage of action dimensions that match within threshold (0.1)

5.2 Evaluating In-Game Performance

Our results from the performance experiment are summarized in Table 1. The key result, unfortunately,
is that our policies were unable to eek out a single win against the CPU across the board.

Approach Kills Damage OCR O/K D/O

BC 0.375± 0.484 82.00± 35.77 24.54%± 14.33% 8.33± 2.11 14.40± 2.74
+ IQL 0.501± 0.471 89.64± 39.07 32.54%± 20.74% 6.33± 2.05 14.36± 3.39
+ PPO 0.528± 0.374 92.19± 35.04 33.58%± 18.22% 6.45± 2.02 14.48± 3.60

Table 1: Performance comparison between BC, IQL, and PPO across 10 games.

5.2.1 Statistical Analysis

To expound on specific implications of the statistics reported:

• Kills and Damage: These metrics are the most direct indicators of policy performance.
Both IQL and PPO yield modest improvements over BC, with IQL increasing kill counts
and damage slightly and PPO providing the highest mean performance with lower variance.
Given that we are explicitly refining the policy with reward, the marginal gains are surprising.

7



The answer will be explored in depth later, but suffice to say that recovery is the key barrier
to agent success.

• Opening Conversion Rate (OCR): Under BC, OCR is limited; IQL boosts conversion
on punish opportunities but introduces greater inconsistency in out-of-distribution states,
while PPO further improves OCR and likely reduces variance through its clipped surrogate
updates.

• Openings / Kill (O/K): BC requires the most openings per stock; IQL reduces this by
making punish sequences more efficient, and PPO matches or slightly improves on IQL
with more stable stock closures.

• Damage / Opening (D/O): This metric stays consistent across BC, IQL, and PPO, indicating
that neither offline nor on-policy RL learns higher-damage combos per opening. Overall
damage gains arise from better conversion rather than stronger individual sequences, and
more complex chains of tactics beyond those learned by imitation in BC are unfortunately
not realized.

5.2.2 Briefly on Transformers

Given these metrics, one might ask: would a Transformer architecture not work much better? After all,
the combo-driven nature of SSBM tactics lends itself well to the idea that a Transformer architecture
that autoregressively predicts state would do much better than our currently MLP architecture. Indeed,
that was our hypothesis; however, it was not what we found. Instead of performance that exceeded
that of the MLP, we found action predictions that were closely tied to the mean controller action i.e.
zero joystick movement and no buttons pressed. This unfortunately lead to null metrics but makes
sense: our Transformer model is drastically underfitting due to the limited amount of data we are
providing this architecture. Indeed, as existing reports have shown, scaling the amount of data and
compute used to train a Transformer does result in impressive performance, but we simply could not
compete on that dimension.

5.3 Qualitative Analysis: Exploring Game Play

Metrics are great, but what implications does this actually suggest in terms of SSBM in-game
performance? We decided to probe deeper into the evaluations we ran in order to qualitatively
understand the strategies we trained, in particular trying to understand the reason behind low number
of kills. In order to do this, we watched every single match produced in the evaluation phase (30
total). What we found were behaviors that were surprising effective but unfortunately all too human.

(a) Fox as Player 1 opens the game by hitting an
effective combo against Falco as Player 2, a replica
of expert tac.

(b) Player 1 dives over Player 2 onto the left side of
the stage, falling without attempting to grab onto
the ledge as an expert player would.

Figure 3: Two key moments from our overall set of matches: an early combo and a fatal misstep.

8



5.3.1 Hitting Combos...

Figure 3a showcases our agents’ core micro-strategic success: learning to string together fast follow-
up attacks in combos that maximize damage and set up potential kill opportunities. In this example,
Fox (Player 1) capitalizes on a small opening against Falco (Player 2) by chaining a short hop aerial
forward tilt that then later goes into a series of neutral attacks. This sequence, which we saw in
all three policies, demonstrates that both BC and RL-refined policies can capture temporal action
dependencies from human replay data. The consistency of these learned combos correlates strongly
with gains in OCR and the lack of change in D/O observed in Table 1.

Despite this success, our agents still miss or truncate combos often, especially under IQL and PPO
where exploration introduces variability in the resulting performances. Failed combos have a critical
failure mode: timing misalignment causing aerial or tilt attacks to miss. These failure patterns
suggest that while our models learn the macro-structure of combos, they lack the precise calibration
exhibited by expert human play to exploit advantages in position. Addressing these gaps may require
augmenting the training data with targeted "combo drills" focused on specific spacings or player
positions. As we see below, however, missing attacks is not the only issue.

5.3.2 ...and Jumping Off Stages

Despite the uncannily good micro-strategy of our agents, all agents across all our training methods
(BC, IQL, PPO) failed to learn one critical heuristic: falling to your death unprompted is bad, so
you should avoid actions that cause it and attempt to recover if you are falling. Figure 3b is a good
example of this: Fox as Player 1 is not actively being attacked by the Player 2 (Falco), however, the
agent decides to dash over onto the left side and proceeds to fall without making an attempt to grab
onto the ledge and recover. Ultimately, this behavior is the single largest barrier to greater success
of our agents. At the suggestion of our TA, we attempted curation of specific instances of recovery
that we could use within training to improve the performance of our agent. However, a key barrier
was that specifying the right bounding box for states involving recovery and then the right specific
state/action sequences representing recovery was quite difficult. Even after curation, the overall
metrics produced by such a model in BC were not significantly different from the baseline.

There are a few implications that we can draw via observing this behavior. Firstly, for actions where
deviation from the correct sequence is highly consequential, we need much more data to learn from.
While a few flukes here and there in the middle of the stage are fine and might be representative of
noise inherent with the training data, recovery is what could be considered a "must learn" in our BC
baseline. Furthermore, these results suggest that we could have built a more robust reward function
that better captures the tradeoff of conservatism (trying not to lose a stock) with initiative (going to
combos, even if they are risky, knowing that tempo is important to agent success). Of course, the
difficulty in specifying such a reward function lends further credence to the idea that training a better
reward predictor across a wider range of state/action inputs via a process like PPO is the correct way
forward towards scaling performance.

6 Discussion

6.1 Better, More Accurate Evaluation

Accurately evaluating agents in a way that allows us to gauge its actual in-game performance is
difficult. Even with an emulator in place and in-the-loop metrics such as percent damage, it is
challenging to appropriately reward agent actions. For example, rewarding an agent based on player
health retained (essentially penalizing it for losing health) could cause the agent to be adopt an overly
defensive play style. Building careful in-the-loop metrics is critical to both understanding how agents
perform in complex environments such as SSBM and pave the way forward to training better ones
and would be a good line of future work.

6.2 Improving RL Evaluation

Training an agent for SSBM for reinforcement learning is bottlenecked by the latency of the emulator
itself, waiting for actions to be taken, and observations and rewards to be returned to the agent. We
might take a number of approaches to this. Firstly, we can decrease the latency of the emulator

9



itself through fast-forward mode, essentially allowing the game to run much faster than normal.
Alternatively, we can also parallelize multiple instances of the emulator to increase the throughput
of our system and train the agent in aggregate. Though these optimizations were not necessary for
our limited amount of data and compute, they will be essential as we scale our model up and would
be a critical future line of work. Such findings would also impact the development of techniques
for evaluating other complex environments with difficult evaluation procedures like robot behavior
learning.

6.3 Scaling is All You Need

More data would have enabled better performance. Although this is an almost intuitive statement in
modern deep reinforcement learning, the point is worth repeating as we compare our performance
with the CPU baseline and with available results. It is entirely reasonable to hypothesize based on
these comparable that dramatically scaling the number of examples seen on tactics and recovery from
expert players would have enabled us to train agents with richer and even winning behavior, but such
is the constraint of class projects in modern ML.

7 Conclusion

In this work, we demonstrate the viability of training Super Smash Bros. Melee agents using a hybrid
approach that combines behavior cloning on expert replay data with reinforcement learning finetuning
via IQL and PPO. Despite limited compute and data compared to prior large-scale efforts, our agents
learn competent micro-strategies and show modest performance gains with RL. However, persistent
failures in recovery and stock preservation highlight the limits of our learning methods and underscore
the need for better reward design, targeted data augmentation, and more scalable infrastructure. Our
findings reinforce the promise of BC + RL pipelines for complex multi-agent games and point toward
several future directions for achieving stronger, more human-like performance.

8 Team Contributions

All members were involved in discussion and implementation review of all facets of the work
described in this paper. Specific emphases include:

• Matthew Lee: RL methodology implementation and training pipeline.
• William Hu: Emulator environment and behavior cloning implementation.
• Samuel Do: Data curation infrastructure and training infrastructure.

Changes from Proposal While essentially the same as the proposal in vision, we reduce the scope
of performance we wanted to achieve after understanding key constraints in scale. The shifts in
responsibility thus reflect the de-emphasis of the Transformer based agents.

References
AltF4 et al. 2025. libmelee: Open API for Melee AI — Documentation. Read the Docs. https://
libmelee.readthedocs.io/en/latest/ Version0.2.0 documentation, accessed 2025-06-09.

Vladfi1 et al. 2025. slippi-Ishiiruka: Dolphin Emulator fork with Slippi/AI support. https:
//github.com/vladfi1/slippi-Ishiiruka. GitHub repository, accessed 2025-06-09.

Vlad Firoiu, William F. Whitney, and Joshua B. Tenenbaum. 2017. Beating the World’s Best at Super
Smash Bros. with Deep Reinforcement Learning. CoRR abs/1702.06230 (2017). arXiv:1702.06230
http://arxiv.org/abs/1702.06230

Eric Gu. 2025. HAL: Training superhuman AI for Super Smash Bros. Melee. https://github.
com/ericyuegu/hal. GitHub repository. Accessed: 2025-05-23.

Danijar Hafner, Timothy P. Lillicrap, Mohammad Norouzi, and Jimmy Ba. 2020. Mastering Atari
with Discrete World Models. CoRR abs/2010.02193 (2020). arXiv:2010.02193 https://arxiv.
org/abs/2010.02193

10

https://libmelee.readthedocs.io/en/latest/
https://libmelee.readthedocs.io/en/latest/
https://github.com/vladfi1/slippi-Ishiiruka
https://github.com/vladfi1/slippi-Ishiiruka
http://arxiv.org/abs/1702.06230
https://github.com/ericyuegu/hal
https://github.com/ericyuegu/hal
https://arxiv.org/abs/2010.02193
https://arxiv.org/abs/2010.02193


Ilya Kostrikov, Ashvin Nair, and Sergey Levine. 2021. Offline Reinforcement Learning with Implicit
Q-Learning. arXiv:2110.06169 [cs.LG] https://arxiv.org/abs/2110.06169

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal
Policy Optimization Algorithms. arXiv:1707.06347 [cs.LG] https://arxiv.org/abs/1707.
06347

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy P. Lillicrap,
Karen Simonyan, and Demis Hassabis. 2017. Mastering Chess and Shogi by Self-Play with a
General Reinforcement Learning Algorithm. CoRR abs/1712.01815 (2017). arXiv:1712.01815
http://arxiv.org/abs/1712.01815

A Behavior Cloning - Other Figures

Figure 4: Percentage of action dimensions that match within threshold (0.05)

Figure 5: Percentage of action dimensions that match within threshold (0.2)

11

https://arxiv.org/abs/2110.06169
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1712.01815

	Introduction
	Related Work
	Beating the World’s Best at Super Smash Bros. Melee with Deep Reinforcement Learning
	Training AI to play Super Smash Bros. Melee
	Mastering Atari Games with Discrete World Models

	Method
	Data
	Raw Data Format (.slp files)

	Data Curation
	Data Pipeline

	Emulating SSBM
	RL Methods
	Behavior Cloning
	Reward Function
	Implicit Q-Learning
	Proximal Policy Optimization

	System Integration

	Experimental Setup
	Behavior Cloning
	Evaluating In-Game Performance

	Results
	Behavior Cloning
	Evaluating In-Game Performance
	Statistical Analysis
	Briefly on Transformers

	Qualitative Analysis: Exploring Game Play
	Hitting Combos...
	...and Jumping Off Stages


	Discussion
	Better, More Accurate Evaluation
	Improving RL Evaluation
	Scaling is All You Need

	Conclusion
	Team Contributions
	Behavior Cloning - Other Figures

