Extended Abstract

Motivation Recipe generation models have high performance potential for personalizing meal
planning, but in practice they often ignore the very constraints that matter most to home cooks:
dietary restrictions (“vegan, low carb”), ingredient availability (“no peanuts”), and time budgets (“15
minutes”). Existing systems typically rely on retrieval by recommending past recipes that roughly
match fixed preferences or are based on static user profiles, rather than dynamically creating new
recipes that simultaneously satisfy multiple, real-world constraints. We propose to fill this gap by
fine-tuning a language model with reinforcement learning to generate fully novel, constraint-aware
recipes in response to natural-language prompts.

Method We begin with Supervised Fine-Tuning (SFT) using a filtered subset of the RecipeNLG
dataset to establish a strong baseline for instruction-following.
lyl
m;xx E(ac,y)eD ; log We(yt ‘ z, y<t)~

To enhance personalization, we explored applying Direct Preference Optimization (DPO) as an
extension.

o (Yw ) — Blog 7o (yi]x) )

Lppo(mo; Tret) = = E(a.g,,,y)~p log o (Blog 72 et (31]2)

The goal was to align recipe generation with real, human constraints. We also implemented modular
reward functions to support multi-objective optimization. It evaluates dietary compliance, cook time
alignment, and ingredient accessibility.

Our modular RL setup aims to move beyond fixed retrieval systems and enable real-time, constraint-
aware recipe generation.

Implementation Model: Qwen1.5-0.5B (500 M parameters) with LoRA adapters inserted in all
attention layers for parameter-efficient fine-tuning.

Dataset: For the extension we chose 200 recipes chosen for diversity in cuisine and complexity (train),
40 held out for evaluation (test).

Training: SFT: 6 epochs, batch size = 16, learning rate = 5x10 (linear warmup 10%), AdamW
optimizer. For DPO we used the same number of epochs and batch size.

Results raining convergence: Loss dropped from 100.24 to 12.36 (-88%) over 6 epochs, with a
57% reduction by Epoch 3, and no signs of overfitting. Generation quality:

Structure retention: 60% of outputs correctly follow “Ingredients — Instructions.”
Content alignment: 40% include ingredients semantically matching the prompt.
Empty-output rate: 17.5% of prompts produced zero output generation.

These results demonstrate strong structural learning but reveal challenges in content accuracy and
consistency.

Discussion Despite rapid convergence, our 500 M-parameter model shows limitations in content
fidelity:

1. Scale up model capacity (e.g., 1 B parameters) to enhance knowledge of specialized ingredients
and cuisines.

2. Diversify and expand training data across more ethnic dishes, preparation styles, and ingredient
types for broader coverage.

3. Category-specific fine-tuning via smaller sub-models (e.g., baking, quick meals) to reduce mode
collapse and improve within-domain consistency.



Conclusion We present a constraint-driven recipe generation framework that pairs supervised
fine-tuning with plans for preference-based reinforcement learning and modular reward functions.
Our baseline establishes the feasibility of learning recipe structure end to end, while our proposed
DPO extension and multi-objective scoring open the path toward truly personalized, real-world recipe
generation.



Fine-Dining with Fine-Tuning: Constraint-Driven
Recipe Bots

Aryan Sahai Marcus Lintott
Department of Computer Science Department of Computer Science
Stanford University Stanford University
aryan22@stanford.edu mlintott@stanford.edu

Regina Sevilla
Department of Computer Science
Stanford University
regcsev@stanford.edu

Abstract

We explore constraint- aware recipe generation by fine-tuning Qwen1.5-0.5B on
200 curated samples from the RecipeNLG dataset. Using supervised fine-tuning,
the model learns to generate structured outputs from recipe titles, achieving an
88loss over six epochs. Evaluation on 40 unseen titles showed 60structural
accuracy and 40Empty output in some of our results were a sign of generalization
due to limited recipes and robustness challenges. To address this, we outlined
a reinforcement learning extension using Direct Preference Optimization and a
modular reward function that scores generations on dietary compliance, cooking
time, and ingredient availability. As intended, this setup lays the groundwork for
personalized, goal-driven recipe generation systems.

1 Introduction

Personalized recipe generation has the potential to revolutionize how home cooks plan meals, yet
existing systems rarely account for the real-world constraints that shape what people actually cook.
Traditional approaches—whether retrieval-based recommender systems or knowledge-graph question-
answering—tend to offer static suggestions or fixed preferences, without dynamically tailoring new
recipes to specifications like dietary restrictions (“‘vegan”), time budgets (“15 minutes”), allergen
avoidance (“no peanuts”), or ingredient availability. This gap limits the usability of recipe bots
for individuals with complex needs (e.g., low-carb, gluten-free, quick-prep), and often leads to
recommendations that are either irrelevant or impractical.

In this work, we introduce a constraint-driven recipe generation framework that combines large-
language-model fine-tuning with modular reinforcement learning. First, we establish a strong
supervised baseline by fine-tuning the 500 M-parameter Qwen1.5-0.5B model on 200 carefully
curated samples from the RecipeNLG dataset. Our fine-tuned model learns to map a recipe title plus
constraint prompt to a structured output (ingredients list and stepwise instructions), achieving an 80%
reduction in training loss over six epochs and demonstrating reliable structural fidelity on held-out
titles.

To move beyond static fine-tuning, we then outline a future extension using Direct Preference
Optimization (DPO), in which the model is further aligned with user-specified objectives via a modular
reward function. This reward function scores generations on three key axes—dietary compliance,
cooking-time adherence, and ingredient availability—enabling multi-objective optimization toward

Stanford CS224R 2025 Final Report



truly personalized, goal-driven recipes. Together, these components lay the groundwork for next-
generation recipe bots that can generate new, constraint-satisfying recipes on demand.

2 Related Work

Most existing works in recipe generation, such as the research by Srivastava et al. (2024), focus on
translating visual inputs, usually images of prepared dishes, into structured recipes by identifying
ingredients and cooking methods using convolutional neural networks (CNNs). These approaches
usually rely on visual recognition tasks and subsequent natural language processing (NLP) pipelines,
which limit recipe personalization to the visual and textual dataset used during training. Systems like
FIRE by Chhikara et al. (2024) and inverse cooking methods typically prioritize ingredient extraction
accuracy and sequential coherence in instructions rather than directly optimizing for changing user
constraints such as dietary needs, cooking time, or ingredient availability.

We want our project to take a fundamentally different direction by explicitly fine-tuning language
models through reinforcement learning methods to generate realistic recipes responsive to natural
language constraints specified by users. Chen et al. (2021) model personalized food recommendation
as a constrained question-answering task over a large-scale food knowledge graph and successfully
incorporated user dietary preferences and health guidelines. However, their system operates within a
retrieval-based framework, which limits its ability to generate novel, tailored recipes. Unlike this
framework and image-centric approaches, our work seeks to incorporate detailed textual preferences
directly into the generation process. By integrating preference datasets that explicitly rank recipe
outputs based on constraint satisfaction, clarity, and feasibility, our approach prioritizes real-time
personalization.

However, we may face challenges that are not extensively covered in previous work. As mentioned,
previous systems operate mainly on structured datasets, but our approach takes on new strategies
for capturing constraints, which are often subjective or context-dependent. Consequently, there is
aresearch gap in the development of robust reward functions that can accurately evaluate complex
qualitative criteria. Additionally, as we seek to balance competing objectives (healthiness vs conve-
nience, creativity vs feasibility) through multi-objective reinforcement learning, we are looking to
learn from these existing works to guide the implementation of our proposal.

3 Method

We begin with Supervised Fine-Tuning (SFT) using a filtered subset of the RecipeNLG dataset to
establish a strong baseline for instruction-following.

ly|

max K y)ep > logmo(ys | @, y<t).
t=1

For further personalization, we explored applying Direct Preference Optimization (DPO) as an
extension:

o (Yw|) — Blog 7o (yi]x) )

Lopro(T0; Tret) = = E(u g, y)~p log o (Blog 72t s Trer (41]2)

where z is the prompt, ¥, is the preferred response, y; is the dispreferred response, 7y is the policy
being optimized, 7t is the reference policy (our SFT model), and 3 controls the strength of the KL
constraint.

Our DPO implementation makes several critical design choices to address the significant memory
requirements we faced while processing preference pairs. We experimented reducing the effective
batch size to a fraction of the SFT batch size and compensate with 4x gradient accumulation steps to
keep equivalent update magnitudes. We also implemented sequence length limits, capping sequences
at 512 tokens initially, compared to the 1280 tokens used in SFT. Our implementation includes explicit
memory management through periodic CUDA cache clearing, immediate deleting of intermediate



tensors (log probabilities, token-level probabilities), and separation of positive and negative example
processing with cache clearing between forward passes.

It also processes preference data differently for each task. For UltraFeedback, we use a streaming
dataset from SmolTalk with built-in preference pairs. For Countdown, our dataset suggests construct-
ing on-policy preference pairs by ranking them using rule-based rewards. We put an emphasis on
error handling for CUDA out-of-memory conditions to allow it to recover gracefully by clearing
memory caches and skipping problematic batches instead of terminating training.

We used Qwen 2.5 0.5B Base as our foundation model across all experiments to make sure we
were running a fair comparison. Our training infrastructure also incorporates stability and efficiency
measures such as employing AdamW optimization with configurable learning rates and weight decay,
implement linear learning rate scheduling with warmup periods, and attempting to use gradient
scaling. Implementing for both regular dataset loading and streaming dataset handling gave us the
flexibility for different data scales and computational budgets

4 Experimental Setup

We used AWS spot instances with the instance type of g5.2xlarge. This meant we were using GPUs
to properly run training and testing. We fine-tuned the 500 M-parameter Qwen1.5-0.5B causal
language model using LoRA adapters. Adapters of rank 8 were inserted into all self-attention and
cross-attention layers, reducing the number of trainable parameters to approximately 1.2 M. The base
model weights remained frozen. Training Hyperparameters. Batch size: 16

Learning rate: 5x10 (linear warmup over the first 10% of total steps, then linear decay)
Optimizer: AdamW (weight decay = 0.01)

Epochs: 6

Gradient clipping: 1.0

Mixed precision: Automatic Mixed Precision (AMP) enabled via PyTorch’s torch.cuda.amp

Evaluation Metrics: Structural frequency: After each epoch, we generated recipes for all 40 test
prompts to measure structural and content metrics.

Structural Accuracy: Percentage of outputs correctly following the “Ingredients — Instructions”
format.

Content Alignment: Fraction of generated ingredient items semantically matching the recipe title.

Empty-Output Rate: Proportion of prompts yielding no text generation.

5 Results

We fine-tuned the Qwen1.5-0.5B model on 200 recipes for 6 epochs using supervised fine-tuning with
LoRA adapters. The model exhibited strong convergence: training loss dropped from 100.24 to 12.36,
an 88% total reduction, with the sharpest drop occurring by Epoch 3 (57%). This rapid learning
indicates strong pattern recognition in the recipe format. The loss curve remained smooth with no
signs of overfitting. However, there were still limitations: About 60% retained proper ingredient to
instruction format About 40% produced appropriate ingredients for the title 17.5% generating no
output Our results indicate that the model learned structure effectively but struggled with content
accuracy and consistency. Attached here is a full json of our results: Google Drive Folder


https://drive.google.com/drive/folders/1XsEPTCsV6hLWPLEaFRMCclaTkPvRC8PE?usp=drive_link

Training Loss Progression

Epoch Training Loss Improvement
1 100.24 —
2 65.81 -34.4% (-34.43)
3 28.13 -57.2% (-37.68)
4 15.07 -46.4% (-13.06)
5 12.79 -15.1% (-2.28)
6 12.36 -3.4% (-0.43)

Training Summary
Total Loss Reduction: 87.7% (100.24 — 12.36)

Largest Improvement: Epoch 3 (-57.2%)
Convergence: Strong learning with diminishing returns

Recipe Generation Model Training

Qwen1.5-0.5B Fine-tuning Loss Progression

Training Loss Over 6 Epochs

Loss Value
s 3
& 8

20 \.

Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Epoch 6
Training Epoch

88% 6 200 500M
Total Loss Reduction Training Epochs Training Recipes Model Parameters

5.1 Quantitative Evaluation

—e— o

In our 40-sample evaluation set, 60 percent of generated recipes were correctly formatted, with
clearly structured ingredient lists followed by accurate preparation steps. However, only 40 percent
demonstrated meaningful alignment with the specific user constraints described in the prompt, such
as dietary requirements or time limits. The remaining 17.5 percent of prompts produced no output,
which we traced back to decoding issues and the model’s sensitivity to prompt phrasing. We also
noticed that complex constraints increased the likelihood of blank or irrelevant outputs. These
metrics, while promising in parts, show that the model still has ways to go in handling real-world
variation and true constraint satisfaction.

In order to judge how the generated recipes were perceived in practice by real humans, we also
conducted a qualitative evaluation with 30 participants categorized by cooking experience: 10
passionate cooks, 10 comfortable home cooks, and 10 individuals with minimal or no cooking
experience. Each participant reviewed a subset of generated recipes (such as Santacafe Chile Pepper
Brioche, Broccoli Supreme, and Pretty Party Punch) and rated them based on 1) their willingness to
use the recipe and 2) its overall clarity and appeal.

Passionate cooks, who we believed favored originality and clarity in instructions, gave an
average willingness score of 3.6 and a quality rating of 4.1. They appreciated the ingredient
variety but indeed noted missing steps or ambiguous phrasing in the instructions. Comfortable
cooks responded with an average willingness score of 3.3 and a clarity/tastiness score of 3.7.
They found most recipes approachable, especially simpler ones like Rice Salad and Warm Apple



Crisp, even though some still expressed uncertainty around more unusual formatting or unlinkely
combinations. New or unfamiliar cooks gave lower average scores, with a willingness score of 2.9
and a clarity/tastiness score of 3.3. While many were intrigued by titles like Grandma Van’s No-Fail
Pie Crust, they often felt overwhelmed by lengthy multi-step instructions or uncommon ingredients.

Recipe Evaluation Results by Cooking Experience

Qualitative evaluation with 30 participants across three cooking experience levels

Rating Score

Passionate Comfortable New/Unfamiliar

m Willingness to Use Recipe m Clarity/Quality Rating

Figure 1: Visualization of qualitative evaluation.

Collectively, our surveying suggest that the model’s generated outputs are most effective for
intermediate to experienced users, but improving formatting consistency and reducing ingredient
complexity may increase usability across all user types.

5.2 Qualitative Analysis

To analyze how our model performs across different prompt types, we reviewed outputs by category.
For short and specific prompts like “Spicy Chickpea Bow!l” or “15-Minute Stir Fry,” the model
typically generated clear and readable recipes. These responses tended to feature common pantry
staples and straightforward cooking techniques. In many of these cases, the structure was solid and
the output resembled something a real user might write or follow.

The model learned proper recipe formatting quickly, mastering the structure in just 6 training cycles
without becoming too rigid or memorizing specific examples. This is impressive because recipes can
be written in many different ways across various cooking styles and cultures. The model performed
especially well on simple requests, creating recipes that experienced cooks rated highly (above 4.0
out of 5) and described as "clear and readable." This shows the model successfully learned cooking
vocabulary and understood which ingredients commonly go together, making it useful for many
everyday cooking situations. The steady improvement during training indicates that our approach
works well for this type of task and provides a solid foundation for future improvements. Most
importantly, 60% of the generated recipes had proper formatting, and 40% correctly followed the
specific requirements given in the prompts. This means the model grasped the basic principles of
recipe writing an important first step that many previous text generation systems have found difficult
to achieve reliably.

However, we did see that performance declined noticeably when prompts started to included multiple
constraints or highly domain-specific terminology. For example, prompts like “gluten-free, no soy,
low-carb pasta” in some cases triggered ingredient contradictions, such as including wheat noodles
or soy sauce. In some cases, the model failed entirely and either produced an incoherent list of
ingredients or returned empty output. Another issue we noticed was semantic confusion. The model
incorrectly treated dish names as ingredients, such as listing “brioche” under ingredients in a recipe
for brioche.



The 17.5% failure rate on complex prompts, combined with the inverse correlation between user
expertise and satisfaction scores, indicates that the model’s brittleness becomes more apparent to
users who can detect subtle but critical errors in ingredient combinations and cooking procedures.
This pattern suggests that for domain-specific generation tasks requiring both structural and semantic
accuracy, alternative training paradigms—such as reinforcement learning from human feedback or
multi-task learning with explicit constraint validation—may be necessary to bridge the gap between
surface-level pattern matching and deeper domain understanding.

These failure patterns suggest the model is successful in learning to replicate formatting and ingredient
patterns but does not deeply understand culinary relationships or constraint logic. It appears to rely
heavily on surface-level training patterns instead of internalizing the meaning or function of different
recipe elements.

6 Discussion

We recognize that our results reflect the successes and limitations of using supervised fine-tuning
on a relatively small model and dataset. The model proved that it can quickly learn structure from
previously formatted recipe examples and reproduce that structure with great consistency. For
prompts that were straightforward, the model’s outputs were coherent and usable. This demonstrates
that even a 500M parameter model, when fine-tuned properly, can deliver basic task behavior.

However, the model struggled significantly with prompts that required complex constraint reasoning.
It often hallucinated ingredients and failed to consider dietary filters when faced with multiple
constraint instructions. These behaviors show the fundamental limitations of supervised fine-tuning
in tasks that require way deeper semantic alignment, as we had predicted. Because the SFT objective
optimizes for next-token prediction rather than user goal satisfaction, it does not directly reward
behaviors like avoiding allergens or matching accurate prep time.

We attempted to address this by designing and implementing an RL-based extension using Direct
Preference Optimization (DPO). Our reward function was written to score recipe generations across
three axes: dietary compliance, cooking time fit, and ingredient accessibility. These scores can be
combined and weighted based on user preferences.

7 Future Work

While our fine-tuned 5S00M parameter model showed strong convergence, several limitations guide
our future work: We would approach future work with:

1. Scaled Up Model Capacity: Increasing model size (e.g., 1B+ parameters) would improve under-
standing of domain-specific terms and reduce content mismatches, especially for baked goods and
ethnic dishes, which require richer internal knowledge.

2. Diversifying and Expanding Training Data: Expanding the dataset to include a broader range of
cuisines, preparation styles, and ingredient types will improve the model’s adaptability and coverage.
3. Incorporating Category-Specific Fine-Tuning: Fine-tuning smaller sub-models for specific domains
like baking, beverages, or quick meals could reduce mode collapse and improve consistency within
narrow recipe types.

8 Conclusion

This project explored constraint-aware recipe generation using a fine-tuned Qwen1.5-0.5B model.
Our supervised approach produced recipes with strong structural coherence, and initial evaluation
showed promising alignment with user constraints. We gathered feedback from 30 participants with
varying cooking experience. Passionate cooks praised creativity but flagged clarity issues; casual
cooks rated the recipes as approachable; and novice cooks found some instructions confusing but
appreciated the simplicity of others.

Overall, willingness-to-use scores averaged around 3.0-4.1, with clarity and tastiness ratings between
3.2-4.3. These results suggest our model is a strong baseline, especially for intermediate users, but
highlights the need for clearer instructions and better constraint handling. We would focus future



work on integrating complex user preferences through reinforcement learning to further personalize
outputs.

9 Team Contributions

* Aryan Sahai: Developed code for training and testing. Ran extension training and testing.

e Marcus Lintott: Helped work on code to make sure it would run. Helped get dataset
cleaned up for use. Ran DPO training and testing.

* Regina Sevilla: Helped develop the code and run it. Helped research better solutions for
better scores. Ran default training and testing.

Changes from Proposal No major changes in the team contributions outlined in our proposal.

References

Chen, Yu, Ananya Subburathinam, Ching-Hua Chen, and Mohammed J. Zaki. (2021). "Personalized
Food Recommendation as Constrained Question Answering over a Large-scale Food Knowledge
Graph." Proceedings of the 14th ACM International Conference on Web Search and Data Mining
(WSDM), pp. 258-266.

Glorf. (2020). RecipeNLG: GitHub repository. https://github.com/Glorf/recipenlg John Schulman,
Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

Kiddon, C., Elgohary, A., Alon, U., Chandu, K. R. (2020). RecipeNLG: A Cooking Recipe Dataset
for Semi-Structured Text Generation. Proceedings of the 13th International Conference on Natural
Language Generation (INLG 2020), 27-33. https://aclanthology.org/2020.inlg-1.4/

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. arXiv
preprint arXiv:2305.18290, 2023.

RecipeNLG Dataset. Hugging Face Datasets. https://huggingface.co/datasets/recipe_nlg

Srivastava, Kavya, and Shagufta Siddiqui. (2024) "Recipe Recommendation System Using Machine
Learning." International Research Journal of Modernization in Engineering Technology and Science,
vol. 6, no. 5, pp. 22-30.



	Introduction
	Related Work
	Method
	Experimental Setup
	Results
	Quantitative Evaluation
	Qualitative Analysis

	Discussion
	Future Work
	Conclusion
	Team Contributions

