
Extended Abstract

Motivation The recent papers in the field of Robotics and Machine Learned Motion Planning
algorithms highlight the practical benefits of the action chunking. The known to the author papers
focus on Imitation(supervised) Learning and do not cover the aspects of action chunking in application
to the Reinforcement Learning. The goal of the course project is to document the practical aspects
and the challenges of conducting the Reinforcement Learning with action chunks.

Method We research the problem of the Reinforcement Learning with action chunks on a particular
task - bimanual insertion in the simulated ALOHA robot, environmentZipeng Fu (2023). This task
has a moderate success rate with the imitation learning approach (oscillating around 60% on average
with a high variance on different seeds and the large number of training steps). The course project
aims to improve this success rate by fine-tuning the model using the feedback from the environment.
The work is focused on improving the quality of the last predicted chunk as the imitation learning
alone is able to master other parts of the trajectory.

Implementation Using a chunk of size K as a single action effectively shortens the trajectory K
times and moves the complexity and variance in the learning from the level of the algorithm to the
level of the neural network. It affects how the ideas from the traditional Reinforcement Learning
could be applied to the task of fine tuning. With the reduced trajectories the true values of V, Q and
Advantage could be directly calculated, however a very complex model becomes very fragile - wrong
updates can break the behaviour learned from the demonstrations. In the course of the project two
separate algorithms are implemented - the on-policy variation of the policy gradient method and
off-policy actor-critic method, both of which are used in combination with the behaviour cloning on a
limited set of original (scripted) demonstrations which provide the necessary stability to the learning
process.

Results Evaluation of the algorithms shows that the first algorithm called "BC diluted by the policy
gradient surrogate" improves the learning and success rate in comparison to the pure behaviour
cloning by using the feedback from the environment on the same number of BC steps, however
the behaviour cloning component plays a significant role in the learning and the highest evaluation
success rate did not go above 80% showing degradation with further training, similarly to what
happens to the Imitation Learning after reaching it’s peak performance. The second algorithm
"Actor-Critic method with chunk farming" reached a similar rate of 83.2% when ran in a conservative
on-policy fashion similar to the first algorithm. The attempts to do a free off-policy learning showed
overall worse results in a reasonable time range , however they showed that the model is able to learn
a new behaviour. In the absence of cheap exploration, finding a working balance between the model
stabilization and learning from the environment proved be the main challenge in the fine-tuning of
the action chunks.

Discussion The both algorithms suffer from the lack of cheap exploration. Something like injecting
a random noise during the training roll-outs does not seem practical, given the dimensionality of the
action chunks. On practice, the exploration is effectively achieved by trying a different policy, which
leads to undesired deviations in the policy and fragility of the training. The exploration-exploitation
trade-off becomes a trade-off between doing more policy updates using the feedback from the
environment and sticking to the agent’s abilities obtained through the imitation learning. More policy
updates driven by the environment feedback encourage the actor to visit more unseen combinations of
states and actions but increase the risk of loosing the previous abilities learned by BC, the loss from
which it takes long to recover. Given the above consideration some of the future topics that could
be researched are: doing exploration using several actors or using a specific exploration algorithm
tailored for the large chunks and the use of adaptive stabilization.

Conclusion The project achieves the goal of implementing and testing of the reinforcement learning
algorithms for working with the models predicting action chunks. The results and the analysis are
documented in the report. The project achieves the goal of learning the challenges of training the
models using RL with action chunks and provides the observations and recommendation for any
further research in this area. The report suggests some techniques that could be adapted to be used in
the future work.



Deep Reinforcement Learning with Action Chunks.
Fine-tuning ALOHA robot

Dmitry Usanov
SCPD/CGOE student

dusanov@stanford.edu

Abstract

The project researches the aspects of Reinforcement Learning with the models
predicting sequence of actions executed by the agent in the open loop fashion. The
problem is viewed in the context of fine-tuning ALOHA robot on a simulated task
of bi-manual insertion. Several techniques are proposed. The challenges, achieved
results, qualitative analysis and the suggestion for the future work in the field are
presented in the report.

1 Introduction

The action chunking is a motion planning technique where the ML model predicts a series of actions
that can be executed by the agent sequentially in the open loop fashion (as opposed to predicting
a single action in the classic MDP framework). The idea of the action chunks was inspired by the
studies in the neuroscience and it’s application to the field of robotics can have the following practical
benefits:

1. The learned behaviour with action chunks is able to reflect the temporal dependencies in
motions such as the need to have pauses, which without action chunking would require a
significantly more complex modelling.

2. The action chunking allows to reduce the frequency rate of the collected observations during
the inference which could be an important factor for the performance of the systems with
slower perception and can also free up the computational resources for different tasks.

3. Having a sequence of actions allows to perform a better smoothing of the machine learned
robot trajectory.

The topic of action chunking appeared in the context of Imitation Learning, where it demonstrated
high success rate on multiple tasks. The learning of action chunks from the environment, however, is
not covered yet in the literature. On practice such need might arise in the context of fine-tuning. If
after initial training of the model with action chunking with IL it is impossible or significantly more
expensive to obtain more expert demonstrations for DAGGER or further BC training compared to
collecting the data from the environment - reinforcement learning might become a solution.

2 Related Work

The main paper in the field of action chunking for the robotics motion is Learning Fine-Grained
Bimanual Manipulation with Low-Cost HardwareTony Z. Zhao Vikash Kumar (2023) The paper
describes a low cost system consisting of customized 6-Dof robotic arms ViperX , a smaller robot used
for teleoperation (WindowX) which controls the main robot in the joint-space and 4 web-cameras
streaming 480x640 RGB images - two on the main robot wrists, one camera at the top, and one at the

Stanford CS224R 2025 Final Report



front. The system is called ALOHA and it’s used by the authors to demonstrate the performance of a
newly proposed Imitation Learning algorithm called Action Chunking with Transformers (ACT). It
is a policy implemented using the Transformer neural network architecture which gets the output
of the convolutional neural networks for the camera data and the robot’s joint positions as inputs
and predicts a sequence of actions in the robot joint space. Despite predicting a series of consequent
actions which could be executed in the open loop the authors propose to query the policy at each time
step in order to collect several overlapping predictions which could be weight-averaged to achieve a
smoother trajectory, this technique is called Temporal Ensemble. The tests demonstrate a significant
improvement compared to the previous imitation learning algorithms in both the real world and
simulated tasks. With a series of further experiments the authors show that the Action Chunking as
the design concept plays a key role in improving the success rate.

The paperTony Z. Zhao Vikash Kumar (2023) does not cover the topic of reinforcement learning with
ACT, the gap which this project aims to partially cover.

3 Experimental Setup

The course project uses Bimanual Insertion task and the imitation learning, in the simulated ALOHA
environmentZipeng Fu (2023) as the baseline to research and document the aspects of fine-tuning of
the models with action chunking using deep reinforcement learning.

Bimanual Insertion - the left and the right arms need to pick-up the socket and peg respectively, and
then insert in mid-air so the peg touches the "pins" inside the socket.

On every step simulation provides the following rewards:

• 1: If both grippers touch the respective objects
• 2: Both grippers touch the respective objects, and the objects do not touch the table
• 3. Peg touches the socket and the both objects do not touch the table
• 4. Peg touches the pins inside the socket.
• 0. Otherwise

The experiment is successful when the highest reward in the trajectory is 4, that makes the task little
different from the classic RL, instead of maximizing the sum of rewards we maximize the highest
reward.

The simulated version is a mobile version of the Robot with only 3 cameras. The frameworkZipeng Fu
(2023) provides the simulated environment, programs to generate the scripted expert demonstrations,

2



and implementation of the ACT architecture. This course project re-uses the ACT code, some parts of
the code for the neural network components for the critic implementation and the behaviour cloning
part. The project uses it’s own code for doing roll-outs, collecting the data from the environment,
sampling, training and evaluating the reinforcement learning algorithms.

4 Implemented Algorithms

Two different algorithms were implemented in the course of the project. Both algorithms aim to
improve only the last chunk (100 steps) of the robot trajectory. The decision was made based on
observation that BC reaches the highest reward of 3 in more than 90% of the cases, but the final
steps in the trajectory often do not lead to the reward of 4. For simplicity both algorithms aim to
improve the highest reward from 3 to 4 and do not consider any trajectories resulted in the highest
reward of 2 for the learning. (The decision that could be revisited in the future iterations as down the
road the performance might significantly deviate and result of 2 might become more common). Both
algorithms use the difference between the highest reward reached in the last chunk and 3.5 as either
the Advantage of taking the action chunk (in the first algorithm) or the Q value for training the critic
(in the second algorithm).

The first algorithm: BC diluted by the policy gradient surrogate

The target model is deterministic (which in general should be desired for robotics and high precision
tasks), that means there is no standard notion of logarithm of probability of taking an action. There is
some non determinism, however, in the certain layers of the neural network in training mode that
results in a small non-zero MSE between the action from the trajectory and the action produced by
the same policy on the same observation in the training mode. This fact is used to surrogate log_prob
by a negative MSE, so the final objective function looks like:
J(θ) = − 1

N

∑N
i=1(MSE(ai, πθ(si))∗A(si, ai)) , where ai is a chunk of actions from the trajectory,

The intuition behind this objective function is to incentivise the model to produce chunks which are
similar to those that resulted in the positive advantage in a similar state and produce chunks which are
different from those that resulted in the negative advantage in a similar state. A policy change resulted
in the reaction to a negative sample is not expected to be precise, but when countered with the positive
examples is expected to add some form of exploration to the algorithm which otherwise would have
none. The inspiration for such behaviour is how humans do a similar thing in the real-time when try
to insert one thing in another without looking, by trying to adjust the position by doing non-precise
semi-random moves of the object.

The algorithm is only partially off-policy. The positive examples can be re-used, but the negative
examples are expired after the policy is updated, thus the negative examples are prioritised in sampling
of the mini-batches.

There is one gradient step per one policy roll-out. This results in the mini-batches consisting either
fully from positive examples from the replay buffer or one new negative example countered by several
positive examples. For stability the model is also trained with 50 gradient steps of the behaviour
cloning (on the original demonstrations) after every 10 roll-outs - in that regard the algorithm can be
viewed more as an assistance to the imitation learning using the experience from the environment,
rather than an stand-alone learning algorithm.

The second algorithm: Actor-Critic method with "chunk farming"

In addition to the policy we also train the Critic network, which in case of ALOHA is a combination
of Convolutional neural networks and a multi-layer perceptron which takes the observations and the
action chunk as the input and produces a one dimensional output - Q value of the chunk. Using the
critic network in computing the gradient of the actor policy addresses some of the problems of the
first algorithm. The negative examples preserve their usefulness between the gradient steps and the
updates computed by the gradient taken through the critic network are expected to be more specific
than making a chunk just "different" from a wrong one.

The off-policy nature of the algorithm opens a possibility to greatly improve the data efficiency by
leveraging the knowledge of the reward function of the specific task. In our example, each roll-out
consists of 400 steps, and we want to fine-tune the last chunk of size 100, then based on the received
rewards in each step in addition to the chunk produced at the step 300 we can use a sliding window

3



with some randomization to produce, additional artificial chunks from a single episode and treat them
as if they took place at the step 300. This new technique has the work name "chunk farming". In the
last version of the algorithm it is implemented in the following way:

• For the positive episode, find the earliest step K with reward 4, randomly sample N chunks
which start in the range [K-99, 300)

• For negative episode, in addition the the chunk starting on the step 300, take N chunks
started in consequent steps.

The technique is designed to generate more data in the replay buffer with less roll-outs (doing roll-outs
could be expensive in the real environment). In the conducted experiments N is 3.

For additional stability the algorithm uses a composite loss function. The positive samples in the
mini-batch produce MSE loss with the predicted chunk and the loss on the negative samples in
the mini-batch is computed using the negative of the Critic prediction with some weight γ. (In the
conducted experiments γ is 0.005) The final loss of the mini batch is then computed as the mean
across all samples in the batch. While it paves the way for the off-policy learning the algorithm
increases the number of hyper paramters to tune. The algorithm has the hyper paramets for the
number and the frequency of the gradient steps for training the critic and the actor, chunk farming rate,
the weight for the critic-driven loss and has the freedom to sample the mini batches in various ways.
The algorithm also uses regular BC steps (on the original set of demonstrations) for stabilization.

5 Results

The tests start with the model pre-trained on 10000 steps of the imitation learning. All success rates
are computed on 250 roll-outs using one validation seed, different from the training seeds.

The results of the first algorithm.

Figure 1: Visualization of results.

There are strong indications that the proposed algorithm enhances the learning of the model when the
encoder option is enabled in ACT. The measuring method considers very high variance of both the
learning and the validation and the high role of the behaviour cloning in the model training.

Test 1. Using three different training seeds, run the described algorithm on 500 roll-outs. For
comparison run the version of the algorithms with the non-behaviour cloning part disabled on the
same three seeds in a such way that behaviour cloning sees exact same batches on the same seeds in
both versions. Validate the performance of the resulting 6 models. The result of the validation can be
seen in Figure 1, in all three cases the additional gradient steps performed by the non-bc part of the
algorithm improved the final performance of the model.

4



Test 2. The pre-trained model was trained using the proposed algorithm and it’s BC-only version
in a longer experiment of 5000 roll-outs. The results were validated, and the proposed algorithm
performed significantly better than it’s bc-only counterpart, the bc-only algorithm in fact showed
degradation compared to a shorter run on the same seed (100). See figure 1.

Test 3. The continued training with even more 5000 roll-outs showed degradation of the perfor-
mance, though RL version still performed better. Possible explanation - overfitting on the original
demonstrations by he BC part of the algorithm.

Test 4. The method fails on the experiment with disabled encoder in ACT, the success rate degrades
to single digits. Possible explanation - a high deviation in the training mode on the negative samples,
which leads to larger gradient steps on the negative samples and destabilization.

The results of the second algorithm.

On a smaller number of steps the model showed mixed results in comparison to pure behavior cloning
(in 2 of the 3 experiments AC performed worse), that can be attributed to a poor quality of the not
warmed-up critic and a sub-optimal set of hyper parameters.

With the hyper-parameters set in a very conservative way similar to the first algorithm where the
policy is updated once per roll-out with the mini-batches having only one last negative example, the
algorithm achieves success rate of 83.2% after 8000 steps, with the evaluation error rate of the critic
of only 5%. The model degrades with further steps in the same mode which can be attributed to the
limits of the BC part of the training (it’s possible over-fitting), as BC consitutes the largest part in that
set up.

Attempts to do more RL gradient steps without the limitation descibed above from the begining of
the training results in the model quickly loosing it’s abilities obtained from the initial pretraining.

Attempts to improve the result by doing the free off-policy training after warming-up the critic and
the actor on 8000 roll-outs resulted in a slow, oscilating but still declining accuracy of the model and
the critic on a reasonable time range. The critic overestimation errors in this scenario indicate that
more exploration (driven by the RL updates) could be required earlier in the training to avoid the
decline. The fine-tuning of the hyper parameters and finding the optimal ratio of BC/RL steps is not
trivial and with the accurate evaluation - it would require more time than is availbale to finalize the
course project.

6 Qualitative analysis

BC only - qualitative analysis The pre-trained with BC model and the models trained further with
only BC steps exhibited a characteristic failure mode, the peg (red) is being slightly lower than the
socket and in the attempt to do the insertion the peg lower edge stuck which leads to a tilt. This
failure corresponds to the majority of the cases when the BC-agent reaches reward 3 but not 4. The
problem thath the proposed RL algorithms should solve.

5



Policy gradient - qualitative analysis

The model trained with the first policy gradient algorithm exhibited a more wide varuety of the failure
modes, sometimes the opposite problem - the peg is positioned slightly higher than the socket and
stuck by the upper edge - this varaity might indicate that the model recieves a fair share of exploration
during the training.

Actor-critic - qualitative analysis

The actor-critic agent trained in a conservative on-policy way exhibits a noticeble share of the failures
similar to the problem of the BC model - which indicates that this mode of training might not provide
enough exploration.

The actor critic trained further in a free off-policy mode, however, demonstrates different problems
and a new interesting behaviour - sometimes the arms stop, move back and then do the insertion,
often successful. This makes an impression as if the robot learned to re-calibrate the position of the
peg and the socket and indicates that the actor-critic method is able to train the policy with some new
unseen behaviour. This might be a good sign for continuing training the model further with a larger
replay buffer and larger batches to minimize the destabilization.

7 Derived observations and the ideas for the future work

Converting the predictive ability of the critic to the quality of the policy proved to be not fast. The
main obstacle is understood as expensiveness of conducting the exploration which is done only by
the changes to the current policy and subsequent roll-outs.

The observed pattern of overestimation errors by the critic on the negative evaluation examples, and
underestimation errors on the positive evaluation examples in later experiments indicated that the
critic learns to predict well the success of the policy it knows, but suffers from not knowing the
outcomes on the unseen combinations of observations and action chunks.

The same lack of the cheap exploration also harms the first algorithm that could use more positive
examples from the environment without risking to destabilize the model. A possible idea to address
this problem could be using several actors branched from the main copy and updated on different
batches which are used purely to collect the observations for training the critics and collecting the

6



positive samples without the risk of harming the main copy of the actor. Alternatively we could come
up with a more advanced way to conduct the exploration at the training time (the random noise does
not look as a viable option given the dimensions of the chunk-actions).

The tuning of the hyper-parameters is constrained by the trade-off between the policy trying new
actions and preserving the skills obtained from the imitation learning. In this process the evaluation
error of the critic can be used as an indicator. For example, if the critic has the low error for predicting
unsuccessful results it might indicate that the policy can benefit from more gradient steps driven
by the reinforcement learning. The cases when the critic is over-optimistic and drives the policy
in a wrong direction help correct the critic but cause a long turnaround for the policy to regain it’s
quality. Too many of such deviations could destabilize the policy. Some combination of the critic
evaluation loss and the continuing policy evaluation loss could be used to dynamically adjust the
hyper parameters at the training time to affect this trade-off.

Multiple critics with random initial weights, trained together and switched periodically could be
used to increase the level of exploration if the future experiments achieve a flat success rate with no
overestimation errors due to the lack of new exploration.

Finally, the large size of the training samples (specifically the images from the cameras) constitutes a
big obstacle for accumulating a large replay buffer, the large models also limit the size of the mini
batches (especially in the actor critic-method) - investing more in the workarounds is considered as
an additional idea to improve the stability of the policy by increasing the diversity of the data seen in
updates.

8 Conclusion

The course project achieves the goal of implementing several reinforcement learning algorithms for
the application with the Action chunks. The algorithms were tried on practice and their performance,
the practical challenges and the opportunities for improvements are described in this report. The time
which is required to train and reliably evaluate the performance of the robot can be a constraining
factor for the ability to conduct more experiments and try more ideas on practice - any further work
should take this into account.

9 Team Contributions

• Dmitry Usanov: Learning the related works, setting up the simulation environment (fixing
technical/compatibility issues of the simulation project), implementing the infrastructure for
conducting the tests and recording the results, implementing a variation of the policy gradient
algorithm, implementing the critic and a variation of an actor-critic method algorithm,
implementing various data sampling strategies and conducting iterations on the parameters
of the algorithms to achieve stability, conducting the tests, documenting the results, deriving
the conclusions and proposing possible improvements.

Changes from Proposal The observation of the action chunk on practice made the author consider
fine-tuning of the individual chunks as the most promising path forward, and the shifted complexity
from the algorithm to the model itself made the author assume that a more simplistic architecture than
ACT might be not up to the chosen task. (Also it’s worth noting that the results with ACT are more
valuable than the results on a more simplistic architecture for the usage in the real life application)

References
Chelsea Finn Tony Z. Zhao Vikash Kumar, Sergey Levine. 2023. Learning Fine-Grained Bimanual

Manipulation with Low-Cost Hardware. (2023).

Tony Z. Zhao Zipeng Fu. 2023. https://github.com/MarkFzp/act-plus-plus. (2023).

7


	Introduction
	Related Work
	Experimental Setup
	Implemented Algorithms
	Results
	Qualitative analysis
	Derived observations and the ideas for the future work
	Conclusion
	Team Contributions

