Extended Abstract

Motivation Real-world learning for humanoids is crucial for closing the sim-to-real gap, but re-
mains challenging due to safety concerns, reward design complexity, and low sample efficiency. To
address these issues, we propose RTR —an integrated hardware—algorithm framework for real-world
humanoid learning. A robot arm acts as a teacher, providing protection, scheduled interventions,
reward feedback, perturbations, failure detection, and automatic resets. We hypothesize that this
teacher—student setup can significantly improve safety, sample efficiency, and overall training effec-
tiveness.

Method Our method comprises both hardware and software components. The hardware setup
follows a teacher—student paradigm: the teacher is a robot arm that facilitates safe exploration, struc-
tured learning curriculum, informative reward signals, compliance control, and failure detection. The
student is a compact humanoid robot responsible for real-world learning and sim-to-real adaptation.
On the algorithmic side, we consider two challenging real-world learning tasks:

1. Real-world adaptation-Walking: we propose a novel sim-to-real fine-tuning algorithm compris-
ing a three-stage process. First, we train a dynamics-aware policy in simulation using domain
randomization, embedding environment physics into the policy via a latent encoder and FiLM
layers. Next, we optimize a universal latent vector across diverse simulated environments to
provide a robust initialization for real-world deployment. Finally, leveraging the RTR hardware
setup, we efficiently fine-tune the dynamics latent in the real world.

2. Real-world learning from scratch-Swing-up: we adopt a three-stage training pipeline. First,
we train the actor and critic from scratch using PPO while collecting 50,000 steps of suboptimal
transition data, then pre-train the critic using offline reinforcement learning. Finally, we initialize
a new actor, load the pre-trained critic, and jointly fine-tune both networks.

Implementation Both tasks are trained using PPO. The reward for the walking task encourages
accurate tracking of the target velocity, while the swing-up task rewards maximizing swing amplitude.
In the real world, teacher robots provide reward feedback, and we manually design specialized
intervention schedules to either support (increase the reward) or perturb (decrease the reward) the
learning process, enabling more robust and adaptive policy training.

Results For the walking task, our results show that incorporating arm compliance, a structured
intervention schedule, and sim-to-real fine-tuning enables the robot to achieve high training rewards
and exhibit the best and most robust performance during testing. For the swing-up task, the robot
trained with teacher assistance achieves the highest performance, learning a periodic swing-up motion
from scratch within just 15 minutes.

Discussion Our results address several key questions regarding the effectiveness of RTR. In the
first task, we find that arm compliance control and scheduled teacher interventions significantly aid
training, and that fine-tuning the dynamics latent improves data efficiency in real-world adaptation.
In the second task, we conclude that active involvement of the teacher arm during training accelerates
learning and that pretraining the critic enhances overall performance and stability.

Conclusion We present a comprehensive real-world learning system, RTR, which enables protec-
tion, guidance, schedule, reward, perturbation, failure detection, and automatic resets for humanoid
learning. We introduce an efficient RL paradigm based on dynamics-aware latent optimization,
enabling rapid and stable policy adaptation in the real world. Looking ahead, we aim to extend RTR
to larger humanoid robots, handle increasingly complex tasks, and further improve data efficiency,
allowing more effective collection and utilization of real-world data for humanoid learning.
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Abstract

Simulation-based reinforcement learning (RL) has significantly advanced hu-
manoid locomotion tasks, yet direct real-world RL from scratch or starting from
pretrained policies remains rare, limiting the full potential of humanoid robots.
Real-world training, despite being crucial for overcoming the sim-to-real gap, faces
substantial challenges related to safety, reward design, and learning efficiency. To
address these limitations, we propose Robot-Trains-Robot (RTR), a novel frame-
work where a robotic arm teacher actively supports and guides a humanoid student
robot. The RTR system provides protection, schedule, reward, perturbation, failure
detection, and automatic resets, enabling efficient long-term real-world training
with minimal human intervention. Furthermore, we propose a novel RL pipeline
that facilitates and stabilizes sim-to-real transfer by optimizing a single dynamics-
encoded latent variable in the real world. We validate our method through two
challenging real-world humanoid tasks: fine-tuning a walking policy for precise
speed tracking and learning a humanoid swing-up task from scratch, illustrating
the promising capabilities of real-world humanoid learning realized by RTR-style
systems.
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pose RTR for automatic real-world policy adapta-
tion and learning with a robot arm as the teacher
and a humanoid robot as the student.



simulation and real-world dynamics can significantly hinder policy capability. Despite these benefits,
real-world learning on humanoids, either from scratch or fine-tuning, remains highly challenging due
to several key factors:

 Safety: Real-world RL can produce unexpected and dangerous actions during exploration, easily
breaking the fragile balance of the humanoid. Current approaches typically suspend humanoid
robots from fixed gantries during real-world rollout, inevitably constraining the range of data
collection. Such passive protection mechanisms also influence learning efficiency, as the robot
will be frequently dragged by the gantry and fall before the policy stabilizes.

* Reward Design: Many useful reward signals easily available in simulation, such as global velocity
or external forces, are difficult or impossible to measure directly on physical robots themselves,
complicating real-world reward design.

* Learning Efficiency: Real-world training requires frequent resets, which incur high human
labor costs. Poor sample efficiency of the learning algorithm further compounds these issues, as
real-world data collection is inherently costly and constrained.

These considerations highlight the need for a comprehensive and practical system tailored explicitly
for real-world humanoid learning. To address these challenges, we propose a novel real-world policy
adaptation and learning paradigm: Robot-Trains-Robot (RTR), where a teacher robot (a robot arm
with force feedback) trains another student robot (a humanoid robot). Specifically:

* To address safety concerns, RTR utilizes a robot arm with force-torque sensing to actively support
and deliver interactive force feedback to the humanoid robot via compliance control, allowing
extensive yet safe exploration across diverse behaviors.

* To gather crucial reward information, RTR uses real-time measurements from the teacher to derive
proxy reward signals that would otherwise be difficult to obtain in the real world.

* To improve learning efficiency, RTR uses an automatic curriculum to provide procedural guidance,
dynamically adjusting training difficulty, and deliberately perturbing the robot to enhance robust-
ness. The RTR system also enables failure detection, automatic resets, and an asynchronous data
collection and policy update pipeline, significantly reducing manual intervention and enabling
high-throughput data collection.

Additionally, to further improve sample efficiency, we propose a novel sim-to-real fine-tuning
algorithm. Our approach consists of a three-stage process: First, we train a dynamics-aware policy
in simulation via domain randomization, embedding environment physics information into the policy
via a latent encoder and FiLM (Perez et al.|[2017) layers. Next, we optimize a universal latent vector
across diverse simulated environments, providing a robust initialization for subsequent real-world
training. Finally, leveraging the RTR hardware, we efficiently refine the dynamics latent in the
real world using PPO (Schulman et al.l 2017), substantially improving the policy performance and
robustness in the real world.

We evaluate our system and method through two challenging real-world humanoid tasks: fine-tuning
a walking policy for precise speed tracking, and learning a humanoid swing-up behavior from scratch.
Given a desired velocity command, RTR effectively doubles the zero-shot walking speed with only
30 minutes of real-world training. In the swing-up task, the humanoid successfully learns to achieve
a periodical swing-up motion from scratch within 15 minutes of real-world interaction. While we
implement the RTR system with an open-source small-sized humanoid ToddlerBot (Shi et al., [2025)),
the proposed paradigm is readily generalizable to full-scale humanoids. Contemporary industrial
robotics arms are capable of lifting and interacting with payloads up to 600 kg (Research Nester|
2025)), suggesting the broad applicability of RTR across a wide range of humanoid platforms.

In summary, our contributions include: (1) A comprehensive real-world learning system that provides
crucial protection, guidance, automation, and informative feedback tailored for real-world humanoid
learning. (2) An efficient RL paradigm leveraging dynamics-aware latent optimization for rapid and
stable real-world policy adaptation. (3) Empirical validation of our approach through two challenging
tasks highlighting RTR’s efficiency and capability to support and generalize across diverse real-world
learning scenarios.



2 Related Works

To address the sim-to-real gap (Tobin et al., 2017) and improve policy performance in the real world,
there are three mainstream approaches: zero-shot sim-to-real transfer, policy pretraining in simulation
followed by real-world adaptation, and direct real-world RL from a random initialization.

Zero-shot Sim-to-real Transfer. Directly deploying a simulation-pretrained policy into the real
world is prone to failures due to the sim-to-real gap. Pretraining in simulation with extensive domain
randomization has emerged as an effective strategy across both manipulation (Peng et al., 2018 Tobin
et al.||[2017; Yuan et al.,|2024) and locomotion (Ha et al.| 2024} Rudin et al.| 2022; Cheng et al., [2024;
Tan et al.| |2018]) tasks. This approach has notably succeeded even in challenging contexts such as
dexterous manipulation involving rich contact interactions (OpenAl et al., [2019; (Chen et al., 2023alb,
2024; Lin et al., [2025) and complex humanoid locomotion characterized by inherently unstable
dynamics (Fu et al., 2024} |Gu et al., [2024} |Haarnoja et al., [2024} Radosavovic et al.,|2024b; |Zhuang
et al.| 2024). However, inappropriate domain randomization may produce policies that either fail to
adapt effectively to real conditions or become overly conservative, thus limiting performance.

Real-world Adaptation. A popular approach to bridging the sim-to-real gap is to leverage real-world
data. These methods typically rely on a robust pretrained policy to safely generate on-policy data,
facilitating targeted exploration within task-specific distributions. Some adaptation methods use
real-world data to adjust simulation parameter distributions, aligning simulated policy behaviors
more closely with real-world experiences (Chebotar et al.| 2019; Ren et al.| 2023 Huang et al., [2023)).
Other approaches employ online adaptation techniques to fine-tune latent representations (Schoettler
et al., |2020; |Kumar et al.}, 2021} Q1 et al., 2022; Kumar et al.,|2022), a residual policy (Sun et al.| 2021}
He et al.l 2025a), or the original policy directly (Zhang et al.,|2023}|Lei et al., 2023} Xiong et al.|
2024). Additionally, some studies incorporate online human corrections for policy refinement (Jiang
et al., 2024} [Luo et al.| 2025). Notably, due to humanoids’ inherent instability, it is challenging to
maintain safety during real-world adaptation. Consequently, fewer studies focus on humanoids (He
et al.| 2025a; Kumar et al.||2022), highlighting the need for a specialized system to support safe and
effective humanoid adaptation.

Our proposed dynamics latent tuning pipeline is the most similar to context-based meta-RL meth-
ods (Gupta et al., 2018} Rakelly et al.,2019), where a latent vector is extracted from past observations
or physical parameters and used to pivot the policy to adapt to different tasks or environments during
meta-pretraining. The latent could then be optimized in the real world for rapid policy adaptation.
While these methods have shown success in quadruped locomotion tasks (Yu et al., |2020; |Peng
et al.| 2020), they implicitly rely on the inherent stability of quadrupeds to safely initiate real-world
interaction. For humanoids, any initial performance gap risks falls or hardware damage. Although
early attempts have deployed such methods on humanoids (Yu et al.,|2019), they rely on a simple
platform and a scripted policy for initial data collection, which is impractical for more complex
humanoid systems. In contrast to previous works, RTR combines a carefully designed hardware
setup with a simulation-optimized initial latent, enabling the real-world application of this category
of algorithms on humanoid robots.

Real-world RL. For task scenarios that are difficult to simulate or have a large sim-to-real gap,
directly training in the real world is often more desirable. Some studies have successfully adopted
this approach across various setups, including tabletop manipulation (Huang et al., [2024), dexter-
ous manipulation (Xu et al.|[2023)), mobile manipulation (Mendonca et al., 2025), and quadruped
locomotion (Ha et al., [2021}; [Smith et al., 2022} [Wu et al., 2023 [Smith et al.l [2023)). However, few
studies have explored direct real-world RL with humanoids due to several unresolved challenges:
(1) maintaining humanoid stability and preventing falls during early stages of training, (2) ensuring
safe and efficient reset mechanisms, and (3) providing sufficient feedback and informative reward
signals. We propose RTR to address these challenges and enable real-world reinforcement learning
from scratch.

3 Method

3.1 Teacher-Student Hardware System

Teacher Setup. We use a 6-DoF URS arm to support the humanoid robot. An ATI mini45 force-
torque (F/T) sensor is mounted on the arm’s end-effector to measure interaction forces. Four elastic
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Figure 2: System Setup. We illustrate the system architecture and component interactions. The
system consists of two groups: robot teachers and robot students. The teachers include a robot arm
with an F/T sensor, a mini PC, and an optional treadmill for locomotion tasks; the students include
a humanoid robot and a workstation for policy training. The four types of lines represent physical
interaction, data transmission, control commands, and neural network parameters, respectively.

ropes connect the arm’s end effector to the humanoid’s shoulders. The elasticity of the rope is crucial,
as it enables smoother force transmission and avoids abrupt force changes commonly seen in rigid
connections or non-elastic ropes. For walking experiments, we additionally provide a programmable
treadmill to ensure the robot stays within the reach of the robot arm. This treadmill is equipped with
a position encoder and a microcontroller to provide closed-loop control of the moving speed. As
shown in Figure |Z|, a mini PC connects to the arm, F/T sensor, and treadmill via Ethernet cables,
while communicating with the student robot via WiFi. This mini PC bears several functionalities: (1)
sending control signals to the arm and the treadmill to ensure they assist the learning of the humanoid
properly, and (2) collecting data from the F/T sensor and the treadmill to tailor the curriculum, reset
timing, and gather reward information for the robot.

Student Setup. We use the open-source humanoid ToddlerBot (Shi et al., [2025) for its compact
size (0.56 m, 3.4 kg), dexterity (30 degrees of freedom), availability (costs less than 6,000 USD),
and robustness. The URS arm, with a 5 kg payload, provides adequate capacity to support the robot.
As safety is a major concern in real-world learning, verifying our algorithm on a lightweight yet
versatile platform like ToddlerBot enables unattended operation without risk of damaging itself or the
surrounding environment. Moreover, hardware reliability for the humanoid is equally important—we
find ToddlerBot’s motors are resistant enough to overheating and capable of continuous operation
over extended periods (> 1 hour), making the robot well-suited for our real-world learning tasks.

3.2 Real-world Adaptation

Real-world adaptation, which fine-tunes a simulation-pretrained policy in the real world, is critical
for improving performance on demanding locomotion tasks. In this section, we apply our real-world
adaptation pipeline to fine-tune a walking policy for precise speed tracking, while our setup is suitable
for adapting a range of locomotion tasks like running and whole-body trajectory following.

On the teachers’ side, we introduce an automatic curriculum that dynamically adjusts the supporting
force and enables rapid horizontal compliant arm following. On the students’ side, we propose a
general-purpose sim-to-real adaptation algorithm based on domain randomization and dynamics
latent optimization. We first present our three-stage student learning algorithm, as illustrated in
Figure[3] and then describe the teacher’s policy during real-world adaptation.
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Figure 3: Sim-to-real Fine-tuning Algorithm. We illustrate our sim-to-real finetuning process.
First, we train a dynamics-aware policy in simulation via domain randomization (DR), encoding
environment physics into a latent vector. Next, we optimize a universal latent across diverse simulation
environments to initialize real-world training. Finally, we refine the latent and train a new critic in the
real world. Orange denotes trainable components in three stages; blue indicates frozen ones.

Dynamics-conditioned Policy Training. In the first stage, we train a dynamics-aware policy
7(s, z) that conditions on both the current observation s and a dynamics latent z in N = 1000
domain randomized simulation environments (more details in Appendix [A). Specifically, for the i-th
environment, we encode environment-specific physical parameters () into a latent representation
2" using a multi-layer perceptron (MLP) encoder for 20 = f¢(u(i)). This dynamics latent is then
incorporated into the standard PPO actor network through Feature-wise Linear Modulation (FILM)

layers (Perez et al.,2017). Concretely, let h(.i) denote the hidden latents of the j-th layer within the
actor network after activation function, we modulate these latents using FiLM as follows:

where fyj(i) and 6J(-i) are scaling and shifting parameters generated by the FiLM layers from the

latent vector z(*), and ® represents element-wise multiplication. The encoder network fe and the
FiLM-modulated policy network 7 (s, z) are jointly trained with PPO in randomized domains with
parameters 1), allowing the policy to leverage latent dynamics information effectively and adapt to
various simulation environments. Empirically, we find that the learning rate of the FiILM layers is
critical: a rate that is too small causes the policy to ignore the dynamics latent, while a rate that is too
large leads to instability. An ablation study of this effect is provided in Appendix [B]

Universal Latent Optimization. A practical challenge arises when deploying the dynamics-aware
policy in the real world: the initial latent representation z for the real world is unknown, as the
environment-specific parameters p are unavailable. Therefore, we propose the second stage to
optimize a universal latent z* starting from Z, the average of all the latent vectors of the training
environments. Formally, we freeze the policy network and FiLM layer parameters and optimize z*
using PPO, aiming for robust performance across all domain-randomized simulation environments:

2* = arg mzaxz E;n(lz), 7: [ (7)] 2

where 7; denotes the transition distribution for the i-th environment, J denotes the optimization ob-
jective of the PPO algorithm, i.e., the expected cumulative reward under policy 7, and the expectation
is taken over the joint distribution induced by the policy and the environment dynamics. The resulting
latent z* provides a robust initial condition suitable for real-world deployment.

Real-world Finetuning. In this stage, we freeze the actor network and FiLM layer parameters and
fine-tune the latent in the real world using z* as the initial solution. Meanwhile, we train the critic
from scratch since some privileged observations are unavailable in the real world, resulting in a
different observation space from the simulation. For the walking task, the reward is designed to



encourage tracking of the target velocity and is defined as follows:
r=exp (o (v—v"*)?), 3)

where v and v'"€" are the current and target robot velocity, respectively, and o = 100 is a reward-
shaping hyperparameter. Since the humanoid is walking on a treadmill, its torso remains relatively
stationary in the global frame - state estimation or motion capture yields a near-zero velocity.
Therefore, we approximate v with the speed of the treadmill.

Real-world Teachers. The robot teachers include the robot arm with an F/T sensor, a mini PC, and a
treadmill. They together provide guidance, schedule, reward, failure detection, and automatic resets.
(1) Guidance: Leveraging feedback from the F/T sensor, we employ admittance control (Maples and
Becker, |1986; [Hou et al., [2025) for the robot arm. The arm remains compliant along the XY axes
to accommodate the relative movement generated by the humanoid (Figure [3). This configuration
allows the humanoid to move freely in the XY direction while maintaining an upright posture. (2)
Schedule: To gradually reduce assistance, we implement a scheduling strategy where the arm’s
height linearly decreases by 0.02m in 5 x 10* environment steps, diminishing the supporting force to
near zero at the end of training. (3) Reward: We also implement a PD feedback control loop on the
treadmill’s velocity, based on force along the X axis by the F/T sensor and the humanoid’s torso pitch
angle. This feedback loop helps the robot maintain an upright walking posture and ensures that the
treadmill speed reflects the humanoid’s walking speed. We further use this tracking speed to provide
reward signal as in Equation (3). (4) Failure Detection and Automatic Resets: Moreover, RTR
automatically detects the failure case if the humanoid’s torso pitch exceeds a threshold or the F/T
sensor reads a large force along the X or Y axis, prompting the system to step running and the arm to
lift the humanoid to reset the training.

3.3 Real-world Learning from Scratch

While sim-to-real learning is effective for humanoid locomotion, it struggles with tasks involving
hard-to-simulate objects like deformable ones. RTR is also suitable for direct real-world training in
such cases. To demonstrate this flexibility, we introduce a challenging real-world RL task—Ilearning
a swing-up behavior (Figure [5)—which is difficult to simulate due to complex cable dynamics.

Three-stage Training. Inspired by |Lei et al.|(2023), we use a three-stage training pipeline: (1) train
the actor and critic from scratch using PPO while collecting 50,000 steps of suboptimal transition
data; (2) pre-train the critic using offline RL; and (3) initialize a new actor while loading the pretrained
critic, and continue training both networks jointly. The reward is designed to maximize the amplitude
of the dominant periodic force measured by the force sensor during the swinging. Specifically, we
applied the Fast Fourier Transform (FFT) on the most recent 1, 000 force readings along the x-axis to
obtain the force spectrum in the frequency domain and retrieve the dominant frequency, denoted as

V. We then extract the force amplitude at this frequency, /All,w, and define the reward as:
r = exp (—a (4, — A““get)Q) , 4)

where oo = 0.005 and A®€*" ~ mg6y is derived under the small-angle approximation of a pendulum
swing. m = 3.5 kg is the mass and 6, = 30° is the maximum angular displacement expected.

Real-world Teachers. The robot arm guides the humanoid’s swing-up motion by either amplifying
the swing or damping the swing. Both strategies are phase-aligned with the humanoid’s current swing
angle 6, at the dominant force frequency v,. (1) Guidance: To amplify the swing, i.e., increase the
force amplitude at the dominant frequency, the arm is given a position target x; = xo + Aam cos(6y).
(2) Perturbation: To dampen the swing, i.e., decrease the force amplitude, the arm is given a
phase-inverted position target x; = xg — Aam cos(6;), where A, = 0.05 m, and xg denotes the
initial z-axis displacement of the arm. (3) Schedule: We evenly divide each data batch into several
bins and randomly select a certain number of bins to apply either guidance or perturbation. The arm
maintains a fixed position in the rest bins. The final training schedule includes a mixture of helping,
perturbing, and remaining static periods.
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Figure 4: Walking Ablation. This experiment aims to evaluate the effectiveness of arm feedback
control and latent vector finetuning. We present the linear velocity tracking rewards during training
and evaluation, with the arm schedule shown at the bottom center. All variants are tested under the
same condition: the arm uses an XY Compliant policy with Z fixed at a A position of —0.02 m. We
conduct each experiment with three random seeds and show the mean and standard deviation in the
plot. Unless otherwise specified, Finetune z, XY Compliant, and Z Schedule are assumed.

Table 1: We evaluate the walking baselines in this table. The humanoid’s task is to track the treadmill
speed (0.15 m/s). To assess walking stability, torso pitch and roll (radian) are measured by the
humanoid’s IMU, and end-effector (EE) force (N) by the F/T sensor. Unless otherwise specified,
Finetune z, XY Compliant, and Z Schedule are assumed if not otherwise specified.

Method Torso Roll | Torso Pitch |  EE Force X| EEForce Y| EE ForceZ |
Freeze m(s) 0.124 £0.012 0.102 +0.034 1.217 £0.134 1.2354+0.065 3.431 4+ 0.606
Finetune A7m(s) 0.102+0.032 0.096 £0.031 1.007 £0.025 1.078 £0.136 2.316 &+ 0.486
Freeze 7 (s, z) 0.110 £ 0.021 0.064 £0.014 1.672£0.174 1.088 £0.186 3.654 £+ 0.988
Z Fixed (High) 0.151 £0.030 0.126 +0.011 1.064 £0.143 0.993 +£0.279 2.402 +0.732
Z Fixed (Low) 0.199 £0.113 0.112+0.053 1.254 +£0.133 0.882 £0.104 3.237 £1.196
XY Fixed 0.170 £0.030 0.156 +0.027 1.175+£0.130 0.864 +0.100 2.299 + 0.820
RTR (ours) 0.093 + 0.020  0.053 + 0.044 0.943 + 0.202 0.754 + 0.122  0.954 + 0.445

4 Experiments

4.1 Real-world Adaptation with Simulation Pretraining: Walk

Overview. We consider the task of walking on a treadmill while accurately tracking the treadmill’s
speed to demonstrate RTR ’s real-world adaptation capability. During training and evaluation, the
reward is defined as the treadmill’s speed, with the treadmill speed controlled via feedback from
IMU and force readings. During testing, performance is measured by walking stability at a fixed
treadmill speed of 0.15 m/s (Table . We conduct ablation studies to answer three key questions:
(Q1) Does arm compliance control help? (Q2) Does arm schedule help? (Q3) Is fine-tuning z* more
data efficient in real-world adaptation?

Arm Compliance. As shown on the left of Figure[d] we compare RTR with the baseline XY Fixed + Z
Schedule, where the arm remains stationary and cannot adapt to the humanoid’s XY movement during
walking. We observe that the arm often drags the humanoid back and impairs policy adaptation.
During evaluation, compliance control is re-enabled to ensure a fair comparison.

Arm Schedule. We compare our linearly decreasing arm height schedule with two alternative
scheduling strategies: XY Compliant + Z High (Easy) and XY Compliant + Z Low (Hard). The
different arm schedules are illustrated in the lower center of Figure @] Z High (Easy) trains the
humanoid at a relatively high delta arm height (0 m) and evaluates it at a low delta arm height
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Figure 5: Swing-up Ablation. We illustrate the swing-up setup and experiment results. (a) The
humanoid is suspended from a robot arm and uses its legs to build momentum and maximize rope
angle. (b) We compare helping and perturbing arm schedules against a fixed-arm baseline and also
evaluate helping without a pretrained critic. Each experiment is run with three random seeds, and
plots show the mean and standard deviation. (c) We show three arm schedules, where helping and
perturbing occur during the middle phase, with the arm fixed at the beginning and end.

(—0.02 m). As shown on the left of Figure ] the training curve goes up very quickly during training
because the robot takes advantage of the arm support, and then it collapses during evaluation when the
arm height is lower due to the large training and evaluation gap. For Z Low (Hard), the training and
evaluation arm heights are the same, so the policy should ideally overfit to the arm height. However,
due to the high initial task difficulty, the policy frequently falls in the early stage, leading to poor data
quality for finetuning and slower reward improvement compared to our method.

Fine-tuning Latent. We compare RTR with two fine-tuning strategies: fine-tuning 7(s) and fine-
tuning Ar(s) (Figure . Directly fine-tuning 7 (s) initially progresses well but quickly collapses. In
fine-tuning A7 (s), the base policy 7(s) is frozen, and a residual policy is initialized and trained from
m(s) with the last layer weights reset to zero. We find that RTR achieves better data efficiency than
both baselines. All methods use the same arm policy, XY Compliant + Z Schedule. For reference, we
also show that without fine-tuning 7(s) or 7 (s, z), the reward gradually decreases as the arm lowers
and the task difficulty increases. We additionally compare RTR with RMA (Kumar et al.,[2021)) in

Appendix D]
4.2 Real-world Learning from Scratch: Swing-up

Overview. To demonstrate the effectiveness of RTR for real-world learning from scratch, we consider
training a swing-up behavior with RL in the real world. The objective is to achieve the maximum
swing height within a 20-second time window. To simplify the task, we constrain the action space
to hip pitch, knee pitch, and ankle pitch and enforce symmetry between the left and right legs. We
perform ablation experiments to answer two key questions: (Q1) Does active arm involvement help
in the training schedule? (Q2) Does critic pretraining help?

Analysis. As shown in Figure 3] both the helping and perturbing arms outperform the fixed arm, with
the helping achieving the best performance. We conclude that helping allows the critic to learn what
good states look like during the helping interval (1e4 — 2e4 steps), enabling the policy to quickly reach
those states afterward. Pretraining the value function with offline data also accelerates early-stage
learning - the model without a pretrained critic exhibits the slowest improvement.

5 Conclusion

We present a comprehensive real-world learning system, RTR, which enables protection, guidance,
schedule, reward, perturbation, failure detection, and automatic resets for humanoid learning. We
introduce an efficient RL paradigm based on dynamics-aware latent optimization, enabling rapid
and stable policy adaptation in the real world. Looking ahead, we aim to extend RTR to larger
humanoid robots, handle increasingly complex tasks, and further improve data efficiency, allowing
more effective collection and utilization of real-world data for humanoid learning.



6 Limitation

Although RTR can autonomously execute the training curriculum in the real world, the curriculum
itself remains task-specific and requires manual design and tuning. Future work should explore more
generalizable approaches to real-world curriculum generation. Additionally, our reward design is
constrained by the limitations of available hardware and sensors—for example, RTR lacks access
to ground reaction force measurements, which are readily available in simulation but absent in our
real-world setup, while instrumenting a force plate beneath the treadmill is a potential workaround.
Developing comprehensive real-world sensing methodologies represents a promising direction for
advancing continuous robot learning in real-world environments.

7 Team Contributions

* Kaizhe Hu: Teacher hardware system setup, PPO framework implementation, and FiLM-
modulated latent embeddings training.

* Haochen Shi: Student hardware system setup, PPO implementation and reward engineering,
and real-world training and testing for swinging and treadmill walking.

* Yao He: PPO implementation and reward engineering, and real-world training and testing
for swinging and treadmill walking.

Note: Kaizhe Hu and Haochen Shi are external people from Stanford REAL lab and The Movement
Lab.

Changes from Proposal Original Hypothesis: The RTR system enables efficient long-term
real-world training without human intervention. Revised Hypothesis:The RTR system enables
efficient long-term real-world training with minimal human intervention. Although RTR can
autonomously execute the training curriculum in the real world, the curriculum itself remains task-
specific and requires manual design and tuning. Future work should explore more generalizable
approaches to real-world curriculum generation. Additionally, our reward design is constrained
by the limitations of available hardware and sensors—for example, RTR lacks access to ground
reaction force measurements, which are readily available in simulation but absent in our real-world
setup, while instrumenting a force plate beneath the treadmill is a potential workaround. Developing
comprehensive real-world sensing methodologies represents a promising direction for advancing
continuous robot learning in real-world environments.
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A State and Action Representation

A.1 Walking

Following the RL training setup in|Shi et al.|(2025), both the base policy 7(s;) and the dynamics-
aware policy 7 (s, z) output a; as joint position setpoints for proportional-derivative (PD) controllers
based on the observable state s;:

St = (¢t7CtaAqtaQtaat—lawtvot); (5)

where ¢, is a phase signal, ¢; represents velocity commands, Aq; denotes the position offset relative
to the neutral pose qg, a;—_1 is the action from the previous time step, w; represents the torso’s angular
velocity, and 6, is the torso orientation in euler angles.

In simulation, the critic observation space includes more privileged information to provide better
accuracy for the value function, we have:

+_ : S 0
St - <¢t7 C¢, Aqta qta a1, eqtv Vi, Wi, eta my, reft7 Vi, gt) ) (6)
where eq, is the error of the current motor position to a reference motor position, v; is the linear

velocity of the robot in the world frame, ref, is the reference motor pose, while v; and ét are the
linear and angular velocity of the random perturbation applied to the robot.

In the real world, as some of the privileged observations in the simulation are hard to acquire, we
leverage the RTR system’s force information, and augment the real-world privileged observation as:

SZ+ = (¢t7 C¢, Aqt)‘-iwat—l)qutth»eh FtaTt) ) (7)

where q, is the joint position of the humanoid, v is the linear velocity of the torso measured by a
motion tracking system, and F; and 7 are the force and torque measured by the force-torque sensor
mounted on the robot arm teacher.

A.2 Swing-up

For the swing-up task, the observation space is defined the same as Equation[5] We also include more

information to form the task’s privileged observation space:

S?_ = (¢, ct, Aqy, Q, a1, wy, 0y, Fy, 1y, ) (8)

where F}, ¢, x; are the force reading, torque reading, and arm end effector position, respectively.

B FiLM Ablation

In this section, we discuss details regarding the FiLM layers in our sim-to-real adaptation pipeline.
As shown in Equation (T)), the FiILM layer introduces a scaling and shifting effect to each layer of the
hidden network, altering the behavior of the policy network inherently.

One key consideration for the FiILM layer during training is its learning rate, as it decides how fast the
FiLM layer will change compared to the policy network. In our implementation, we train the FiLM
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Figure 6: FiLM learning rate ablation. This experiment aims to evaluate the effect of FiLM layer
learning rates. All experiments are run under seven seeds. Vertical bars indicate standard deviation.

layers along with the policy network from scratch, as we find that initializing the policy network from
a pretrained model hinders the effect of the FiLM layer over the policy. Recall that:

7,89 = RLM; (=), A 4D @ n 4 g
We initialize all the FiLM layers with all-zero weights and all-zero or all-one bias, such that at the
start of the training, we have: fy(.z) =1.0,0 J@ = 0.0, which means the FiLM layers do not affect
the network output. As the FLM layers are trained simultaneously with the policy, they are in a
competing condition: the policy network is learning to gain better overall performance given the
current FiLM distribution, while the FILM layers are trained to make use of the environment’s latent
and maximize the performance in each of the different environments.

We find that a small learning rate for the FILM layers causes the policy to behave similarly to training
without the modulation, limiting its ability to generalize across latent conditions and adapt to different
environments. On the other hand, if the learning rate is too large, it will lead to unstable training and
lower performance.

We propose a metric to measure the effectiveness for the dynamics latent conditioned 7 (s, ) to utilize
the environment information embedded in the latent z. Specifically, we compare the performance
of the policy given the true latent z computed from the dynamics encoder z(?) = fo( p) and give
an all-zero latent. We find that the performance of an all-zero latent could be even comparable to
that given the real z when the FiLM learning rate is small, but it will gradually decrease to near zero
when the learning rate increases and the policy starts to learn to use the latent information. On the
other hand, the overall performance of the policy will decrease nearly monotonously when the FiILM
learning rate increases. We plot the performance curves at different learning rates in Figure[6] For
each learning rate, we run seven trials and plot the mean and standard deviation of the performance.
We find that the learning rate of 5e — 5 is a good trade-off between performance and the ability to
utilize latent information, while le — 5 is too small, leading to nearly identical zero latent and true
latent performance, and le — 4 is too large and leads to poor performance.

C Experiment Details

C.1 Domain Randomization

Following the domain randomization settings in (Shi et al., |[2025)), we slightly increase the domain
randomization range to encourage the policy network to better use the dynamics information from
the latent. We list the randomized parameters and their range in Table[2} We use the encoder-decoder

architecture from (Liang et al.| 2024) to encode the physics parameters to a 1024-dimensional latent
before sending it to the FiLM layers, though we only use the encoder in our implementation.

C.2  Arm Control Policy

We implement our appliance arm controller based on the open-sourced code of |[Hou et al.| (2025).
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Table 2: We randomize the following environment parameters for the walking task.

Parameter Names  Friction Damping Armature Friction Loss Body Mass EE Mass
Randomize Range [0.5,2.0] [0.5,2.0] [0.5,2.0] [0.5,2.0] [-0.3,0.3] [0.0,0.1]

For the walking task, we enable appliance control along the XY axis while setting the Z-height
directly. We use a stiffness of [100, 50] along the two axis, while setting the damping to [0.5,0.5] and
inertia to [0.03, 0.03], making the arm slightly more compliant on the Y-axis.

For the swing task, we disable the appliance control for the arm since it makes the phase tracking lag
behind. We use position control to let the arm follow the helping or perturbing movement described
in Section During both helping and perturbing modes, each real-world data collection period is
evenly divided into 5 bins. In helping mode, 3 bins are randomly selected from the last 4 to apply
assistance. In perturbing mode, 1 bin is randomly selected from the first 4 to apply the perturbation.

C.3 Treadmill Control Policy

During the walking task, the robot is walking on the treadmill while the treadmill adjusts its speed
dynamically to keep the robot in a good position. We use a PD controller for the treadmill speed v:

U = Vpase + kp Py + ko1 ©)
where vpgse = 0.1 m/s is the default treadmill speed, F, is the force reading along the z-axis and )
is the robot’s torso pitch. kzl) = 0.2 and k% = —5 are the proportional gain. We set a treadmill speed

limit of 0.24 m/s to assure the safety of the humanoid platform.

C.4 Online Learning Hyperparameters

During real-world adaptation for walking, we collect a batch of 1024 steps of data before updating
the policy on them over 20 epochs using the PPO algorithm with a clipping ratio of 0.2. Both the
actor and critic networks are optimized with a learning rate of 1 x 10~%. To encourage exploration,
we apply an entropy coefficient of 0.005.

For training the swing-up task from scratch, we also collect 1024 samples before starting to update
the policy. The actor is optimized with a learning rate of 2 x 103 and the critic is optimized with a
learning rate of 2 x 10~°. To encourage exploration, we apply an larger entropy coefficient of 0.04.
Each PPO update is performed over 20 epochs with a clipping ratio of 0.2.

D Comparison with RMA

Rapad Motor Adaptation (RMA) (Kumar et al.| [2021) is a sim-to-real adaptation method that is
similar to our approach. The training of RMA consists of two stages: (1) A pretraining stage, where
the policy is trained in a simulated environment with domain randomization. In this stage, the latent
information is encoded from the physics parameters by a projection layer, and then concatenated
with the observation before being sent to the policy. (2) An adaptation stage, which is to address the
problem that the physics parameter of the real world is unknown. During this stage, an adaptation
module is trained via supervised learning to reconstruct the latent z from the past observations and
actions.

Compared to RMA, our approach bears differences in each stage: for the first stage, our method uses
a FiLM layer to modulate the policy network, which is a more flexible and powerful way to utilize the
latent information. In contrast, RMA simply concatenates the latent information with the observation.
In the second stage, our method does not require the adaptation module to reconstruct the latent z,
but instead, we optimize a universal latent z* that is shared across all the environments. This could
serve as a good initialization for further training of the optimal real-world latent z;, ;. On the other
hand, RMA tries to reconstruct the latent z from the past observations and actions, which is prone to
overfitting, especially when facing the largely out-of-distribution real-world dynamics.

In the following section, we set up simulation and real-world experiments to compare our method
with RMA. We try to answer the following questions: (1) How does the FILM layer modulation
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affect the performance compared to RMA’s simple concatenation? (2) How good is the adaptation
module compared to our approach to get a universal latent? For each experiment, we conduct ablation
studies and keep all other parameters the same. We then evaluate the fully trained RMA model in the
real world to prove that our method is indeed a better choice from each perspective for real-world
adaptation.

D.1 RMA Implementation Details

We describe the details we use to implement the RMA algorithm on our humanoid platform. During
phase one training, we randomize the simulation environment using the same parameter range
as described in Appendix [C.I] and the randomized parameters are then concatenated to form a
physics-information vector. We drop the unchanged digits during the encoding process.

The RMA algorithm is originally designed for a quadruped robot that has relatively low DoFs.
Compared with the original implementation, we use a similar process to train a stage one model that
takes in the observation and the dynamics latent and outputs the action. During stage two, we make
the following changes to adapt the algorithm to our hardware: (1) We decrease the window length
of past observations and actions that used to predict the current dynamics latent from 50 to 15, as
the observation of the humanoid platform has higher dimensions, and a too long horizon will cause
difficulty in training. This adjustment also aligns with the stack frame length we use during training.
(2) We change the 1D convolution layers used to process the past states and actions accordingly, since
the context window size is reduced. The new convolution layers now have kernel sizes of (5, 3, 3)
and stride steps of (1, 1, 1). Besides these changes, the RMA training reuses the existing real-world
learning pipeline, while only optimizing the adaptation module in stage two instead of the dynamics
latent as in the implementation of RTR.

D.2 FiLM Latent Modulation

We first compare the effect of FILM layer modulation used by RTR with the concatenation approach
used by the first stage in RMA. To this end, we run three seeds for the RMA to train a dynamics
latent conditioned policy in 1024 parallel simulation environments. While the FiLM layer-based
policy easily reaches an average evaluation return of higher than 300, the concatenated policy can
only reach a return of just over 200. We suspect that this is due to the high dimensionality introduced
by concatenation, which will hinder the policy performance. The co-existence of the observation
and the dynamics latent in the MLP policy input is also likely to cause the network to ignore the
dynamics. The detailed results can be found in the first column of Table 3] where the “Ground Truth”
denotes that both methods have access to the dynamics latent directly predicted from the encoder.

D.3 Adaptation Module Performance

During the second stage of RMA, an adaptation module is trained to predict the dynamics latent
from past observations. While in RTR, a universal latent is trained across randomized environments
for initialization of a real-world learning stage. We want to investigate which method could lead
to a better estimation of the real dynamics latent. In addition to the design choice of concatenation
or FILM layer modulation studied in the previous subsection, we conduct ablation studies to fully
compare the performance of both methods. The results can be found in Table 3]

In the first row of Table 3] we use the stage one of RMA to train a dynamics conditioned policy via
directly concatenating the dynamics latent to the observation, which will lead to inferior performance
than the FiILM layers. We then use both universal latent optimization and the adaptation module to
predict the dynamics latent. The result shows that both methods did pretty well to recover the latent,
resulting in a nearly identical performance to the true latent used in phase one.

In the second row of Table 3] we add the dynamics conditioning to the policy via FiLM layers as in
RTR. The performance of the conditioned policy is higher than that of the concatenated latent. We
then compare the two methods’ ability to estimate the dynamics latent for the FiLM layers. This time,
the RMA-style adaptation module failed to recover a feasible dynamics latent for the FiLM layers,
causing the performance to stay at a low position, almost close to that of a random policy. While the
prediction error of the adaptation module is decreasing, we suspect this is due to the FiLM layers
being more sensitive to the small changes of the dynamics layer, and the adaptation module can’t
fully close this gap from the past observations and actions.
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Table 3: We compare the performance for each stage of RTR (ours) and RMA (Kumar et al.,[2021) in
this table

Ground Truth ~ Adaptation Module (RMA)  Universal Latent (RTR)

Concatenation (RMA)  210.32 £ 20.75 205.74 £ 15.63 207.32 £ 5.89
FiLM layer (RTR) 316.10 £ 11.30 10.32 £ 2.01 305.28 £+ 5.47

Table 4: We compare RTR and RMA (Kumar et al.| 2021)) in this table, extending the results from
Table[T

Method Torso Roll | Torso Pitch] EEForce X EEForceY|] EEForceZ |

RMA 0.167 £ 0.010 0.212+0.006 1.172+£0.007 0.799 £ 0.028 2.548 £ 0.216
RTR (ours) 0.093 +0.020 0.053 + 0.044 0.943 + 0.202 0.754 £+ 0.122 0.954 + 0.445

D.4 Real-World Performance

Finally, we run the RMA model in the real world and test its performance using the same metrics
as the main paper. While our implementation of the RMA method successfully adapts to the real
world to produce a walking behavior somewhat similar to the simulation, the walking gait of the
RMA policy is not that stable, and the humanoid often leans forward and is frequently recovered
by the RTR hardware. The metrics in Table 4] show that our method clearly outperforms RMA for
real-world adaptation.

In summary, during the first stage of training, the approach of using the FiLM layer in RTR outper-
forms the concatenation method used by RMA. During the second stage, our approach of universal
latent optimization could provide similar initial latent compared to RMA, and is more stable when
combined with the FILM layers. What’s more, our approach of universal latent optimization leads to
a third real-world tuning stage, and has the ability to further boost the real-world performance with
the RTR hardware. The results in both simulation and real-world experiments lead to the conclusion
that the dynamics latent optimization pipeline of RTR is better suited for sim-to-real adaptation of
humanoids than the approach used by RMA.
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