
Extended Abstract

Motivation Current LLMs still struggle with logical reasoning related tasks as these tasks demand
accuracy on a granular individual step level. Traditional solutions for these problems involve fine-
tuning models which require access to model weights and significant computational resources.
Test-time compute scaling methods like sampling and prompt revisioning offer an alternative low
barrier approach that help increase accuracy. However, sampling methods like best-of-n suffer from
false-positive issues where individual predictions cannot be relied upon while revisioning methods
like traditional Chain-of-Thought (CoT) can have prompt bloat where the prompts contain redundant
and duplicated information.

Method This work investigates a novel test-time compute scaling modification to the Chain-of-
Thought (CoT) verification revisioning methodology involving precomputation and optimization
to help address these problems. In the approach, the information garnered from each subsequent
inference is aggregated and deduplicated to keep prompt size to a minimum. Additionally, precom-
putations are done and injected into the initial prompt which can be used by the model to prevent
hallucinations and inaccuracies. The Countdown task (Gandhi et al., 2024) is used as a case study
for this investigation which involves creating an equation using a list of numbers that evaluates to a
target value using the +, -, *, and / operators. Each number provided has to be used exactly once and
no other numbers may be used. Two baselines are explored in this work: Supervised Fine-tuning
(SFT) and REINFORCE Leave One Out (RLOO) models. CoT revisioning based inference is run on
these baseline models based around precomputation, extraction, verification, and deductions. As part
of these four phases, model generations are analyzed, fixed, and the byproducts are kept track of in
an oracle which are then fed into a revised prompt.

Implementation Qwen 2.5 0.5B is used as the base model for this work. SFT finetuning is done
using the warmstart dataset (Gandhi et al., 2025) which consists of 1000 query and completions.
RLOO is trained using 5000 examples from Countdown dataset which contains input numbers and
the target value. 1000 Countdown problems are used as the validation set and the two stage reward
score from Pan et al. (2025) is used to calculate the average reward score. A 1.0 score is given to
examples with correct responses, and a 0.1 score is given to incorrect responses that have the correct
format. The final best SFT and RLOO models were chosen based on the validation score after which
optimized CoT was run on both to measure the performance differential.

Results The RLOO baseline model outperformed the baseline SFT model (0.397 vs. 0.274 average
validation reward score). The modified CoT demonstrated substantial improvements to the perfor-
mance of both RLOO and SFT for Countdown - increasing the validation score by 131% for SFT
model inference and 72% for RLOO model inference. Additionally, inference costs increased by
2.55x on average for succcessful evaluations when running modified CoT inference.

Discussion While optimized CoT showed substantial results for the Countdown task, there were
limitations in conveying more complex reasoning across iterations mainly owing to the fact that more
sophisticated deduction mechanisms would be necessary to extract the insights. Additionally, there
was still some inability in guiding the inferences towards unexplored sample spaces and avoid some
of the "logical flows" from the previous inferences. As far as extending this method to other problems
goes, the Countdown task allowed for extraction and deduplication of computations. Other tasks
may require more complex strategies for identifying and storing useful intermediate step information.
Nevertheless, this work serves as a good reference starting point for implementing optimized CoT in
other domains.

Conclusion CoT test time compute scaling is a more accessible way for substantial accuracy
improvements on logical deduction related tasks.The results indicate that models with varying levels
of performance and accuracy can all get significant benefit with optimized CoT. There is a lot of
potential for this work to go even further. An interesting avenue to explore could be to create a
dataset based on CoT responses by a stronger LLM model which could then be used as a dataset for
finetuning models. These methods will drive reducing dependency on the LLM’s intrinsic capabilities
and allow for more control, leading to higher accuracies on such logical reasoning tasks with more
robustness.

Improving LLM Reasoning Through Optimized Chain
of Thought Revisioning and Precomputation

Akhil Vyas
Department of Computer Science

Stanford University
avyas21@stanford.edu

Abstract

Current LLMs still struggle with logical reasoning related tasks as these tasks
demand accuracy on a granular individual step level. Traditional solutions for
these problems involve fine-tuning models which require access to model weights
and significant computational resources. Test-time compute scaling methods like
sampling and prompt revisioning offer an alternative low barrier approach that help
increase accuracy. However, sampling methods like best-of-n suffer from false-
positive issues where individual predictions cannot be relied upon while revisioning
methods like Chain-of-Thought (CoT) can have prompt bloat where the prompts
contain redundant and duplicated information. In this work, a new optimized CoT
methodology is proposed that takes advantage of precomputation and integrates
verification of intermediate reasoning steps while minimizing prompt redundancy,
enhancing both interpretability and final accuracy. Applied to the Countdown task,
this method demonstrates substantial improvements - increasing the validation
score by 131% for baseline SFT model inference and 72% for traditional RLOO
model inference. While optimized CoT-based inference has a trade-off in the
form of increased inference time (around 2.55× slower on average), our findings
show that it is a practical and effective post-training strategy for improving logical
reasoning in LLMs in a more cost-effective way that requires less specialized ML
knowledge.

1 Introduction

Logical reasoning related tasks remain one of the most prominent challenges for even the most
recent, state-of-the-art LLMs. This difficulty arises from the need for high accuracy and precision
across multiple steps which can not be accounted for with just general knowledge. The inherence
mechanism of LLMs which predict most likely next tokens becomes a hindrance in effectively
solving these problems. Often, an approach to help address these issues is to finetune the underlying
model with large amounts of training data. However, the problem is that this requires access to the
underlying weights of the models and fine-tuning models is a pain-staking process that requires
a specialized background on machine learning and is generally expensive requiring large scale
computation. Additionally, fine-tuning requires the creation of well-curated datasets for effective
training.

There is an alternative to model fine-tuning which is to have multiple passes at test time inference
without altering the model weights. These methods typically involve multiple inference passes and
aggregate the outputs to get a final result. This includes techniques like best of n where n candidates
are generated and the best inference is chosen. The problem with these sorts of methods is that it
requires having the ability to be able to determine which result is better from another which can also
require some additional effort and insight.

Stanford CS224R 2025 Course Report

Other approaches look to run multiple iterations sequentially instead of in parallel like Chain-of-
Thought, which look to revise instructions by verifying and fixing the intermediate steps and passing
the corrected input into the model. This allows models to correct mistakes and use past experience
for higher accuracy. However, there are some problems with the vanilla Chain-of-Thought - there can
quickly be prompt bloat with too much extraneous and redundant information being carried over to
the next iteration which can lead to more accuracy issues as a result of longer contexts.

This project explores a refined Chain-of-Thought (CoT) revisioning methodology with two main
goals:

1. Optimize the information retained between iterations to keep the prompt size to a minimum.

2. Precompute any information to give the model a reference to prevent hallucinations and
inaccuracies.

In this method, the model’s intermediate reasoning is individually verified for correctness which is
then stored off into an oracle with duplication checks. The oracle is then used to revise and improve
the model’s inference while reducing redundancy. This process not only aims to increase the accuracy
of intermediate steps but also improves the interpretability and robustness of the final output for every
single inference.

The Countdown task (Gandhi et al., 2024) is used as a case study for this work. The Countdown task
involves creating an equation using a list of numbers that evaluates to a target value using the +, -, *,
and / operators. Each number provided has to be used exactly once. No other numbers may be used.

By focusing on post-training improvements, this project explores a more computationally efficient
alternative to full model fine-tuning, offering a promising direction for more performant LLMs for a
variety of use cases outside the scope of what was used to train the LLM initially.

2 Related Work

Recent advances in LLM performance have been significantly driven by inference time scaling
exemplified by models like DeepSeek R1 (DeepSeek-AI et al., 2025). Snell et al. (2024) classifies such
methods into two broad categories. The first category consists of approaches that modify the proposal
distribution via modifying the input prompt through sequential inferences - CoT being a prime
example. The second category consists of verifier function based approaches, where multiple samples
are generated and ranked in order to pick the best response. While both of these paradigms have been
explored independently in numerous works, there has been limited investigation into combining the
two. This project seeks to bridge the gap by integrating verification into intermediate outputs
and using insights on those to guide and revise subsequent inference steps.

There have been several studies that have explored verifier and CoT approaches in the context of
natural language math problems. Cobbe et al. (2021) evaluated both finetuning and verifier methods
on the GSM8K grade school math natural language problems dataset. Their approach involved
generating multiple completions, ranking them using a verifier model, and selecting the top scoring
completion. A notable finding of this work was that verification scaled more effectively than a
finetuning baseline with increased data. Separately, Wang et al. (2023) proposed a self-consistency
methodology for CoT that was explored for arithmetic and commonsense reasoning benchmarks
that instead of greedily decoding samples, also generated various samples and then picked the most
consistent answer. However, both of these works focus on verifying the final result or the entire
reasoning for ranking and selection which leads to more flakiness for the intermediate steps and more
false positives. Additionally, using best of n leads to less confidence for single predictions while also
requiring functions to be able to rank the many samples.This work looks to make single prediction
chain more robust without the need to generate multiple samples by being able to garner all
the information learnt from past passes. Additionally, other CoT approaches focus mainly on
correcting and continuing the train of thought. This is not fully efficient and can lead to prompt
bloat, introducing repetitive or irrelevant content that harms efficiency and model focus. In this work,
information is extracted and condensed before being passed forward with a more optimized
prompt.

2

3 Method

3.1 Baselines

We evaluate our approach on two widely used learning strategies: Supervised Fine-Tuning (SFT) and
REINFORCE Leave-One-Out (RLOO) which is a popular fine-tuning method.

3.1.1 Supervised Fine-Tuning (SFT)

SFT uses a labeled training set to maximize the likelihood of completion y given query x. Training
objective optimized over queries x and completions y. SFT optimizes the following objective function:

max
θ

Ex,y∈D

|y|∑
t=1

log πθ(yt|x, y<t) (1)

Here πθ is the model’s output distribution parameterized by θ and the loss for SFT is computed using
the token-wise log probabilities across the entirety of completion y while ignoring pad tokens. The
log-probabilities are computed using the softmax activation on the model’s logits at each timestep,
and gradients are backpropagated through the sequence so that higher probabilities are assigned to
correct tokens for the generation.

3.1.2 REINFORCE Leave One-Out (RLOO)

RLOO is a policy gradient estimator where multiple samples are generated using the policy and
the weighted average is taken based on the rewards of the generations to reduce the variance of the
samples overall based on a leave one out baseline. This is the RLOO objective per prompt with K
generations:

1

K

K∑
i=1

ri −
1

K − 1

∑
j ̸=i

rj

 log πθ(yi | x) (2)

The loss for RLOO is calculated as follows:

1. Using the current RLOO policy, K samples are generated and the rewards are computed on
each sample.

2. The original prompt is concatenated to these generations and a forward pass is done on the
RLOO policy.

3. The log probabilities are calculated only on the output tokens and not the input tokens or
padding.

4. The mean of the log probabilities is taken per sample generation and a weighted average is
done using the reward multipliers and the log probs across the K generations to get the final
RLOO loss.

3.2 Chain of Thought (CoT) Revisioning for SFT and RLOO

Both SFT and RLOO are augmented with CoT test time inference scaling. This is the overall
algorithm for CoT revisioning with precompute as visualized in fig. 1:

1. Precomputation For each prompt, some preliminary calculations are done between the
numbers using the +,-,*,/ operators. The results of those operations are stored in an oracle.

2. The oracle is fed into the prompt and passed into the model.

3. Verification and Extraction After sampling generation from the model, the overall reward
for that generation is computed. If reward is 1.0, the process stops. Otherwise, all the
equations in the model generation are extracted and verified / fixed.

4. Deductions Deductions are done on wrong responses and fed into the prompt.

3

Figure 1: CoT architecture utilizing precomputation, verification, extraction, and deductions to
augment the prompt with multiple iterations

5. Prompt Modification The updated oracle and the deductions garnered are fed into a new
revised prompt.

6. Repeat Steps 3-5.

Each component is described in more detail below.

3.2.1 Oracle and Precomputation

We have the concept of an oracle which stores all preliminary results. For simplicity, only results
consisting of 2 numbers and the +, -, *, and / operators are used. Each element in the oracle consists
of an operator and 2 numbers along with the result of using the operator between the 2 numbers and
an optional note. This storage structure allows for easy deduplication of all the equations. For this
work, that allows optimizations on the same equations not being stored twice. For example, operators
like + and * which are cumulative operations would not have both num2 + num1 and num2 + num1
stored.

During the precomputation phase, for all combinations of the input numbers, computations are
performed using the four operators and stored into the oracle. Division operators are only stored if
the result is an integer. If the result from an operation is the target or a factor/multiple of the target, a
special note is stored with the operation which is then also injected into the prompt.

Precomputation is useful because it allows the model to reference calculations instead of generating
them which is very vulnerable to mistakes as LLMs don’t actually perform calculations but just
predict tokens. An example of precomputation for a problem with nums [2,3, 1] and target 5 would
be "operator": "+", "num1":2, "num2":3, "result": 5, "note": "This is equal to the target!" which
would be input to the prompt as "2 + 3 = 5 (This is equal to the target!)"

3.2.2 Extraction and Verification

After model generation on the initial prompt, complicated regex matching is used to garner all the
equations present in the model response. Only equations with the format "num1 <operator> num2
= <result>" are gathered to only provide simple calculations to the model and avoid noise in the
reference data. These equations are then verified and fixed. So for example, a hallucinated calculation
like 128 / 32 = 8 would then be fixed to 128 / 32 = 4 and then stored into the oracle while avoiding
duplication which allows the subsequent prompt to not be overblown in length.

3.2.3 Deduction

Deductions are made on the final expression returned by the model for each iteration. There are four
kinds of feedback provided:

• Unused numbers If any number from the input is not present in the output expression.

4

• Numbers used multiple times If a number from the input is used more times than it shows
up in the input.

• Invalid numbers If a number from outside the input shows up in the output expression.
• Wrong result When the evaluation of the submitted expression does not equal the target.

The model is also instructed to not return the same expression again. One thing to note is that only
the answer from the previous iteration and its corresponding deductions are injected into the prompt
to keep the prompt length small.

3.2.4 Prompt Modification

All the data points in the oracle are then provided to the prompt as reference calculations along with
instructions to reuse calculations along with the deduction based feedback. The main problem is also
re-referenced to keep the inference tied to the original problem and prevent further hallucinations.
The overall format of a revised prompt is as follows:

"A conversation between User and Assistant. The user asks a question, and
the Assistant solves it...
CALCULATIONS FOR REFERENCE:
....
User: Using the numbers {nums}, create an equation that equals {target}.
Use above calculations as reference do not redo same computations....
You previously submitted {Previous Wrong Answer} which is incorrect (DON’T
SUBMIT THIS AGAIN)
<MODEL RESPONSE>

4 Experimental Setup

Qwen 2.5 0.5B was used as the base model. For all experiments, a validation set of 1000 Countdown
problems was used. The two stage reward score from Pan et al. (2025) was used to calculate the
average reward score on the validation set. A 1.0 score is given to examples with correct responses,
and a 0.1 score is given to incorrect responses that have the correct format. For model generations,
the prompt was tokenized to a length of 256, and generations were limited to 1024 tokens. A top k
value of 20, a top p value of 0.95, and a temperature value of 0.7 was used for the generations for
both validation and RLOO training.

• SFT The training set consisted of the warmstart dataset (Gandhi et al., 2025) which consists
of 1000 prompts and completions. A learning rate of 1e-6 was used with the AdamW
optimizer and training was run for ~20 epochs. The validation score was calculated after
each epoch.

• RLOO The training was done on the Countdown dataset (consists of nums and a target
number) with a training set of 5000 points for 1 epoch. A learning rate 1e-6 was used
with the AdamW optimizer. 16 generations were done per prompt. Gradient accumulation
was done such that model weights were updated every 32 prompts X 16 generations. The
validation score was calculated every 10 gradient steps.

• CoT Based Inference A max of 10 iterations of CoT revisioning were run on each prompt.

5 Results

5.1 Training - SFT and RLOO

Figs. 2 and 3 show the training curves for both SFT and RLOO. We can see the training for
both SFT and RLOO was quite noisy and that the validation accuracy fell sharply after just a few
steps. SFT training loss trended downwards but the validation score started to decrease due to
overfitting. However, an interesting aspect of RLOO training was that the training loss started to
drop as well. There could be several reasons for this - overfitting, distribution shift in the prompts,
general high variance in RLOO training. The final model chosen for both SFT and RLOO was the
one corresponding to the highest validation score.

5

Figure 2: SFT training loss and validation score

Figure 3: RLOO training and validation rewards

5.2 Quantitative Evaluation

Table 1: Performance Comparison of SFT and RLOO with and without Chain-of-Thought (CoT)

Method Validation Score Avg. Success Num Passes

SFT 0.274 1
SFT with CoT 0.584 2.89
RLOO 0.397 1
RLOO with CoT 0.686 2.22

Table 1 shows the comparison of SFT and RLOO methods with and without CoT revisioning. We see
that baseline RLOO outperforms SFT by a score of 12.3%. Additionally, we can see that CoT gives a
huge boost in performance. We see that CoT improved performance by 131% for SFT and 72%
for RLOO. However, we see that CoT took 2.89 and 2.22 passes on average for SFT and RLOO
compared to a single pass on the baseline models to get to the correct response.

6

Figure 4: Step Counts for Success Evaluations for SFT and RLOO

From fig. 4 we see the distribution for the number of steps needed for successful expressions. We
see that the the accuracy of the base model contributes greatly to the accuracy of the "first pass" of
the model. However, we see that post the first pass, the number of problems solved correctly are
equal in number across SFT and RLOO. Analyzing further, we see that for SFT 341 out of the 538
(63%) total successes come after the first pass while for RLOO 307 out of the 651 total successes
(47%) come after the first pass. This is in line with expectations as the worse the underlying model
is, the more benefit that model will get from CoT. A counter-intuitive result though was that the
first pass accuracy with CoT was equal to or lower than the base SFT and RLOO models meaning
that the precomputations supplied to the model did not lead to benefits on the first turn. This also
indicates that there is more benefit from using the deduction step in tandem with the precompute
step as that allows the model to build upon its previous attempts in a more deterministic way. The
feedback provided to the model gives input on the exact areas that are incorrect like numbers not
being present or numbers being multiple times which can be used as an effective starting direction.

5.3 Qualitative Analysis

5.3.1 SFT vs. RLOO

The reason RLOO outperforms SFT on the Countdown task is related to the underlying training
algorithms. SFT tries to mimic the examples in the training set. That is problematic for the Countdown
task because the warmstart dataset used to train SFT has numerous examples that have wrong answers
and hallucinated reasoning. SFT does not use any insights on how good or accurate the response
actually is as it does not incorporate any reward functions for its loss calculations. Finally, SFT
is more prone to overfitting due to the limited number of 1000 training examples which impacts
generalization.

A component that gives RLOO an advantage for the Countdown task is reward weighting. More
accurate sample generations are given more weight during RLOO training. Not all samples generated
from the RLOO policy solve the problem correctly - there is a huge variance at the start of the training
but the RLOO algorithm is able to bias towards better responses.

5.3.2 Non-CoT vs. CoT

This is an example of how CoT revisioning helps amend the subsequent answers from the model:

7

For problem with nums [42, 34, 65, 76] and target 65:

1. First pass solution: (42 - 76) + 34
2. Feedback provided back to prompt - "This expression does not use 65 ... This expression is

equal to 0 which is not equal to the target we want which is 65."
3. Second pass solution: (((42 - 76) + 34) - ((65 - (42 - 76))))
4. Feedback provided back to prompt - "This expression uses the numbers 42,76 more than

once, You should only use numbers from [42, 34, 65, 76] exactly once ... This expression is
equal to -99 which is not equal to the target we want which is 65"

5. Third pass solution: ((42 - 76) + 34) + 65 (Correct)

We can see how the next iteration directly builds upon the previous iteration. The final solution
directly addresses the feedback from the previous turn. Looking at the prompt for the third iteration,
verbiage indicating the same is present before the final answer is output: "This uses each number
only once and is equal to the target!".

Another interesting benefit seen from CoT is that the reasoning capabilities improve greatly per step.
With non-CoT in a lot of examples it would just directly output the final answer after just a few
computations with no evidence presented for the final expression. However, for the CoT steps after
the first one, the logic would start with some reasoning relating to how to fix the deduction feedback
provided as part of the prompt. CoT keeps the inference grounded and makes sure that the original
problem is not lost due to the feedback that keeps reinforcing the problem.

6 Discussion

The most challenging part of the project was getting the training done for the RLOO model which
took ~15-24 hours for each iteration which made it hard to run more experiments and finetune the
hyperparameters. Additionally, the difficulty of the algorithm itself led to multiple iterations needed
to finish the implementation.

Another major challenge involved extracting and revisioning the prompt for CoT. There is a lot of
variance in model responses and for CoT to be functional, there needed to be handling around a
variety of edge case scenarios (like dividing by 0 or making sure factor/multiples of 1 were not
injected into the prompt).

While the work in the project has demonstrated great results from using CoT - there were some
limitations that prevented from conveying more complex ideas and inject more information into
subsequent inferences. For example, instead of just giving access to reference calculations, directions
can be provided on the actual "logical paths" taken before to take uncovered paths rather than redo
some of the same logical paths as before. However, that would require more substantial deduction
mechanisms based on past computations. Additionally, the oracle for this work consisted mainly of
simple calculations between 2 numbers but there could have been bigger benefits from storing away
more complex equations in an optimized fashion.

As far as extending this method to other problems outside Countdown goes, this project benefited
from Countdown involving simple computations which could be easily captured and de-duplicated
from the model response. Other problems would not have such an easy to extract structure which
would require more thought into what to store for subsequent revisions and the most effective way to
store those would be. However, this work does serve as a starting reference point for designing more
optimized CoT for more complicated problems.

7 Conclusion

This project has shown how CoT test time compute scaling is a lower barrier way for substantial
accuracy improvements on logical deduction related tasks. We saw how with CoT average scores
on the SFT model increased from 0.274 to 0.584 (a 131% increase) while RLOO with CoT saw an
improvement from 0.397 to 0.686 (a 72% increase) over traditional RLOO. This showcases that while
there are some diminishing returns, models with varying levels of performance and accuracy can all
get significant benefit with optimized CoT. While there are numerous advantages from an accuracy

8

perspective, CoT does come with the added cost of more inference time - we saw an average of 2.55x
the amount of time to make a prediction compared to traditional models.

There is a lot of potential for this work to go even further. An interesting avenue to explore could be
to create a dataset based on CoT responses by a stronger LLM model which could then be used as
a dataset for finetuning models. Additionally, another area to explore could be trying to effectively
generate samples in the direction of unexplored samples spaces based on information present in past
inferences. All these methods will drive reducing dependency on the LLM’s intrinsic capabilities and
allow for more control, leading to higher accuracies on such logical reasoning tasks.

8 Team Contributions

• Akhil Vyas: All design, implementation, and experimentation.

Changes from Proposal The original proposal aimed at using a self-verification mechanism which
scored each intermediate step. This turned out to be difficult to implement since the LLM output
would contain reasoning in a variety of formats (free text, equations, etc.). Additionally, the LLM
was making inaccurate logical leaps and so relying on it as a judge was not viable. Instead external
verification was used for this project. The original proposal also looked to generate multiple samples
and then running CoT on all the generated samples. After more research, it was found this doesn’t
offer too much in the way of novelty but it is also very computationally expensive. Instead, the focus
for this work was to make a single inference pass as accurate as possible.

References
Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,

Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. 2021. Training Verifiers to Solve Math Word Problems. arXiv:2110.14168 [cs.LG]
https://arxiv.org/abs/2110.14168

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye,
Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang,
Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang,
Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan
Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen
Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q.
Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi
Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. 2025. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement
Learning. arXiv:2501.12948 [cs.CL] https://arxiv.org/abs/2501.12948

9

https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2501.12948

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D. Goodman. 2025.
Cognitive Behaviors that Enable Self-Improving Reasoners, or, Four Habits of Highly Effective
STaRs. arXiv:2503.01307 [cs.CL] https://arxiv.org/abs/2503.01307

Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma,
and Noah D. Goodman. 2024. Stream of Search (SoS): Learning to Search in Language.
arXiv:2404.03683 [cs.LG] https://arxiv.org/abs/2404.03683

Jiayi Pan, Junjie Zhang, Xingyao Wang, Lifan Yuan, Hao Peng, and Alane Suhr. 2025. TinyZero.
https://github.com/Jiayi-Pan/TinyZero. Accessed: 2025-05.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. 2024. Scaling LLM Test-Time Compute
Optimally can be More Effective than Scaling Model Parameters. arXiv:2408.03314 [cs.LG]
https://arxiv.org/abs/2408.03314

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. 2023. Self-Consistency Improves Chain of Thought Reasoning in Language
Models. arXiv:2203.11171 [cs.CL] https://arxiv.org/abs/2203.11171

10

https://arxiv.org/abs/2503.01307
https://arxiv.org/abs/2404.03683
https://github.com/Jiayi-Pan/TinyZero
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2203.11171

	 Introduction
	Related Work
	Method
	Baselines
	Supervised Fine-Tuning (SFT)
	REINFORCE Leave One-Out (RLOO)

	Chain of Thought (CoT) Revisioning for SFT and RLOO
	Oracle and Precomputation
	Extraction and Verification
	Deduction
	Prompt Modification

	Experimental Setup
	Results
	Training - SFT and RLOO
	Quantitative Evaluation
	Qualitative Analysis
	SFT vs. RLOO
	Non-CoT vs. CoT

	Discussion
	Conclusion
	Team Contributions

