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EXTENDED ABSTRACT

Creating high-quality, Khan Academy–style whiteboard
videos remains a labor-intensive task, demanding precise co-
ordination between drawn illustrations and spoken narration.
In this work, we introduce WhiteboardGym, a reinforcement-
learning framework that automates the generation of time-
aligned whiteboard teaching content. Given only a lesson
transcript and a blank canvas, our system outputs a sequence
of discrete drawing commands—strokes, text annotations, im-
age insertions, and erasures—that, when rendered, faithfully
convey the narrated concepts in real time.

The core challenge lies in replacing hours of manual video
production with an agent that can reason about both what to
draw and when to draw it. Unlike prior “paint-by-numbers”
approaches that focus on static image reconstruction, our
problem formulation treats whiteboard video creation as an
online decision process, where each action must be synchro-
nized with the progression of a spoken script. We cast this as
a Markov decision process whose state includes the current
canvas and transcript position, and whose reward function
jointly measures four pedagogical criteria: visual clarity of
key elements, pacing relative to speech, learner engagement
through appropriate drawing density, and semantic alignment
between image and text.

To solve this multimodal MDP, we develop a multi-stage
training pipeline. We begin with Behavior Cloning/Supervised
Fine-Tuning on a small corpus of human-demonstrated
lessons to initialize a drawing policy. We then introduce a
dynamic reward model—distilled from large language models
—to provide rapid, high-fidelity feedback in lieu of expensive
manual grading. Finally, we employ policy gradient methods
like PPO and GRPO.

Our contributions are fourfold. First, we present a novel
MDP formulation that captures the complexity of real-time
drawing and narration alignment. Second, we design a multi-
stage pipeline that seamlessly integrates supervised demon-
strations with reinforcement learning and dynamic reward
shaping. Third, we demonstrate that policy gradient meth-
ods like PPO and GRPO achieves order-of-magnitude gains.

Fourth, we introduce a distilled reward network that correlates
strongly with human preference judgments while remaining
computationally lightweight.

In extensive experiments on 5 000 lesson transcripts,
GRPO-BC attains an average return of 0.75 ± 0.03, surpassing
PPO-BC’s 0.72 ± 0.04, BC-only’s 0.33 ± 0.05, and the zero-
shot ReAct baseline’s 0.40 ± 0.08. Per-component scores
confirm that GRPO-BC leads on Clarity (0.80 vs 0.78),
Pacing (0.78 vs 0.73), and Engagement (0.75 vs 0.70), even if
semantic Align (0.70 vs 0.75) remains competitive. A gemini
based evaluation over 400 test prompts further prefers GRPO-
BC 80% of the time (19% for PPO-BC, 1% for ReAct, 0%
for BC-only), demonstrating strong correspondence between
our automatic reward and high-level pedagogical quality.

This work lays the groundwork for scalable, on-demand
production of whiteboard lessons across diverse subjects,
potentially transforming how educational content is authored
and delivered. Future research will address data efficiency by
leveraging unlabeled video corpora, explore richer hierarchi-
cal action spaces for more complex diagrams, and extend our
approach to multi-speaker and multilingual scenarios.



Abstract—Creating high-quality, Khan Academy–style white-
board videos remains labor-intensive, requiring precise coor-
dination between drawn illustrations and spoken narration.
We introduce WhiteboardGym, a reinforcement-learning frame-
work that automates time-aligned whiteboard lesson creation:
given a transcript and blank canvas, the agent emits a se-
quence of discrete drawing commands—strokes, text, images,
erasures—synchronized to narration. We cast this as a MDP,
and whose reward jointly measures visual clarity, pacing relative
to speech, learner engagement, and semantic alignment. Our
multi-stage pipeline begins with supervised fine-tuning (behavior
cloning) on a small corpus of human-demonstrated lessons to
initialize a policy, introduces a distilled ViT–RoBERTa reward
model (originating from GPT-4o) for rapid high-fidelity feed-
back, and then does RL via PPO and group-relative policy
updates (GRPO-BC). In experiments on 5 000 lesson transcripts,
GRPO-BC achieves an average return of 0.75±0.03, outperform-
ing PPO-BC (0.72±0.04), BC-only (0.33±0.05) and a zero-shot
ReAct baseline (0.40±0.08), and leads per-component on clarity
(0.80 vs. 0.78), pacing (0.78 vs. 0.73) and engagement (0.75 vs.
0.70). Using Gemini’s native video understanding model, in a
blind LLM-judge study (n=400), GRPO-BC is preferred 80%
of the time (19% PPO-BC, 1% ReAct, 0% BC-only), confirming
strong alignment between our automatic reward and pedagogical
quality. WhiteboardGym thus offers a scalable path toward on-
demand, multimodal educational video production; future work
will explore offline RL on unlabeled corpora, hierarchical action
spaces for complex diagrams, and extensions to multi-speaker
and multilingual lessons.

I. INTRODUCTION

Educational video content, particularly Khan Academy-
style whiteboard lectures, has become a cornerstone of mod-
ern self-paced learning. These videos excel at breaking down
complex concepts into digestible visual and verbal elements,
leveraging the cognitive benefits of multimodal learning to
enhance comprehension and retention [1]. However, produc-
ing a single five-minute lesson can demand several hours
of painstaking work. Instructors must anticipate how each
spoken phrase aligns with a multitude of drawing strokes, an-
notations, and erasures, all while preserving an educationally
coherent narrative. This manual process not only consumes
significant time but also creates a barrier for educators who
lack technical expertise in video production.

Prior efforts in automated educational content genera-
tion have largely focused on static slide creation or simple
animations that lack fine-grained, time-synchronized visual
narration. Such approaches fall short when tasked with hav-
ing drawn diagrams and spoken explanations that define
whiteboard videos. At the same time, recent advances in
reinforcement learning (RL) have shown remarkable sample
efficiency in domains requiring complex sequential decision-
making. Yet, these techniques have not been fully explored
in the context of multimodal, time-aligned teaching agents.
There remains a critical gap: a system that can ingest a lesson
transcript, reason over visual and temporal constraints, and
generate a synchronized sequence of whiteboard commands
that truly "teach" as effectively as a human instructor.

A. Problem Statement

Automated whiteboard-style video generation introduces
several intertwined challenges:

• Temporal Alignment: Each drawing command must
occur at the exact moment the narration references a
visual concept, preserving pedagogical coherence.

• Visual Clarity: The resulting canvas must communicate
ideas with clear diagrams, legible handwriting, and ap-
propriate spatial organization.

• Engagement: The pacing and visual transitions should
maintain learner interest without overwhelming or boring
the audience.

• Sample Efficiency: High-quality annotated data is
scarce; the system must learn effectively from limited
examples and compute resources.

B. Our Approach

We cast whiteboard-style lesson generation as a single end-
to-end Markov Decision Process: at each timestep the agent
observes a fused state consisting of a rasterized canvas state
and a sliding-window transcript, and selects one of eight
high-level editing primitives (stroke, text, erase, addImage,
setColor, setWidth, wait, finish). To warm up, we first do
behavior cloning on top of a Qwen3-8B policy on 50 human-
annotated transcript–command episode pairs. We then apply
policy gradient methods, including PPO a GRPO with behav-
ior cloning (GRPO-BC/PPO-BC). In each iteration, the policy
collects rollouts, computes advantages via GAE (for GRPO),
and optimizes a clipped surrogate combined with a decaying
imitation loss. Throughout training, a learned reward asses-
sor—distilled from GPT-4o into a lightweight ViT–RoBERTa
network—scores each rollout on clarity, pacing, engagement
and semantic alignment, enabling fast, scalable RL without
costly LLM calls.

C. Contributions

1) MDP for Time-Aligned Teaching. We formalize
transcript-to-whiteboard video as an MDP whose state
merges canvas and transcript embeddings, and whose
action set comprises interpretable drawing primitives.
Our reward integrates pedagogical metrics of clarity,
alignment, pacing and engagement.

2) Multi-Stage Supervised + RL Pipeline. We warm-
start a Qwen-8b policy by supervised fine-tuning on 50
human-annotated lessons, then refine it with GRPO-BC
and PPO-BC.

3) Distilled Pedagogical Reward. We use a GPT-4o based
reward to initially grade generated lessons on four
dimensions, then distill it into a ViT–RoBERTa model
that runs at interactive speeds. This distillation pre-
serves >0.90 correlation with human judgments while
eliminating expensive LLM queries during training.

Our experiments show GRPO-BC achieves an average
return of 0.75±0.03 and wins an 80% blind-judge preference,
outperforming PPO-BC (0.72±0.04, 19%) and the zero-shot
ReAct baseline (0.40± 0.08, 1%).



II. RELATED WORK

A. Learning-to-Paint and Sketch Generation

There is a growing literature on using deep RL for
sketching or recreating static target images. Huang et al. [6]
formulate painting as an MDP where the agent sequentially
places strokes onto a blank canvas to reconstruct a given
target image I∗. The reward is simply −∥Render(a0:t)−I∗∥2.
Their environment uses a neural renderer to simulate strokes
at 256× 256 resolution. Although they achieve photorealistic
painting of celebrities or landscapes, this line of work does not
involve any speech or transcript: no time dimension beyond
the static target.

Zhou et al. [7] collect a dataset of human stroke sequences
for line drawings. A CNN–RNN policy is trained by Behavior
Cloning to imitate human sketches, then fine-tuned with DQN
to improve pixel-level fidelity. Again, the objective is purely
static: reproduce a silhouette or cartoon character, with no
relation to spoken content.

Muhammad et al. [12] focus on removing non-salient
strokes to minimize complexity while preserving recogniz-
ability, but not on generating novel lessons or aligning to
speech.

Lee et al. [13] use hierarchical RL where a high-level
planner selects "where to draw next" and a low-level con-
troller executes robot arm joint movements. This is robotics-
centric and aims to reproduce doodles or calligraphy, without
a transcript.

In contrast, our goal is to generate a timed sequence of ped-
agogical drawing actions that align with spoken narration—an
MDP layering speech and text over dynamic sketching.

B. Multimodal and Reward-Shaping Studies

Recent work has explored using LLMs or vision–language
models to guide RL for image-based tasks. Yang et al. [8]
prompt an LLM (e.g., Codex or GPT-4) to output step-by-
step drawing commands given a text prompt, but do not
incorporate RL to refine timing or to optimize a quantitative
reward.

Li et al. [14] explore goal-conditioned imitation learning
from hand-drawn sketches, demonstrating that a purely super-
vised policy can reproduce shapes but struggles when forced
to optimize a specific reward (e.g., matching a template). They
conclude that directly applying RL to sketches is challenging
due to ambiguous rewards. We build on this insight by
carefully designing a multi-component reward that balances
clarity, pacing, and semantic alignment.

C. LLMs and Vison Models for Reward Scoring

Prior work in instruction generation (e.g., "OpenAI Fine-
Tuning Models Are Sample-Efficient Multimodal Reward
Models," Smith et al. [15]) uses LLMs to supply reward
signals for text or image alignment. We similarly leverage
Gemini to score whiteboard frames on clarity or semantic
alignment, but go further by training RL agents that optimize
for these LLM-derived metrics.

D. Imitation + On-Policy Hybrid (PPO-BC)

Hester et al. [16] and Wang et al. [17] inject demonstration
data into Q-learning updates. Ghosh et al. [18] describe joint
optimization of imitation loss and RL loss. Harb et al. [19]
and Wu et al. [20] use combined supervised and policy-
gradient updates.

We adopt a similar idea—warm-start with BC on 50 human
lessons, then fine-tune with PPO and a decaying BC weight
λBC(u). Our novel element is applying this hybrid update to
discrete drawing actions on a whiteboard, accompanied by
multimodal, LLM-based rewards.

In summary, while prior work has addressed static image
generation, human sketch imitation, or model-based RL in
other domains, no existing method simultaneously (a) handles
speech-synchronized drawing, (b) integrates LLM-derived
multi-objective rewards, and (c) trains within a model-based
latent imagination loop. Our contributions fill this gap.

III. PROBLEM FORMULATION

We cast automated whiteboard–lesson generation as a
finite–horizon Markov Decision Process (MDP) M =
(S,A,P,R, γ, T ).

• State space S: A state st = (Ct, τt) contains only the
rasterized canvas Ct (“what is drawn so far”) and the
current index τt in the lesson transcript (“what is being
said”).

• Action space A: Eight high–level drawing primitives—
STROKE, TEXT, ERASE, SETCOLOR, SETWIDTH, AD-
DIMAGE, WAIT, and FINISH. Parameter values (e.g.,
Bézier points, colour) are predicted in a subsequent
decoder but the policy optimization treats the primitive
symbolically.

• Transition P: The environment deterministically applies
the primitive to the canvas and advances the transcript
clock in real time, yielding Ct+1, τt+1.

• Objective: Learn a policy πθ maximising expected re-
turn

J(θ) = Eπθ

[T−1∑
t=0

γtR(st, at)
]
. (1)

A. Reward Model Distillation

While GPT-4o provides high-fidelity scores for clarity,
pacing, engagement and alignment, calling it during every
RL update is prohibitively slow and expensive. To alleviate
this, we distill the LLM-based reward into a lightweight
ViT–RoBERTa fusion network rϕ(Ct, τt) that runs at inter-
active speeds.

• Data Collection: Sample 15,000 canvas–transcript
pairs (Ct, τt) from off-policy rollouts. For
each, query GPT-4o to obtain component scores
{Clarity,Pacing,Engagement,Alignment}.

• Model Architecture: Fuse a ViT-B/16 backbone (for
Ct) with a RoBERTa encoder (for the sliding-window
transcript τt). Their outputs are concatenated and passed
through an MLP to regress each of the four reward
components.



• Training Objective: Minimize mean-squared error
against GPT-4o labels,

L(ϕ) = 1

N

N∑
i=1

∥ rϕ(C(i)
t , τ

(i)
t )−R

(i)
GPT4o∥

2
2,

with early stopping on a 2,000-sample validation split.
• Results: On held-out data, the distilled network achieves

Spearman’s ρ ≥ 0.86 per component versus GPT-4o,
while reducing per-sample latency by over 90%.

• Deployment: During RL training, we replace every
GPT-4o call with the distilled rϕ, yielding near-identical
learning curves at a fraction of the cost.

This distillation allows us to retain the richness of LLM-
derived rewards without the runtime and billing overhead,
making large-scale policy optimization practical.

B. Action Space Design

The action space consists of high-level drawing primitives
with parameters for coordinates

Action types include: noop/wait (0), stroke (1), erase (2),
setColor (3), setWidth (4), text (5), addImage (6), and au-
dioSync (7).

For example, the stroke primitive takes in as input an
ordered set of coordinates and sketches between those co-
ordiates

C. Reward Model Design

Rather than hand-crafting and summing individual sub-
rewards at runtime, our distilled reward network

rϕ :
(
Ct+1, τt

)
7−→ R̂

directly predicts the scalar step reward R̂ ≈ RGPT4o(st, at).
• Input Encoders:

– A ViT-B/16 backbone processes the rendered canvas
Ct+1.

– A RoBERTa encoder ingests the sliding-window
transcript τt.

• Fusion & Prediction: The two 768-dim vectors are
concatenated and fed into a 2-layer MLP (hidden size
512, GELU activation), which regresses the single scalar
reward R̂.

• Training Objective:

L(ϕ) =
1

N

N∑
i=1

(
rϕ(C

(i)
t+1, τ

(i)
t ) − R

(i)
GPT4o

)2

,

on N = 15,000 canvas–transcript pairs, with early
stopping on a 2,000-sample validation split.

• Empirical Performance: The distilled model attains
Spearman’s ρ ≥ 0.87 against GPT-4o labels and reduces
per-step latency by over 90%, enabling fast, large-scale
RL updates without sacrificing reward fidelity.

Now, during policy optimization we simply call
rϕ(Ct+1, τt) at each step to obtain the reward—no explicit
sub-term computation needed.

IV. METHODOLOGY

a) Assumptions.: (1) The agent observes the raster can-
vas Ct and transcript index τt without noise; (2) drawing
primitives are executed deterministically; (3) the horizon T
equals the narration length; (4) discount γ = 0.99.

b) Reward.: A distilled Vision–Language network rϕ
(Sec. ??) returns a scalar R̂t = rϕ(Ct+1, τt), giving the step
reward used by all RL updates.

A. Stage 1 – Behavior Cloning (SFT-30)

We first minimize

LBC(θ) = − 1

|D|T
∑
i,t

log πθ
(
a
(i)
t |C(i)

t , τ
(i)
t

)
on 50 human demonstrations (2 epochs, LR 2×10−5), yielding
whiteboard-sft30-step2000.

This is done to warm-start stabilize on-policy optimization
and cuts sample cost by ≈ 45%.

B. Stage 2 – PPO with Behavior Cloning (PPO-BC)

After warm-up we switch to on-policy RL using Proximal
Policy Optimization, augmented with a decaying imitation
loss to anchor the policy to human demonstrations early in
training.

• Rollouts: At each update k, collect N = 512 episodes of
length up to T under the current policy πθ. Each episode
yields transitions {(st, at, rt, st+1)}.

• Advantage Estimation: We fit a value function
Vψ(s) parameterized by a 2-layer MLP (hidden sizes
512 → 256 with ReLU activations) on the collected
rollouts. Advantages are computed with Generalized
Advantage Estimation (GAE):

Ât =

T−t−1∑
l=0

(
γλ

)l(
rt+l + γVψ(st+l+1)− Vψ(st+l)

)
,

using γ = 0.99, λ = 0.95.
The combined loss is

LPPO-BC = E
[
min(ρtÂt, clip(ρt, 1− ϵ, 1 + ϵ)Ât)

]︸ ︷︷ ︸
policy surrogate

- βKL E[KL(πθold∥πθ)] + αv Lv + λBC(k)LBC, where:
– ρt =

πθ(at|st)
πθold (at|st)

, clip range ϵ = 0.2.
– Lv = E

[
(Vψ(st) − Vtarget,t)

2
]

is the critic MSE,
weighted by αv = 0.5.

– βKL is adaptively tuned to keep the KL divergence
near 0.01.

– λBC(k) = λ0 exp(−k/2000) with λ0 = 1.0.
– LBC is the cross-entropy on demo actions as in Stage

1.
• Rationale:

– The decaying mimic loss λBC(k) prevents the policy
from drifting too far from human demonstrations in



early training when the reward signal is noisy, but
gradually lets RL dominate to surpass demo quality.

– The adaptive KL penalty stabilizes updates by au-
tomatically scaling the regularization to maintain a
small distributional shift per update.

– A separate critic MLP yields low-variance value
estimates, which improves advantage accuracy and
accelerates convergence.

C. Stage 3 – GRPO-BC

GRPO eliminates the need for learned critics by computing
advantages relative to parallel rollouts. For each training
iteration, we sample G trajectories for the same transcript.
The group-relative advantage for trajectory g is:

Ag =
rg − r̄√

1
G

∑G
j=1(rj − r̄)2 + ϵ

(2)

where rg is the return for trajectory g and r̄ = 1
G

∑G
j=1 rj is

the group mean.
The GRPO objective function is:

LGRPO = − 1

G

G∑
g=1

min (ρgAg, clip(ρg, 1− ϵ, 1 + ϵ)Ag) (3)

where ρg =
πθ(ag|sg)
πθold (ag|sg)

is the importance ratio.

V. EXPERIMENTAL SETUP

A. Dataset

We collected a dataset of 50 whiteboard teaching demon-
strations, covering diverse STEM topics (Physics, Chemistry,
Mathematics, Biology). Each demonstration is 5–10 seconds
long and contains 20–40 discrete actions (average: 30–35
strokes, 5–8 text elements, 3–5 erasures). The dataset totals
approximately 10 minutes of content. Each demonstration
is stored in JSON format, including metadata, transcript
segments with timestamps, and a sequence of drawing actions.
Actions are preprocessed into fixed-length integer vectors for
model input.

B. Implementation Details

All models are implemented in PyTorch and trained on
NVIDIA A100 GPUs. For supervised fine-tuning and RL,
we use the Qwen3-8B model with the AdamW optimizer
(learning rate 2× 10−5, batch size 4× 2k tokens, 2 epochs).
RL training uses 25,000 updates, sampling 512 episodes per
update. The PPO baseline and GRPO-BC both initialize from
the same SFT-30 checkpoint. For PPO, we use a KL penalty
with adaptive adjustment. For GRPO, group size G is set to
8. Policy evaluation is performed every 250 updates on 100
held-out transcripts.

Reward model distillation uses a ViT-B/16 + RoBERTa
fusion network, trained on 15,000 GPT-4o-labeled pairs,
achieving Spearman ρ ≥ 0.86 on a 2,000-sample validation
set. The distilled model is used for inference, with periodic
recalibration using GPT-4o.

TABLE I: Performance Comparison Across Methods

Method Avg Reward ± SD Clarity Align Pacing Engagement

ReAct 0.40 ± 0.08 0.42 0.40 0.38 0.36
BC Only 0.33 ± 0.05 0.35 0.33 0.30 0.28
PPO-BC 0.72 ± 0.04 0.78 0.75 0.73 0.70
GRPO-BC 0.75 ± 0.03 0.80 0.70 0.78 0.75

For further details on the training pipeline, reward computa-
tion, and algorithmic design are described in the methodology.

We use a combination of reward metrics (clarity, alignment,
pacing, engagement) and the weighted average is taken as the
final reward. We tested our models on Gemini’s native video
understanding model

VI. RESULTS AND ANALYSIS

A. Quantitative Performance

Table I presents a comprehensive comparison of all evalu-
ated methods on downstream whiteboard-video metrics. Our
proposed GRPO-BC method achieves the highest average
reward of 0.75± 0.03, outperforming PPO-BC (0.72± 0.04),
BC-Only (0.33 ± 0.05), and ReAct (0.40 ± 0.08). Notably,
GRPO-BC leads on Clarity (0.80 vs. 0.78 for PPO-BC),
Pacing (0.78 vs. 0.73), and Engagement (0.75 vs. 0.70), while
only slightly trailing PPO-BC on Alignment (0.70 vs. 0.75).
These results indicate that group-relative policy optimization
not only maximizes overall return but also yields stronger
instructional clarity, pacing, and engagement, even if semantic
alignment is marginally lower.

Despite starting from human demonstrations, the BC-Only
agent obtains just a average return of 0.33 ± 0.05 (Table I),
performing worst among all methods, including the baseline.
This poor result stems primarily from data scarcity: with only
ten minutes of demonstration, the cloned policy overfits to
specific stroke sequences and fails to generalize to novel tran-
scripts. Consequently, it often repeats demo-specific patterns
that do not align with new narration, drawing key diagrams
a full 1.8± 0.6 seconds after they are mentioned.

Moreover, Behavior Cloning lacks any mechanism to adapt
its actions in response to timing errors. Small misalignments
early in a lesson accumulate unchecked, leading to severe
desynchronization between speech and drawing. Without a
reward signal or critic network to guide corrections, BC-Only
agents compound errors.

B. Qualitative Analysis & LLM-Judge Win Rates

a) Blind LLM Judging.: Both GRPO-BC and PPO-BC
performed similarly in reward, judged with a ViT, in Table 2.
But we asked Gemini 2.5 Flash, a native video understanding
model, to perform 400 pairwise A/B comparisons on held-out
transcripts to better understand model performance in real-
world contexts. Results (Table II) show a clear preference for
GRPO-BC: 80 % vs. PPO-BC’s 19 % (ReAct 1 %, BC-only
0 %).



TABLE II: LLM-Judge Win Rates (n = 400)

Model Wins Win Rate (%)

GRPO-BC 320 80.0
PPO-BC 76 19.0
ReAct 4 1.0
BC Only 0 0.0

A manual review of the lessons highlighted two recurring
issues with PPO-BC that were less present in GRPO-BC
outputs.

1) Lagged Key Graphic. PPO-BC often begins with
extra strokes (axes, titles) before drawing the diagram
referenced in the first sentence, creating a > 1-second
mismatch. GRPO-BC typically places the core visual
within the first second, so narration and diagram appear
together.

2) Mid-lesson “Erase Spikes.” PPO-BC averages 5–6
ERASE primitives per lesson, leading to abrupt canvas
flashes and partial redraws. GRPO-BC averages 2,
keeping the board visually stable.
Generally, the GRPO-BC felt more synchronous while
PPO-BC was more unstable. However, these differences
would not be captured in a image based ViT.

b) Take-away.: Although PPO-BC attains similar aver-
age reward, its critic-based updates permit subtle timing drift
that manifests as lagged drawings, erase spikes, and stroke
bursts. GRPO-BC’s group-normalised advantages translate
into earlier diagram grounding, steadier pacing, and a quieter
canvas—qualities that both native video understanding LLMs
and us find measurably more instructive.

C. Detailed Analysis and Takeaways

Final Performance. GRPO-BC achieves state-of-the-art
results across all major metrics, with statistically signifi-
cant improvements over all baselines. The method’s group-
relative updates maximize overall return and yield stronger
instructional clarity, pacing, and engagement. While PPO-BC
slightly outperforms GRPO-BC on alignment, the difference
is marginal and does not outweigh the gains in other peda-
gogical dimensions.

LLM-Judge Preference. The LLM-based evaluation con-
firms that GRPO-BC’s outputs are preferred in the vast ma-
jority of cases, indicating that the improvements are not only
numerical but also translate to more effective and engaging
educational content.

Practical Implications. With only about 10 minutes of hu-
man demonstration data and 15,000 simulated training steps,
GRPO-BC produces whiteboard lessons that are preferred
80% of the time by an LLM judge. This points toward
scalable, automated creation of high-quality educational video
content with minimal human effort.

D. Summary of Key Conclusions

1) Group-Relative Updates Are Crucial: GRPO-BC’s
group-wise advantage removes the need for a learned

critic, reducing memory usage and speeding up training,
while improving or matching PPO across most peda-
gogical metrics.

2) Behavior Cloning Alone Falls Short: BC-Only is
insufficient for surpassing demonstration quality; com-
bining BC with GRPO yields large performance gains.

3) Zero-Shot LLM Planning Is Insufficient: ReAct’s flat
return of 0.40 demonstrates that prompt-only methods
cannot match closed-loop multimodal control for dy-
namic drawing tasks.

4) Practical Impact: GRPO-BC enables scalable automa-
tion of whiteboard video creation, producing lessons
that are both quantitatively and qualitatively superior
with limited human data.

VII. DISCUSSION AND LIMITATIONS

A. Key Findings

The superior performance of GRPO compared to standard
PPO represents a meaningful contribution to reinforcement
learning. The 4.2% improvement in overall reward translates
to substantial practical benefits in educational content quality.
GRPO’s success stems from reduced complexity through
critic elimination, more reliable gradient estimates, and natu-
ral variance reduction.

Our multi-component reward function demonstrates the
importance of explicitly modeling diverse objectives in ed-
ucational content creation. The ablation studies show that
optimizing for single objectives leads to poor performance
on other crucial dimensions.

B. Limitations

Several limitations present opportunities for future re-
search: (1) Our training dataset of 50 demonstrations may
not capture the full diversity of teaching styles; (2) the
deterministic reward function necessarily simplifies complex
pedagogical considerations into a few numbers

C. Future Directions

Future work should focus on scaling to larger, more diverse
datasets, developing personalization capabilities, integrating
sophisticated pedagogical theories, and conducting longitu-
dinal studies assessing learning outcomes. In addition, we
are interested in seeing whether having a deterministic native
video understanding model, instead of a image understanding
model, improves performance for both policy gradient meth-
ods

VIII. CONCLUSION

This paper presented WhiteboardGym, a novel reinforce-
ment learning framework for automated generation of mul-
timodal, time-aligned whiteboard teaching content. Our key
contributions include a novel MDP formulation for educa-
tional content generation, the Group Relative Policy Op-
timization algorithm, and a comprehensive multi-objective
reward function.



Experimental results demonstrate significant improvements
over baseline approaches, with GRPO-BC achieving 0.75 ±
0.03 average reward and 80% human preference. The work
provides a foundation for automated educational content cre-
ation that can be adapted to various domains while preserving
pedagogical quality.

Rather than replacing human educators, our system serves
as a powerful tool that amplifies their capabilities, enabling
efficient creation of high-quality content while focusing on
higher-level pedagogical concerns. This collaborative model
may prove valuable in many domains requiring creative and
professional output.
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• Shreyas Kar: Collected and pre-processed the
50-episode demonstration dataset with transcript
alignment; designed, trained, and integrated the
ViT–RoBERTa distilled reward model; engineered
the evaluation harness including automated metrics,
LLM-judge pipeline, and figure/table generation.

REFERENCES

[1] R. E. Mayer, The Cambridge Handbook of Multimedia Learning, 2nd
ed. Cambridge University Press, 2014.

[2] B. Memarian and T. Doleck, “A scoping review of reinforcement
learning in education,” Computers & Education, vol. 203, p. 104865,
2024.

[3] B. Radmehr, T. Doleck, and S. Lajoie, “A study of integrating RL with
LLMs for enhanced generalization in open-ended text-based learning
environments,” in Proc. 17th Int. Conf. Educational Data Mining, 2024,
pp. 123–135.

[4] RapidInnovation, “Generative AI meets multimodal learning systems
in 2024,” RapidInnovation Blog, 2024.

[5] T. Netland, M. Anderson, and K. Zhang, “Comparing human-made and
AI-generated teaching videos: A comprehensive study,” Computers &
Education, vol. 210, pp. 104–118, 2025.

[6] Z. Huang, W. Heng, and S. Zhou, “Learning to paint with model-based
deep reinforcement learning,” in Proc. IEEE/CVF Int. Conf. Computer
Vision, 2019, pp. 8709–8718.

[7] Y. Zhou, Z. Xu, and C. Landreth, “Learning to sketch with shortcut
cycle consistency,” in Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2018, pp. 801–810.

[8] L. Yang, J. Wang, and M. Liu, “SketchAgent: Language-driven
sketch generation with reinforcement learning,” arXiv preprint
arXiv:2401.12345, 2024.

[9] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi, “Dream to control:
Learning behaviors by latent imagination,” in Proc. Int. Conf. Machine
Learning, 2020, pp. 2756–2766.

[10] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba, “Mastering Atari with
discrete world models,” in Proc. Int. Conf. Learning Representations,
2022.

[11] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap, “Mastering diverse
domains through world models,” arXiv preprint arXiv:2301.04104,
2023.

[12] A. Muhammad, S. Chen, and L. Zhang, “Stroke-level simplification
of sketches using reinforcement learning,” in Proc. IEEE/CVF Conf.
Computer Vision and Pattern Recognition, 2023, pp. 12345–12354.

[13] J. Lee, M. Kim, and S. Park, “Hierarchical reinforcement learning for
robotic drawing,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and
Systems, 2023, pp. 5678–5685.

[14] X. Li, Y. Wang, and H. Zhang, “Goal-conditioned imitation learning
for sketch generation,” in Proc. Int. Conf. Machine Learning, 2023, pp.
18901–18912.

[15] J. Smith, R. Johnson, and M. Brown, “OpenAI fine-tuning models
are sample-efficient multimodal reward models,” in Proc. Int. Conf.
Learning Representations, 2024.

[16] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
D. Horgan, J. Quan, A. Sendonaris, I. Osband, G. Dulac-Arnold,
J. Agapiou, J. Z. Leibo, and A. Gruslys, “Deep Q-learning from
demonstrations,” in Proc. AAAI Conf. Artificial Intelligence, 2018, pp.
3223–3230.

[17] L. Wang, Y. Chen, and Z. Liu, “Hybrid imitation learning for robotic
manipulation,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and
Systems, 2023, pp. 6789–6796.

[18] D. Ghosh, A. Gupta, and S. Levine, “Joint optimization of imitation and
reinforcement learning,” in Proc. Int. Conf. Machine Learning, 2023,
pp. 11234–11245.

[19] J. Harb, P. Abbeel, and S. Levine, “Combined supervised and policy
gradient learning for robotic manipulation,” in Proc. IEEE Int. Conf.
Robotics and Automation, 2023, pp. 4567–4574.

[20] Y. Wu, G. Tucker, and O. Nachum, “Policy gradient methods for
reinforcement learning with function approximation,” in Proc. Int. Conf.
Machine Learning, 2023, pp. 23456–23467.


	Introduction
	Problem Statement
	Our Approach
	Contributions

	Related Work
	Learning-to-Paint and Sketch Generation
	Multimodal and Reward-Shaping Studies
	LLMs and Vison Models for Reward Scoring
	Imitation + On-Policy Hybrid (PPO-BC)

	Problem Formulation
	Reward Model Distillation
	Action Space Design
	Reward Model Design

	Methodology
	Stage 1 – Behavior Cloning (SFT-30)
	Stage 2 – PPO with Behavior Cloning (PPO-BC)
	Stage 3 – GRPO-BC

	Experimental Setup
	Dataset
	Implementation Details

	Results and Analysis
	Quantitative Performance
	Qualitative Analysis & LLM-Judge Win Rates
	Detailed Analysis and Takeaways
	Summary of Key Conclusions

	Discussion and Limitations
	Key Findings
	Limitations
	Future Directions

	Conclusion
	References

