Deep Reinforcement Learning

CS 224R

Welcome!

INntroductions

Prof. Chelsea Finn Jubayer Ibn Hamid

Instructor Head Teaching Assistant

Amelie Byun John Cho

Course Manager Course Manager

Sirui Chen Pulkit Goel Joy He Yueya Daniel Shin Sri Jaladi Jensen Gao

1he Plan for Today

1. Course goals & logistics
2. Why study deep reinforcement learning?

3. Intro to modeling behavior and reinforcement learning

Key learnings goals:
- what is deep reinforcement learning??

- how to represent behavior
- how to formulate a reinforcement learning problem

4

Information & Resources

- We have put a lot of info here.
Course website: http://cs224r.stanford.edu/ «— - 02 OROH IR AEE

Please read it. :)

Ed, Gradescope: Connected to Canvas

Student liaison, course

Staff mailing list: csZ2/Z24r-staff-spr2425@cs.stanford.edu +—

manager, head CA, me

Office hours: Course website & Canvas, start today.

OAE letters can be sent to staff mailing list or in private Ed post.

http://cs224r.stanford.edu/

Lectures & Office Hours

Lectures
- |n-person, livestreamed, & recorded
- A few guest lectures (Ashish Kumar from Tesla, Archit

Sharma from Google DeepMind, one TBD)

- Aiming to make it interactive. | will ask you questions.
Ask me questions too!

Office hours
- mix of In-person and remote

VWhat do we mean by deep reinforcement learning?

Sequential decision-making problems

A system needs to make multiple decisions based on stream of information.

observe, take action, observe, take action, ...

AND the solutions to such problems

- Imitatl

- mode

on learning

~free & model-based

RL

- offli

- Mu

ne & online R

ti-task & meta

RL

-mphasis on solutions that scale to deep neural networks

RL for LLLMs

RL for robots

and morel

How does deep RL differ from other ML topics?

Supervised learning Reinforcement learning

Given labeled data: {(x;, y,)}, learn f(x) = y Learn behavior (a | s).

- directly told what to output - from experience, indirect feedback

- Inputs x are independently, identically - data not i.i.d.: actions a affect the
distributed (i.1.d.) future observations.

Behavior can include:

§ ™ e

motor control chat bots game playing driving web agents
3

We can’t cover everything in deep RL.

We'll focus on:

- core concepts behind deep RL methods
- Implementation of algorithms

- examples in robotics, control, language models (but techniques generalize broadly)
- topics that we think are most useful & exciting!

For more theory & other

applications, see C5234!

Core goal: Able to understand and implement existing and emerging methods.

9

Pre-Requisites

Machine learning: C5229 or equivalent.

e.g. we'll assume knowledge of SGD, cross-val, calculus, probability theory

Some familiarity with deep learning:

- We'll build on concepts like backpropagation, neural networks, sequence models

- Assignments will require training networks in Py Torch.

- Marcel will hold a Py Torch review session on Friday, 1:30 pm in Gates B1.

Some familiarity with reinforcement learning:
| | | Aiming to improve accessibility
- We will go quickly over the basics.

- See Sutton & Barto or CS 221 for intro RL content

compared to Spring 23!

10

Coursework and Grading

- 4 x 2-week assignments (50% - lowest scoring is b%, rest worth 15%)

- Final default or custom course project (1-3 people, 50%)

- proposal (10%), milestone (10%), poster (10%), report (20%)
- Late days:

- © free late days; afterwards, 2% of course grade per day late

- maximum of 2 free late days per assignment unless advanced permission
- Collaboration & Al tools

- Please read course website, honor code, Al tools policy

- Document collaborators and write solutions on your own. Submit homework
independently.

- Employing Al tools (e.g. ChatGPT, Cursor) substantially is not allowed for
homework and parts of default project.

11

https://communitystandards.stanford.edu/policies-guidance/honor-code
https://communitystandards.stanford.edu/generative-ai-policy-guidance

Coursework

Homeworks: Implement different methods in Py Torch, run experiments in physics
simulators, navigation environments

Homework 1: Imitation learning

omework 2: Online reinforcement learning
Homework 3: Offline reinforcement learning

Homework 4: Goal-conditioned & meta reinforcement learning

Project:

- Custom project - propose your own topic, or

- Default project - fine-tune an LLM with RL + open-ended extension

- Teams of 1-3 students, encouraged to use your research if applicable

12

A bit of advice

Deep RL methods take time to learn behavior!

We try to make homeworks fast to train.
(e.g. by using simple environments)

But, they will still take some time & you
may choose to be more ambitious Iin your
project.

We recommend that you don’t start HWs/project deliverables the night before the deadline.)

13

One more thing

We have been working hard to develop a great course!

But, we will probably make mistakes.

We would love your feedback both for this iteration & future iterations.

—> high-resolution feedback form sent weekly to subset of students.

14

Initial Steps

1. Homework 1 coming out on Fri — due Fri 4/18 at 11:59 pm PT

2. Start forming final project groups iIf you want to work in a group

15

1he Plan for Today

1. Course goals & logistics
2. Why study deep reinforcement learning?

3. Intro to modeling behavior and reinforcement learning

16

Why study deep reinforcement learning?

1. Going beyond supervised (X, y) examples

—How can we take them
iInto account?

- Al model predictions have consequences!

- When direct supervision isn't available Learn from any objective.
2. Widely used and deployed for performant Al systems

3. Learning from experience seems fundamental to intelligence

- RL can discover new solutions

4. Plenty of exciting open research problems

17

Why study deep reinforcement learning?

Beyond supervised learning from (X, y) examples

Decision-making problems are everywhere!

a. Any sort of Al agent: robots, autonomous vehicles, web assistants

b. What if you want your Al system to interact with people? chatbots, recommenders

c. What if deploying your system affects future outcomes & observations?

d. Whatif don't have labels or your objective isn't just accuracy? ‘feedback loops

(and isn't differentiablel)

18

Why study deep reinforcement learning?
Widely used for performant Al systems

Learning complex physical tasks: legged robots

Happy Puppy

Unitree

19

Why study deep reinforcement learning?
Widely used for performant Al systems

Learning complex physical tasks: robot manipulation

P

r— :
/ag)tonomo)speed |
y <

Physical Intelligence g Google Gemini Robotics

Autonomous 1x

)

20

Why study deep reinforcement learning?
Widely used for performant Al systems

Learning to play complex games

Ability to discover new solutions:

“Move 377 in Lee Sedol AlphaGo
match surprises everyone

Why study deep reinforcement learning?
Widely used for performant Al systems

Not just robots and games!

Nearly all modern language models use some form of RL for post-training.

@) cratcPT ¥ Claude Gemini

& deecpscek w4 CURSOR

especially for more advanced reasoning.

22

Why study deep reinforcement learning?
Widely used for performant Al systems

Not just robots and games!

Research on traffic control

il = =P Imp ImPp IEP - Lxp mp mp mp —
mh Ik xR _ IR R (BN (0] LN — | (D

Source: https://mit-wu-lab.github.io/automatic_vehicular_control/ 23

Why study deep reinforcement learning?
Widely used for performant Al systems

Not just robots and games!

Training generative image models to follow their prompt

a dolphin riding a bike > an ant playing chess >

Source: https://rl-diffusion.github.io/ 24

Why study deep reinforcement learning?
Widely used for performant Al systems

Not just robots and games!

Chip design, in Google’s production TPU chips

Force-directed method places

Chip RL agent places macros one at a time standard cell
canvas . rr = —Wirelength
L =0 a, ri=0 a, rp=0 ar . —A x congestion
_ _ —y X density
o) - -
So S, S,

Source: https://research.google/blog/chip-design-with-deep-reinforcement-learning/

Why study deep reinforcement learning?

-undamental aspect of intelligence

‘-——' o mmmmma L |

[— Y 1 welcomes »s : : —

iEnables the ability to
get better with practice

Ix real time The robot has its eyes closed. it

Levine et al. ICRA 15 26

Why study deep reinforcement learning?

-undamental aspect of intelligence

—~nables the ability to
get better with practice

—

—
T~

10x real time iteration 1

with vision this time

Levine®, Finn* et al.]IMLR "1(7 07

Why study deep reinforcement learning?

-undamental aspect of intelligence

—~nables the ability to
get better with practice

| TN N

Levine”®, Finn* et al. JIMLR 16 \ 28

Why study deep reinforcement learning?

Still lots of exciting research problems!

How does robot learn to represent what is good or bad for the task? —> reward learning

How can an agent generalize its behavior to many different scenarios?

(Can we apply such a system at scale?)

Leverage large, diverse datasets —> offine RL

Transfer from other tasks, goals —> multitask RL, meta-RL

Can use RL to learn long-horizon tasks, like cooking a meal? —> hierarchy, reasoning

Can robots practice fully autonomously? —> reset-free RL

Behind the scenes of RL. ..

L U
a
-

Yevgen

networkipolic

. o
n A ',\},C i +

Yevgen is doing more work than the robot
t's not practical to collect a lot of data this way.

The Plan for Today

1. Course goals & logistics
2. Why study deep reinforcement learning?

3. Intro to modeling behavior and reinforcement learning

31

I'm using this line of code to detect if there are at most 2 unique
values in a dimension of an array, but the code is really slow (I
think because unique() is doing a lot more work than needed).
Can you write a version of the code that is faster?

only_two_unique_values = np.apply_along_axis(lambda x:
len(np.unique(x)), axis=2, ar=values) <= 2

Reasoned about opti ing unigque value check for 8 seconds >

You can avoid the overhead of computing every unique element by "short-circuited” checking. In the

example below, we first check if all values equal the first element; if not, we grab the first value that's

[J —
different and then verify that every element is either the first value or that second one. This way you
don't sort or scan the antire array for all uniques when more than two are prasent.
. Here's one implementation:
) ~——

diff = x[x '= x[0]]
diff.size ==

second_val = diff[0]

np.alli{ xfon | second_val))

only_two_unique_values = np.apply_along_axis(at_most_two_unique, axis=, arr=values)

.)
‘ ‘ ’ ’ How It Works
— W | | I | I . Uniform Check: If all values in the slice are identical, the function returns True immediately.
. Candidate Selection: If nat, it finds the first value that differs from the first element.

. Verification: Finally, it verifies that every element in the slice is either equal to the first element or
this second candidate.

Additional Notes

« This approach avoids the full overhead of np.unique and should be faster, espeacially when

slices contain many elements or more than two unique values.

For even greater speed (especially if your slices are large), you might consider using a just-in-
time compiler (like Numba) to compile this function.

observation 0, - what the agent observes attime ¢ .
only used when missing information

action a, - the decision taken attime ¢

trajectory T - sequence of states/observations and actions

could be length =11
($1,a{,S5,a5,...,S,a) 9

reward function r(s, a) - how good is S, a”

32

. Creating a Boolean mask for elements that differ from that first element.

. Using a vectorized argmax (via np. take_along_axis) to pick the first different value (which will
equal the first element if none exist).

. Verifying that every element in the slice is either equal to the first element or that candidate
second unigue value,
Try this code:

pythor

(values):

first = values[..., 0]

mask = (values != first[..., 1)

idx = np.argmax(mask, axis=’)

candidate? = np.take_along_axis{values, idx[...,], axis=’).squeeze(axis=’)

np.all({values == firstl[..., 1) | (values == candidate2[... 1}, a

only_two_unique_values = fast_two_unique(values)

Explanation

» Extracting the First Element:

We set first = values[..., 8] so each (i, j) slice’s first value becomes our reference.

Finding a Candidate for the Second Unique Value:

The mask (values != firstl..., Nonel) identifies elements that differ from the first value.
Using np.argmax finds the first index along axis 2 where the element is different. If all elements
are the same, np.argmax returns 0 and candidate2 will equal first .

Verifying Uniqueness:

Finally, we check that avery element in each slice is either equal to first or candidate2 .If a
third unique value exists, the condition fails for that slice.

This vectorized solution should be considerably faster than using apply_along_axis with a Python

That works great! Can you generalize the function to work with
any axis, not just axis 2?

Reasoned about generalized vectorized solution for 5 seconds >
Below is a generalized version that lets you choose the axis along which to check for at most two
unique values. It works by maving the target axis to the end, applying the logic, and then reducing

that axis:

States vs. observations

Next state is purely a function of the current state and action (and randomness)

; 2 &

unknown dynamics p(S,,;|S, a,)

iIndependent of S,_;

“Markov property”

33

Examples

state S - RGB images, joint positions, joint velocities
action a - commanded next joint position

trajectory T - 10-sec sequence of camera, joint
readings, controls at 20 H

(81,421,559, Q5,...,8pa7), T =200

reward r(s, a) = 1 if the towel is on the hook in state S

O otherwise

Creating a Boolean mask for elements that differ from that first element.
I'm using this line of code to detect if there are at mast 2 unique
values in a dimension of an array, but the code is really slow (I
think because unique() is doing a lot more work than needed). equal the first element if none exist).
Can you write a version of the code that is faster?

. Using a vectorized argmax (via np. take_along_axis) to pick the first different value (which wil

Verifying that every element in the sliice is either equal to the first element or that candidate

s lue.
only_two_unique_values = np.apply_along_axis(lambda x: o

len(np.unique(x)), axis=2, ar=values) <= 2
Try this code:
Reasoned about optimizing unique value check for 8 seconds
You can avoid the overhead of computing every unique element by “short-circuited” checking. In the e
example below, we first check if all values equal the first element; if not, we grab the first value that's
different and then verify that every element is either the first value or that second ane. This way you
don't sort or scan the entire array for all uniques when more than two are present.

. first = valuesl..., 0]
Here's one implementation:

mask = (values != first[

rgnax (mask, axis=’)

1, axis:
diff = x|[x
diff.size
candidate2[

second_val

np. o | only_two_unique_values = fast_two_unique(values)

only_two_unique_values = np.apply_along_axis(at_most_two_unique, axis=’, arr=values) Explanation

» Extracting the First Element:

How It Works We set first = values(..., 8] so each i, j) slice’s first value becomes our reference.

+ Finding a Candidate for the Second Unique Value:
The mask (values != firstl..., Nonel) identifies elements that differ from the first value.

Uniform Check: If all values in the slice are identical, the function returns True immediately.

Candidate Selection: If not, it finds the first value that differs from the first element.
Using np.argnax finds the first index along axis 2 where the element is different. If all elements

. Verification: Finally, it verifies that every elementin the slice is either equal to the first element or are the same, np.argmax returns 0 and candidate2 will equal first .

this second candidate. e
- Verifying Uniqueness:
g y s i f v LI
Additional Notes Finally, we check that every element in each slice is either equal to first or candidate2.Ifa
third unique value exists, the condition fails for that slice.
This approach avoids the full overhead of np.unique and should be faster, especially when

slices contain many elements or more than two unique values. vectorized solution should be considerably faster than using apply_along_axis with a Python
For even greater speed (especially if your slices are large), you might consider using a i
Numba) to compile this function.

This version should offer a noticeable performance improvement compared to using |np.unique on That works great! Can you generalize the function to work
every slice. any axis, not just axis 27

Reasoned about generalized vectorized solution for 5 seconds >
Hmm, that made the code slower. Can you make it faster instead L
of slower? {maybe using a different function than Below is a generalized version that lets you choase the axis along which to check for at most two
apply_along_axis? unique values. It works by moving the target axis to the end, applying the logic, and then reducing

that axis:

Reasoned about optimizing unique value check for 18 seconds i

observation 0 - the user's most recent message
action a - chatbot's next message

trajectory T - variable length conversation trace
(0,2(,0,,,5,...,07,a7)

reward r(s, a) = 1 if the user gives upvote

-10 If the user downvotes

if Nno user feedback

Think-pair-share: how to represent another example?

Define

state S or observation 0

web agent

A

poker player choose your own!

action a
trajectory t

reward r(S, a)

35

How to represent behavior with a neural network?

/7/“

64 filters
7x7 conv N 32 filters X 32 filters

tride 2 . 5x5 . 5x5 fully fully fully
stride x5 conv x5 conv A
RelLU I RelLU RelU connected connected connected

RelLU RelLU linear

S > _— — - —_— _—

my(als)

Observe state s,

<v ake action a, (e.g. by sampling from policy zy(- |S,))

Observe nextstates,,; sampled from unknown world dynamics p(- |s,, a,)

Result: a trajectory S, a,...,Sp, ap, also called a policy roll-out or an episode

f you only have observations 0, give the policy memory: ry(a,| o

36

(s e ees O))

VWhat is the goal of reinforcement learning?

T
maximize sum of rewards: max Z r(s,, a,)

[
put this is not a deterministic guantity!

Question: what are the sources of variability?

1. the world Is stochastic

T
S,a,...,Sr. ar) = p(S Hﬂa S)p(S S.,a
p(>l d T) p(1) e 9(t‘ t)p(t+1‘ t t) 2. the car may not make the
Y - same decision every time.

Po(7) 37

VWhat is the goal of reinforcement learning?

T
[
T
maximize expected sum of rewards: m@ax = e p(7) Z r(s,, a,)

[

T
p(sy,ap,....Spar) = p(Sl)Hﬂg(at | S)D(Sgy185 @)

\) =1

Po(7)

33

Aside: why stochastic policies?

1. Exploration: to learn from your own experience, must try different things.

/2. Modeling stochastic behavior: existing data will exhibit varying behaviors

VVe can leverage tools from generative modeling!

—> generative model over actions given states/observations

39

VWhat is the goal of reinforcement learning?

I

maximize expected sum of rewards: IIlng = e p(7) Z r(s,, a,)

[

T
p(si,ay,...,Spap) = P(Sl)H o(a, | S)p(Se1 18,)

\) =1

Po(7)

How good is a particular policy?
value function V*(8) - future expected reward starting at s and following &
Q-function OQ”(s, a) - future expected reward starting at s, taking a, then following z

40

Types of algorithms

I

maximize expected sum of rewards: IIl;lX = e p(7) Z r(s,, a,)

[

1. Imitation learning: mimic a policy that achieves high reward
/2. Policy gradients: directly differentiate the above objective

3. Actor-critic: estimate value of the current policy and use it to make the
policy better

4. Value-based: estimate value of the optimal policy

b. Model-based: learn to model the dynamics, and use it for planning or
policy Improvement

41

Why so many algorithms?

Algorithms make different trade-offs, thrive under different assumptions.

e How easy/cheap is it to collect data with policy? (e.g. simulator vs. hand-written)
e How easy/cheap are different forms of supervision? (demos, detailed rewards)
e How important is stability and ease-of-use?

e Action space dimensionality, continuous vs. discrete

e [Siteasy tolearn the dynamics model?

42

Recap of definitions

state S, - the state of the "world™ attime ¢

(or observation 0, - what the agent observes at time ¢ [partially-observed)

Markov decision
DIrOCEeSS

action a, - the decision taken attime ¢

reward function r(s, a) - how good is S, a”
MDP, POMDP

initial state distr. p(8), unknown dynamics p(S¢,11S, ,)

43

Recap of definitions

trajectory T - sequence of states/observations and actions (S;,a;,$,,a5,...,S7, ar)

policy 7 - represents behavior, selecting actions based on states or observations

Goal: learn policy my that maximizes expected sum of rewards:
T

m@aX _TNPH(T) Z I”(St, at)
[

value function V*(S) - future expected reward starting at s and following &

Q-function Q”(S, a) - future expected reward starting at s, taking a, then following «

44

Course Reminders

Your Initial Steps:
Homework 1 comes out Friday, due Weds 4/18 at 11:59 pm PT

Start forming final project groups if you want to work in a group

Coming Up Next:
Imitation Learning Lecture (Friday 10:30, Hewlett 200)
Py Torch Tutorial (Friday 1:30, Gates B1)

45

