Policy Gradients

CS 224R

Course reminders

- Start forming final project groups (survey due next Wednesday)

- Homework 1 out, due Fri April 18

Recap

state S, - the state of the "world” attime ¢
action a, - the decision taken attime ¢

trajectory T - sequence of states/observations and actions
(S1,41,S5,8,,...,S7, A7)

reward function r(s, a) - how good is S, a”

policy w(a|s) or m(a|0) - behavior, usually what we are trying to learn

Goal: learn policy @y that maximizes expected sum of rewards:
T

meax S Z r(s,, a,)
[

where p(s.ay,....spap) = p@s) | | 7@, 1s)p(si41 s,)

3 [

Imitation learning from demonstrations &

m@in — Esa~gllogmyals)]

+ Simple, scalable approach for learning performant behavior

- Cannot outperform demonstrator, doesn't allow improvement from practice

Definitions.

offline: using only an existing dataset,
no new data from learned policy

online: using new data from learned
policy

The plan for today

the basis for:
Policy gradients: our first online RL algorithm

1. On-policy policy gradient

a. Derivation and intuition of policy gradients

. Full algorithm
c. How to make it better - causality and baselines source: Unitree
2. Off-policy policy gradients
. + part of
a. Importance sampling

b. KL constraints

Key learning goals:
- Key intuition behind policy gradients

- How to implement, when to use policy gradients

5

. Creating a Boolean mask for elements that differ from that first element.

. Using a vectorized argmax (via np. take_along_axis) to pick the first different value (which wil
equal the first element if none exist).

. Verifying that every element in the slice is either aqual to the first element or that candidate

second unigue value,

Try this code:

numpy np

(values):

first = values[..., ©]

mask = (values != first[..., 1)

idx = np.argmax(mask, axis=’)

candidate? = np.take_along_axis{values, idx[..., 1, axis=’).squeeze(axis=’)

np.all({values == first[..., 1) | (values == candidate2[...,

values = fast_two_unique(values)

irst Element:
values[..., 8] soeach (i, j) slice’s first value becomes our reference.
date for the Second Unique Value:
es != firstl..., None]) identifies elements that differ from the first value.

I finds the first index along axis 2 where the element is different. If all elements

that avery element in each slice is either equal to first or candidate2 . If a

e exists, the condition fails for that slice.

This vectorized solution should be considerably faster than using apply_along_axis with a Python
loop.
ooV

That works great! Can you generalize the function to work with
any axis, not just axis 2?

Reasoned about generalized vectorized solution for 5 seconds

Below is a generalized version that lets you choose the axis along which to check for at most two
unique values. It works by maving the target axis to the end, applying the logic, and then reducing

that axis:

pythor

Online RL Outline

-irst: Initialize the policy (randomly, with imitation learning, with heuristics)

iteration 1 iteration 2 iteration 3

Run policy to collect

natch of data X

e

Improve policy using
batch of data

tvaluating the RL objective

0" = arg max B py (7) Z r(s¢, at)

Z| -
N
J

T(Si,ta ai,t)

L sum over samples from 7y

J(Q) — ETNpe(T) ZT(St,at) ~

Slide adapted from Sergey Levine

Can we get the gradient of the RL objective?

Let's start in terms of trajectories.

0" = arg mgx L opy (1) Z r(st, at) a convenient identity
Jl(e) | po(T)Velogpe(T) = po(T) ng(i(;) _ Vope(T)
J(0) = Erpyir) (7)) = [po(r)r(r)dr
- —
r(s¢, at)
VoJ(0) = [Vopo(T)r(r)dr = /pe(T)Ve log pg(7)7(7)dT = Erpy(r) Vo log po(T)r(T)]

Slide adapted from Sergey Levine

Can we get the gradient of the RL objective?

From trajectories to final form.

V@J(Q) — ETNPQ(T) [V@ logpg (7‘)7“(7‘)]

\

I

VoJ(0) = Erpy(r)

Slide adapted from Sergey Levine

i T
Vo |logefS1) +) logmo(aslst) + log plsertfsy, a)
_ t=1 -

_(Z Vo log mg(ay|s;)) (

T
t=1

\

T St,at)

log pe(7) =

log p(s

2

T
H at‘st St—l—l‘staat)

log mg(at|st) + log p(si+1|st, az)

Estimating the gradient

0 < 9—|—on9J(9)

Full algorithm:

2. V@J() z (Zt Glogﬂ'@(ai‘si)) (ztr(sivai))

< 1. sample {7*} from mg(a|s;)
3. 0+ 0+ OngJ(@)

"REINFORCE algorithm”, vanilla policy gradient

Slide adapted from Sergey Levine 10

icy to collect

n of data

Improve policy using
batch of data

VWhat does the gradient mean?

) (T) Recall: imitation learning

%z (Z Vo logmg(aj ¢|si¢)

m@in — <1:(s,a)er [lOg e, (&‘S)]

N

1
Imitation gradient, but weighted by reward VoJec(0) ~ > (Z Vo log We(ai,tsv:,t))

1=1 \t—1

Intuition:

Increase likelihood of actions you took in high reward trajectories.

Decrease likelihood of actions you took in negative reward trajectories

.e. do more of the good stuff, less of the bad stuff.

formalization of “trial-and-error” 3

VWhat does the gradient do?

Example: learning humanoid walking in simulation

reward: (S, a) = forward velocity of robot
(can be negative if robot goes backwards)

1. sample {7°} from mg(a|s;)

! falls backwards * one small step forward then

72 falls forwards fa;_tls backwards

3. to stand <till T7. one large step backwards
¢ MaAnages 1o Stand St then small step forwards

2. Vo J(0) ~ Ez (Zt Vy log 79(32‘52)) (Zt r(si,ai))
Question: what will the gradient encourage the policy to do?

-> will encourage policy to fall forward, and not take step forward

12 Policy gradient is noisy / high-variance

Improving the gradient

Using causality

N
1 5.
VodJ(0) =~ N E (E Vg log We(ai,t\sz',t)> (E :T(Sz’,tyai,t)> iﬁ 7-: one large step

then small step fo

Policy behavior at time t does not affect rewards attime ¢’ < ¢

T
1 A\ A\
V@J N L L Vo 1Og o az t‘sz t) (;/ (Si,t’7 ai,t’))

1=1 t=1

sum of future rewards

13

nackwards

rwards

VWhat does the gradient do?

Example: learning humanoid walking in simulation

reward: (S, a) = forward velocity of robot

(can be negative if robot goes backwards)
1. sample {7°} from mg(a|s;)

r!: falls forwards 73 steadily walks forwards

T slowly stumbles forwards ™ runs forwards v

2. VoJ(0) =32, (32 Vologmo(atlsy)) (Do, r(si, a}))
Question: what will the gradient encourage the policy to do?

-> encourages policy to fall, stumble forward some of the time

Policy gradient is noisy / high-variance

4 sensitive to reward scale

Improving the gradient

Introducing baselines

VoJ(0) =E;p,r) [Vologpe(T)r(7)] i 71 falls forwards

% runs forwards v

15

a convenient identity

Improving the gradient po(1) Vo 102 Po(7) = Vapo(r)

Introducing baselines

VoJ(0) =Erpy(r) [Vologpe(T) (r(1) —b)] i 71 falls forwards

4

subtracting a constant 7. runs forwards v

1 N
- N ;r “baseline”

f we subtract average reward, we get negative gradients for below-average behavior. &3

But, can we even do that? &
EVglog pg(1)b] = /pe(T)Vg log po(T)bdr = /Vgpg(T)bd’r = ng/pg(T)dT = bVyl =0

Subtracting a constant baseline does not change the gradient in expectation. |t is unbiased.

and can reduce variance of the gradient

Average reward is a pretty good baseline.

16

VWhat does the gradient do? (baseline edition)

Example: learning to fold a jacket

1 neatly folded
=B reward: r(s,a) =14 0.5 folded with some wrinkles

; . 0 not folded

‘ ' 1. sample {7'} from my(a¢|s:)

r!- doesn’t touch the Jacket 73 flattens the jacket but does not fold it

f. k | —

7% folds only the sleeves t* folds the jacket

TE Vo (0) = >, (2-: Velogmo(ailsy)) (32, r(s,a;) — b)

Question: what will the gradient encourage the policy to do?
-> will encourage folding, but gradient is constant for all but one trajectory

Policy gradient is still noisy / high-variance

. Best with dense rewards, large batches.

How to implement policy gradients?

Our gradient

%Z (Z Vo log mg aztszt)> ((Z r(si,t/,az-,t/)) — b)

1=1 t' =t

\ Computing these individually is inefficient.

(N*T backwards passes)

Can we use automatic differentiation on full objective?

Implement “surrogate objective” whose gradient is the same as VJ

N T T
~ 1
J(0) ~ ~ Z (Z log We(ai,t‘si,t)) ((Z r(Ss,1 az’,t’)) — b) weighted maximum likelihood

t'=t

Cross-entropy for discrete action policy, squared error for Gaussian policy

18

Summary so far

Estimating gradient of RL objective
- log gradient trick

- weigh policy likelihood by future rewards Run policy to collect

- subtract baseline (e.g. average reward) batch of data

- even with tricks, gradient is noisy

First reinforcement learning algorithm
Improve policy using

- collect batch of data, improve policy by applying gradient
natch of data

- formalizes trial-and-error learning

Key intuition: do more high reward stuff, less low reward stuff

19

VWhat else is troublesome about policy gradients?

Latest version of our gradient:

- T
VoJ(0) = Eripy(r) (Z Vo log mg(as|st)) ((Z r (S, agr) b)

t=1

assumes samples from current policy 7
on-policy: update uses only data

—ull algorithm: from current policy
1. sample {7} from ?9(3t|5é) off-policy: update can reuse data
< 2. compute VgJ(0) using {7} from other, past policies

3. 0 0+ aVyJ(0) <- we change @ right here

Need to recollect data every gradient step! &2

Vanilla policy gradient is on-policy.

20

Off-policy version of policy gradient?

Importance sampling

J(0) = Erpy(r)[r(7)]

What if we want to use samples from p(7)?

(e.g. previous policy)

J0) = By |22)

po(r) _ p6sT) [1,—y mo(as|st)plsmrrtstar) [T, mo(aslse)
p(T) pksT) H;r:1 7 (at|st)plSeertsr; ar) H;F:1 (ar[s)

21

Importance sampling
Using proposal distribution g

By |f(2)] = / p(2)f (x)da
)

— Ea:rvq(a;) p(aj) f(:)?)—

Note: Important for g to have non-zero
support for high probability p(x)

Off-policy version of policy gradient? 1;9((:)) = r}%l ”9((at'st))

Importance sampling

Say we want to update our latest policy 7, but we want to use samples from 7,

Vo J(@l) — 4:7'~p9/(7-) (Z Vo lOg T/ (atst)> ((Z T(St’v at’)) - b)

L \t=1 t'=t

Vo J(0') = Erpy(r) ZZ((:)) (Z Vo log mgr (atSt)) ((Z r(st/,at/)) — b)

t=1 t'=t

[T]
T’ | A |S
1) =)| T2 (0 o) (3t) o)

=1 t=1 t'=t

k This can become very small or very large, for larger T

22

Off-policy version of policy gradient?

Importance sampling

Say we want to update our latest policy 7, but we want to use samples from 7,

H 7;99/((:;“88;)) (Z Vo log my- (atst)) ((Z (S, at/)) — b)

t=1 t=1 t' =t

VH’J(H/) — 4:7'Np9 (1)

This can become very small or very large, for larger T

What if we consider the expectation over timesteps instead of trajectories?

N T

T
1 ~ ‘\7T0/(Sit ait)
/JH/%— A 7 ;] 1\ i ity At — b
Vo J (6) N Z'We(sz-,t,ai,t) Vo log mor (@ ¢|s ,t)((E (S, i)))

1=1 t=1 t'=t

. Much less likely to explode/vanish ...but, hard to measure s (Si.1)

Common final form To(S4,t)

N T T ;
1 o o 7o (2, 4|s; often approximated as 1
VorJ(0) = < D D 0 @itlSit) G og (a;,¢|si.¢) ((Zr(s@-,tf,ai,t/)) — b)

— o (i,¢[sit) —

23

Off-policy policy gradient

Common finatform

T
~ v 7Ty’ az t|Sz t
VerJ L L oy’ az t|Sz t V@/ o8 T (ai’t‘Siyt) ((Z T(S’i»t” ai,t/)) : b) Run DOL'

cy to collect
batch of data

1=1 t=1 t/=t

—ull algorithm:
1. sample {7°} from mg(a|s;)
< 2. compute VyJ(0) using {7"} Can take Improve policy using
3. 00+ aVyeJ(0) on the same batch oatch of data

What if our policy changes a lot before sampling new data?

Data no longer reflects states that policy will visit. Gradient estimate less accurate.

24

Off-policy policy gradient

Common finatform

T
V/l / i i i t! s Qg ¢! _b
Z'Z'w@ aztlszt) o log g (a,tS,t)(<§ (84t a,t)))

=1 t=1

What if our policy changes a lot before sampling new data?

Data no longer reflects states that policy will visit. Gradient estimate less accurate.

Can we constrain the policy to not stray too far during gradient updates?

One common choice: Esr, [Drr(mo (- | s)||mo(- | 8))] <6

25

Review

Online RL via policy gradients

- On-policy algorithm, differentiating the RL objective |
Run policy to collect

- Baselines, causality for reducing gradient variance
batch of data

- collect batch of data, improve policy by applying gradient
Derived off-policy policy gradient

- Importance sampling
Improve policy using

batch of data

- KL constraint on policy

- collect batch of data, apply multiple gradient updates

Intuition
- Do more high reward stuff, less low reward stuff

- Gradient still very noisy, best with large batch sizes and dense rewards

20

The plan for today

the basis for:
Policy gradients: our first online RL algorithm

1. On-policy policy gradient

a. Derivation and intuition of policy gradients

. Full algorithm
c. How to make it better - causality and baselines source: Unitree
2. Off-policy policy gradients
. + part of
a. Importance sampling

b. KL constraints

Key learning goals:
- Key intuition behind policy gradients

- How to implement, when to use policy gradients

27

. Creating a Boolean mask for elements that differ from that first element.

. Using a vectorized argmax (via np. take_along_axis) to pick the first different value (which wil
equal the first element if none exist).

. Verifying that every element in the slice is either aqual to the first element or that candidate

second unigue value,

Try this code:

numpy np

(values):

first = values[..., ©]

mask = (values != first[..., 1)

idx = np.argmax(mask, axis=’)

candidate? = np.take_along_axis{values, idx[..., 1, axis=’).squeeze(axis=’)

np.all({values == first[..., 1) | (values == candidate2[...,

values = fast_two_unique(values)

irst Element:
values[..., 8] soeach (i, j) slice’s first value becomes our reference.
date for the Second Unique Value:
es != firstl..., None]) identifies elements that differ from the first value.

I finds the first index along axis 2 where the element is different. If all elements

that avery element in each slice is either equal to first or candidate2 . If a

e exists, the condition fails for that slice.

This vectorized solution should be considerably faster than using apply_along_axis with a Python
loop.
ooV

That works great! Can you generalize the function to work with
any axis, not just axis 2?

Reasoned about generalized vectorized solution for 5 seconds

Below is a generalized version that lets you choose the axis along which to check for at most two
unique values. It works by maving the target axis to the end, applying the logic, and then reducing

that axis:

pythor

Next time

Actor critic methods

—> puild closely on policy gradients!

—> pasis for popular algorithms like PPO

Course reminders

- Start forming final project groups (survey due next Wednesday)

- Homework 1 out, due next Friday

28

