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The Plan for Today

1. Course goals & logistics

2. Why study deep reinforcement learning?

Key learning today: what is deep reinforcement learning??
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Welcomel

First question: How are you doing?

(answer by raising hand)



Information & Resources

i We h t a lot of info h
Course website: http://cs224r.stanford.edu/ «— o 0 O 0 O TEE

Please read it. :)

Ed: Connected to Canvas

Staff mailing list: cs224r-spr2223-staff@lists.stanford.edu

Office hours: Check course website & Canvas, start on Weds.

OAE letters can be sent to staff mailing list or in private Ed post.


http://cs224r.stanford.edu/

| ectures & Office Hours

Lectures
- |n-person, livestreamed, & recorded

- A few guest lectures (Jie Tan, Archit Sharma, one TBD)

Ask questions!
- by raising your hand

Office hours
- mix of in-person and remote



VWhat do we mean by deep reinforcement learning?

Sequential decision-making problems

AN

observe, take action, observe, take action, ...

D the solutions to such problems

- Imitation learning
- model-free & model-based

RL

- offline & online RL
- multi-task & meta

-mphasis on solutions that scale to deep neural networks

RL

A system needs to make multiple decisions based on stream of information.

and morel



How does deep RL differ from other ML topics?

Supervised learning Reinforcement learning

Given labeled data: {(x;, y,)}, learn f(x) = y Learn behavior (a| s).

- directly told what to output - from experience, indirect feedback

- Inputs x are independently, identically - data not 1.i.d.: actions a affect the
distributed (i.i.d.) future observations.

Behavior can include:

w ’ . (;" *"‘;. @0 e
ll
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motor control dlalog game playing driving




We can't cover everything in deep RL.

We'll focus on:
- methods and implementation

- examples in robotics & control (but techniques generalize broadly)
- topics that we think are most useful & exciting!

For more theory & other

applications, see C5234!



Imitation learni

lopics

ng

(behavior cloning, inverse RL)

Model-free deep RL algorithms

(policy gradients, actor-critic methods, Q-learning)

Model-based deep RL algorithms
Offline RL methods

(e.g. conservative methods, decision transformers)

Multi-task and

meta RL topics

(e.g. hindsight relabeling, learning to explore)

Emphasis on deep learning

Advanced topics: hierarchical RL, simZreal, reset-free RL

Case studies of interesting & timely applications

RL with human feed

—ducational feedbac

-ine-grained manipulation skills

oack (RLHF) for language models

K on Interactive assignments

10

open lid

Zhao et al. Learning Fine-Grained Bi-Manual
Manipulation. 2023

techniques.

Agent interacts with program like human Agent outputs feedback

Liu et al. Giving Feedback on Interactive Student
Programs with Meta-Exploration. NeurlPS 2022



What will you learn in this course?

1. The foundations of modern deep learning methods for sequential decision making

2. How to implement and work with practical deep RL systems (in PyTorch)

3. Aglimpse into the scientific and engineering process of building and
understanding new algorithms

11



Pre-Requisites

Machine learning: CS5229 or equivalent.

e.g. we'll assume knowledge of SGD, cross-val, calculus, probability theory, linear algebra

Some familiarity with deep learning:

- We'll build on concepts like backpropagation, convolutional networks, recurrent networks

- Assignments will require training networks in PyTorch.
- Annie will hold a PyTorch review session on Thursday, April 6, 4:30 pm PT in Gates B3.

Some familiarity with reinforcement learning:

- We will go quickly over the basics.
- See Sutton & Barto or CS 221 for intro RL content
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Assignments

Homework 1: Imitation learning Grade of lowest-scoring HW

Homework 2: Online reinforcement learning worth only 5% of grade.
. . . Rest are worth 15% of grade.
Homework 3: Offline reinforcement learning °018

Homework 4: Goal-conditioned & meta reinforcement learning

Grading: 50% homework, 50% project

6 late days total across: homeworks, project-related assignments
maximum of 2 late dates per assignment

Collaboration policy: Please read course website & honor code.
Document collaborators & write up HW solutions on your own.

Al tools (e.g. ChatGPT, Copilot) not allowed for homework, allowed for final project.
13



Final Project

Research-level project of your choice

- in groups of 1-3 students
- if applicable, encouraged to use your research!

- can share with other classes, with slightly higher expectation

- same late day policy as HWs
(but no late days for poster)

Poster presentation on June 7th (4-7 pm)

14



A word of warning

Deep RL methods take a long time to learn behavior!

STIll WAI'I'ING

We are trying to make homeworks fast to train.

Y

* " .‘1’ | ‘ ;

(e.g. by using simple environments) \‘f

sy

L . . 9
But, they will still take some time & you may * “ \
choose to be more ambitious in your project. 1

- ——

FORMY NEURAL nnwonu-m
S TRINE

e nqvno ?tm o

We recommend that you don’t start HWs/project deliverables the night before the deadline. :)
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One more thing

We have been working hard to develop a great course!
This course is new!
But, we will probably make mistakes.

We would love your feedback both for this iteration & future iterations.

—> high-resolution feedback form sent weekly to subset of students.
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Initial Steps

1. Homework 1 coming out on Weds — due Weds 4/19 at 11:59 pm PT

2. Start forming final project groups it you want to work in a group

17



The Plan for Today

1. Course goals & logistics
2. Why study deep reinforcement learning?
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Some of Chelsea’'s Research

(and why | care about deep reinforcement learning)
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How can we enable agents to develop broadly intelligent behavior?

Robots.

/Zhou, Kim, Wang, Florence, Finn. CVPR'23  Chen, Nair, Finn. RSS 21 Xie, Ebert, Levine, Finn, RSS'19

Why robots? Robots can teach us things about intelligence.

faced with the real world
must generalize across tasks, objects, environments, etc
need some common sense understanding to do well

supervision can't be taken for granted

Sequential decision making & embodiment seem fundamental to our intelligence.



Robots have tremendous potential for positive societal impact

Recent examples: labor shortages, helping care for aging populations

- search and rescue after natural disasters

- helping perform dangerous & tedious jobs
- assist in surgery

- drive trucks and cars without distraction

- space exploration

- agriculture

- and more

21



Beginning of my PhD

— »a welcomes »a

Oonomous execution
Levine et al. ICRA15

The robot had its eyes closed.



, g
éuto’nomous execution

s evine*, Finn* et al. JMLR'16




Our Method

Autonomous execution real-time

Finn et al. ICRA'16




_Robot reinforcement learning Reinforcement learning

" ff"“f \p’a‘ «//

Method

YMous execution
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Reinforcement learning is a powerful tool for robotics & game playing!

But, there are also a lot of big, open problems.

1. Can robots learn generalizable behavior?  e.q. from large offline datasets —> offline RL
e.g. by leveraging experience across tasks —> multi-task, meta RL

2. Can robots learn behavior autonomously?
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Benhind the scenes. ..
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Yevgen is doing more work than the robot
t's not practical to collect a lot of data this way.




- Reinforcement learning
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Reinforcement learning is a powerful tool for robotics & game playing!

But, there are also a lot of big, open problems.

1. Can robots learn generalizable behavior?  e.q. from large offline datasets —> offline RL
e.g. by leveraging experience across tasks —> multi-task, meta RL

2. Can robots learn behavior autonomously? ("Reset-free RL"—> guest lecture)
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Some of Karol's Research

(and why Karol cares about deep reinforcement learning)

28
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Fig. 6 Block diagram illustrating the flow of signals through the system. The footstep
planner (Section 3.1) or the whole-body motion planner (Section 3.2) provide input desired
trajectories to the control system. The controller (Section 4) runs in a closed loop with IR
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Fig. 6. Network layout for the IHMC VRC entry. The control software
communicates with the DRC simulator through a high bandwidth connection
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network processor at low bandwidth and high latency.
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problems with contact

19:13:54 05/0612015 UTC

00:04:41 07/06/2015 UTC
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Traditional Robotic Pipeline
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observations »
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[H. et al,, ICRA 2015]
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perception action
state low-level motor
. . » lannin »
estimation P o control commands
A [ | [ |

k) to the conalct pose.

i N\ TR\ WL AN

[H. etal, ICRA 2013]
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DON, Mnih etal. 2013

Atari games
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Guided

Levi

ne,

Policy Search (GPS)

-inn, et al. 2015

LIS execution

GPS

nebotar et al. 2016
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Combining Model-Based and Model-Free
Updates for Trajectory-Centric

Reinforcement Learning







The recipe that has worked in other fields so far:

A lot of diverse, multi-task data Expressive, capable models
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A lot of diverse, multi-task data

MT-Opt RT-1
Kalashnikov et al. 2021 Srohan et al. 2022
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Multi-task robot learning: the real reason

.

freegifmaker.me
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Why else study deep reinforcement learning?

1. Sequential decision-making problems are everywhere!

Controlling robots & autonomous vehicles
What if you want your Al system to interact with people?
What if deploying your system affects future outcomes & observations?

What if your objective isn’t just accuracy? ‘feedback loops’
(and isn't differentiable)

e S
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Why else study deep reinforcement learning?

Standard computer vision:
hand-designed features

classifier

§ mid-level features & ’
(e.g. SVM)

® ¥ > 8
¥ (c.c. DPM)
® Felzenszwalb ‘08

55
27
13 13 13
N

1 5 1
N - ——
N 5 - =~ )N~ - 3 - ¥ -
1 | X ~ - 13 N -~ 1 13 3 - = 13 dense dense)
224 5 ” 3 T

384 384 256 2

Modern computer vision:
end-to-end training

55

Max
Max Max pooling
Stride\| o | P9°ling pooling
224

of 4

4096 4096

Krizhevsky et al. 12

Deep learning allows us to handle unstructured inputs (pixels, language, sensor readings, etc.)
without hand-engineering features, with less domain knowledge

Slide adapted from Sergey Levine 46



Deep learning for object classification

ImageNet competition results

Deep learning for machine translation

05/ © Google’s Neural Machine Translation System: Bridging the Gap
between Human and Machine Translation
Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi
yonghui,schuster,zhifengc,qvl,mnorouzi@google.com
0.4-
O
3
o Table 10: Mean of side-by-side scores on production data
% 0.3 O PBMT GNMT Human Relative
§ o 8 AlexNet Improvement
= English — Spanish  4.885 5.428 5.504 87%
English — French 4.932 5.295 5.496 64%
0.2 English — Chinese  4.035  4.594  4.987 58%
Spanish — English  4.872 5.187 5.372 63%
O g French — English 5.046 5.343 5.404 83%
. 9 Chinese — English  3.694 4.263 4.636 60%
0-17 g Human evaluation scores on scale of 0 to 6
O V4
° PBMT: Phrase-based GNMT: Google’s neural
0.0 . 1 . . . . . . .
2011 2012 2013 2014 2015 2016 machine translation machine translation
Year :
Source: Wikipedia (in 2016)

47



Why study deep reinforcement learning now?

1992 PhD thesis by Long-Ji Lin (CMU) 1995 paper by Sebastian Thrun

This dissertation demonstrates how we can possibly overcome the slow learning problem  Abstract—Designing robots that learn by themselves to
and tackle non-Markovian environments, making reinforcement learning more practical for perform complex real-world tasks is a still-open challenge

realisuc robot tasks: for the field of Robotics and Artificial Intelligence. In this

e Reinforcement learning can be naturally integrated with artificial neural networks to  paper we present the robot learning problem as a lifelong

obtain high-quality generalization, resulting in a significant learning speedup. Neural  prohlem, in which a robot faces a collection of tasks over

networks are used in this dissertation, and they generalize effectively cven in the presence o . T o .
of noise and a large number of binary and real-valued inputs. its entire lifetime. Such a scenario provides the oppor-

. : Since 1n thi r we are interested in learning robot control,
e Reinforcement learning agents can save many learning trials by using an action model, > Pape & |

which can be learned on-line. With a model, an agent can mentally experience the effects we will describe EBNN in the context of ©-Learning [28]. Q-
of its actions without actually executing them. Experience replay is a simple technique

that implements this idea, and is shown to be effective in reducing the number of action dcmm model M., sction model M,

executions required.

: : Q,udl/tmlure)
¢ Reinforcement learning agents can significantly reduce learning ume by hierarchical
learning— they first solve elementary learning problems and then combine solutions to

the elementary problems to solve 2 complex problem. Simulation experiments indicate
that a robot with hierarchicai learning can solve a complex problem, which otherwise 1s
hardly solvable Wlthil‘l a reasonable time value network Q@ value network Qaz value network Qa;
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Why study deep reinforcement learning now?

AT _.QHLIIIE WE
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Alalgorithm outcompetes human
championsin Gran Turismoracing game

Stratospheric balloon Turismo ('22)
navigation (' 20)

Dexterous manipulation ('19)
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But, we also still have many open questions and challenges!
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Course Reminders

Your Initial Steps:
Homework 1 comes out Weds, due Weds 4/19 at 11:59 pm P
Start forming final project groups it you want to work in a group

Coming Up Next:

Imitation Learning Lecture (Weds)
PyTorch Tutorial (Thurs)
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