Meta Reinforcement Learning
Adaptable Models & Policies

CS 224R



Reminagers

Homework 3 due Wednesday

Project milestone due next Wednesday



Lecture goals:

N0
N0

NC

Plan for Today

Meta-RL problem statement

Black-box meta-RL methods

<-comes up in HW4

Optimization-based meta-RL methods

Next time: Learning to explore. <- part of HW4
erstand the meta-RL problem statement & set-up
erstand the basics of black-box meta RL algorithms
erstand the basics & challenges of optimization-based meta RL algorithms




Problem Settings

Multi-Task Learning Transfer Learning
Solve multiple tasks & 4, -++, J at once. Solve target task I, after solving source task &,
T
. by transferring knowledge learned from &
min 2 Z(0,9) Y jerring ° ¢
0
=1

The Meta-Learning Problem

Given data from I, ..., I, , quickly solve new task I {agt

In all settings: tasks must share structure.

action space dynamics

A reinforcement __ ' , ' Meta-reinforcement learning
J l — {CSDia tQ{ialji(sl)alji(s ‘ Sa a)a ri(sa a)}

b 1

state initial state reward
space distribution

learning task: = meta-learning with RL tasks



The Meta-Learning Problem

Supervised Learning:

Inputs: X Outputs: Y Data: (X, '
NG T dald {( Y)z}

Y = 9¢(X)

Meta Supervised Learning:
nputs: D xS Outputs: y** Data: {D; }
—
{(X>Y)1:K}>: fg(Dtr,{tS') D; : {6 y);

Why is this view useful?
Reduces the meta-learning problem to the design & optimization of f.

Finn. Learning to Learn with Gradients. PhD Thesis. 2018



The Meta Reinforcement Learning Problem

Reinforcement Learning:
Inputs: X'

a; = m(s¢;0)
Meta Reinforcement Learning:

Inputs Dtr S¢ Outputs: At Data: {Dz}
\ / dataset of datasets
K rollouts ﬂom n = fo (Dtr, St) collected for each task

Design & optimization of f *and* collecting appropriate data

(learning to explore)
Finn. Learning to Learn with Gradients. PhD Thesis. 2018



Meta-RL Example: Maze Navigation

Collect small amount of Learn policy that
experience in new MDP solves that MIDP

Goal:
Collect D¢y ~ 5P Dy — gtask

diagram adapted from Duan et al. ‘17



Meta-RL Example: Maze Navigation

Meta-Train Time:

Learn how to efficiently
explore & solve many MDPs:

—.
Ay -
- -
. - . -m- - - .-
-~ —

Meta-train zEXP, ztask

Meta-Test Time:

Collect small amount of ~ Learn policy that
experience in new MDP  solves that MDP

meta-training
tasks

Collect Dt ~ n°*P Dy — rtask

Key assumption: Meta-training & meta-testing MDPs come from same distribution.

(so that we can expect generalization)

diagram adapted from Duan et al. ‘17



The Meta Reinforcement Learning Problem

Meta Reinforcement Learning:

Inputs: Dirnin St Outputs: At
Episodic Variant ) \‘I : | \ /
olloutsfrom 7 5, _ fo(D, s1)
Inputs: Dyrni St Outputs:
Online Variant ) \ /’
1...ktimesteps from 7T o
f9 D 7St)

Note: exploration policy 7T and adaptation policy fy need not be the same.
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Plan for Today

Meta-RL problem statement

Black-box meta-RL methods
Optimization-based meta-RL methods
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Black-Box Meta-RL: Overview

A A9 a3 di
Black-box network T
(LSTM, NTM, Conv, ...) e
A = fe(Dtr,St) T T T |
S1,0 S2, 71 83,12 St, T't—1

query set

Dtr training/support set
gets larger over time

Question: Why don't we need to pass in the actions a,_; with the support set?

Question: How is this different from simply doing RL with a recurrent policy?

Reward is passed as input Hidden state maintained
(& trained across multiple MDPs) across episodes within a task!
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Black-Box Meta-RL: Algorithm

a1 ao aq Ao : aj

- B BN

et s s e

s1,0 So., T ST, T -1 s1,0 S92, 71 ST, T'T—1 : S1, 0
Episode 1 Episode 2

1. Sample task T,
, 1 , (under dynamics p(s’|s, a)
2. Roll-out policy #(a|s, ") for N episodes
l and reward r(s, a))

3. Store sequence in replay buffer for task & ..

4. Update policy to maximize discounted return for all tasks.

12



Black-Box Meta-RL: Algorithm

Meta-Training
1. Sample task I

der d ics ps'] s,
2. Roll-out policy n(a|s, D) for N episodes (under dynamics p(s’|s,a)
| and reward r(s,a))

3. Store sequence in replay buffer for task & ..

4. Update policy to maximize discounted return for all tasks.

Meta-Test Time

1. Sample new task J;

2. Roll-out policy z(a|s, @}:r) for up to N episodes

13



Black-Box Meta-RL: Architectures & Optimizers
RNN architecture TRPO/A3C (on-policy)

Reinforcement Learning

Attention + 1D conv

at_3 at_z at_l at Actions

. SN O S

TRPO (on-policy) %%o

j R

¥e) o/cg//oi

Mishra, Rohaninejad, Chen, Abbeel. A Ec|>/cl>/c|>/c|>:

Simple Neural Attentive Meta-Learner. %%M 5

ICLR 2018 5?/?//0 3

5 60— 6 O

v |1

1O O © O

Duan, Schulman, Chen, Bartlett, Sutskever, Abbeel. RL2: Fast Reinforcement b (O |
Learning via Slow Reinforcement Learning. 2017 O3 gt-z gt-l gt (Observations,
Wang, Kurth-Nelson, Tirumala, Soyer, Leibo, Munos, Blundell, Kumaran, Botvinick. . r: ,-: r: Rewards)

Learning to Reinforcement Learn. CogSci 2017
Feedforward + average SAC (off-policy)

(s, a, s’)r)1—>[ 0, ]—>\If¢(z\cl)—l 2o (zlc) .

. ! .

® * [ ]

— »Ccritic

— £actor

Rakelly, Zhou, Quillen, Finn, Levine. Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables. ICML 2019.



Meta-RL Example #1

From: Mishra, Rohaninejad, Chen, Abbeel. A Simple Neural Attentive Meta-Learner. ICLR 2018

Experiment: Learning to visually navigate a maze
- train on 1000 small mazes
- test on held-out small mazes and large mazes

15



Meta-RL Example #1

From: Mishra, Rohaninejad, Chen, Abbeel. A Simple Neural Attentive Meta-Learner. |ICLR 2018

Experiment: Learning to visually navigate a maze
- train on 1000 small mazes
- test on held-out small mazes and large mazes

Method Small Maze Large Maze
Episode 1 Episode 2 Episode 1 Episode 2

Random 188.6 3.5 187.7x3.5 | 4202 +1.2 420.8 = 1.2
LSTM 524+13 39109 | 180.1 =6.0 150.6 5.9
SNAIL (OllI‘S) 50.3 = 0.3 34.8 + 0.2 140.5 = 4.2 105.9 + 2.4

Table 5: Average time to find the goal on each episode

10



Meta-RL Example #2

Rakelly, Zhou, Quillen, Finn, Levine. Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables.
[CML 20179,

Experiment: Continuous control problems

Walker

Half Cheetah Humanoid

- different directio
- different physica

Ant

ns, velocities
dynamics

Meta-RL algos are very efficient at new tasks.

But, what about meta-training efficiency?

Question: Do you expect

of

more or less efficient tha

AN,

n-policy

-policy meta-RL to be

meta-RL?

17

Half-Cheetah-Vel Humanoid-Direc-2D

5 0.0 0.4 0.8 1.2 1.6 2.0 0.0 0.2 0.4 0.6 0.8 1.0
Ant-Goal-2D Walker-2D-Params

200 e
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Black-box: === PEARL RL2
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Digression: Connection to Multi-Task Policies

multi-task policy: my(a | s, z) Qs
| — — — policy
- T T T T
(s1,a1,7m1) (s2,a2,72) (83,03,713) g4
e —
Z;: stack location z;: walking direction task identifier z,

Multi-task policy with experience as task identifier.

What about goal-conditioned policies / value functions?

rewards are a strict generalization of goals
meta-RL objective is to adapt new tasks vs. generalize to new goals

(k-shot vs. 0-shot)



Black-Box Meta-RL Summary

d]
Black-box network T
(LSTM, NTM, Conv, ...) .
At = f(Dtrain7 St ‘9) ‘
S1, 0

+ general & expressive

I

S2, 71

a3

S3, 72

+ a variety of design choices in architecture

- hard to optimize

19
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Plan for Today

Meta-RL problem statement

Black-box meta-RL methods

Optimization-based meta-RL methods
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Optimization-Based Meta-Learning

Key idea: embed optimization inside the inner learning process

21



Fine-tuning

Fine-tuning ¢ — 0 — CVV@L(@, D'

) training data

| | for new task
(typically for many gradient steps)

Universal Language Model Fine-Tuning for Text Classification. Howard, Ruder. ‘18

—— From scratch
ULMFIT, supervised S
— ULMFIT, semi-supervised S
10 \
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Figure 3: Validation error rates for supervised and semi-supervised ULMFIT vs. training from scratch
with different numbers of training examples on IMDb, TREC-6, and AG (from left to right).

Fine-tuning less effective with very small datasets.



Optimization-Based Meta-Learning

/pre—trained parameters
Fine-tuning @ <— 0 — CVV@L(@, Dtr>

. training data
[test-time]

for new task

Meta-learning meiﬂ Z L:(H — Ong[,(Q, Dgr)a D}L]S)
task 2

Key idea: Over many tasks, learn parameter vector 0 that transfers via fine-tuning

Finn, Abbeel, Levine. Model-Agnostic Meta-Learning. ICML 20172°



Optimization-Based Meta-Learning

m@in Z £(9 — Oéve[’(ev D§r>7 D;CS>

task 1 |
— meta-learning

0 parameter vector 9 ---- learning/adaptation

being meta-learned

¢>l< optimal parameter
1 vector for task i

e

Model-Agnostic Meta-Learning
Finn, Abbeel, Levine. Model-Agnostic Meta-Learning. ICML 2017 4%



Optimization-Based Meta—tearning Meta-RL

k rollouts from 7,

Key idea: embed optimization inside the inner learning process

Question: What should we use for the inner optimization and why?

Policy gradients?

+ grac
+ 0Nn-po

ient-based!

Icy (ineffi

cient)

- low information
(esp w/ sparse rewards)

Q-learning?

- dynamic program
(requires many ste

ming

0S)

Model-based RL?

+ grac
(model lear

ient-based

ning=supervised)

+ off-policy (data efficient) + off-policy (data efficient)



MAML with Policy Gradients

MAML: min » L£(0 —aVeL(0,D;"),D;)

task 2

Policy Gradient:  VeJi(0) = Erur,,7 (ZW 10g7fe(at\5t)) (Zm(st,at))

t

Meta-Training Meta-Test Time
1. Sample task 7 1. Sample new task 97]-
2. Collect @};r by rolling out 7, 2. Collect SZ}PF by rolling out 7w,

3. Inner loop adaptation: ¢; = 60 + aVeJ;(0) 3. Adapt policy:
4. Collect QZ};S by rolling out z, ¢; =0+ aVeJ;(0)
5. Outer loop update: 0 < 60 + Z Vodi(d;)

task 2



MAML with Policy Gradients

— Mmeta-learning
9 ---- |learning/adaptation

Finn, Abbeel, Levine. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML 2017



MAML with Policy Gradients

— Mmeta-learning

9 ---- learning/adaptation
VLs
VL,
ve! NG

Finn, Abbeel, Levine. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML 2017



MAML with Model-Based RL

Online Variant Inputs: Dtrain S¢ Outputs: di¢
T \/
k timesteps from 7T
Meta-test time: 1. Adapt model f, — f(ﬁt to last k time steps

2.Plana, ..., a,, , Using adapted mOde‘fgbt

Meta-training: PU
i ) t * . .
St Jorts Qp_foot tasks: windows in time

-~

—

QLS time
St:t+hy At:t+h

Nagabandi*, Clavera*, Liu, Fearing, Abbeel, Levine, Finn. Learning to Adapt in Dynamic Environments through Meta-RL. ICLR"19



Dynamic Environments without Adaptation

Model-Based RL Only
Tries to fit single model f(s"[ s, @) to varying p(s’| s, a).

Nagabandi*, Clavera*, Liu, Fearing, Abbeel, Levine, Finn. Learning to Adapt in Dynamic Environments through Meta-RL. ICLR"19



Dynamic Environments without Adaptation
MAML+Model-based RL

0.0 0.8 1.6 2.4 3.2 4.0
Time steps 1e6
- GrBAL (OuUrs) ReBAL (ours) — TRPO MAML-RL

Nagabandi*, Clavera*, Liu, Fearing, Abbeel, Levine, Finn. Learning to Adapt in Dynamic Environments through Meta-RL. ICLR"19



VelociRoACH Robot

Meta-train on variable terrains

Meta-test with slope, missing leg, payload, calibration errors

Nagabandi*, Clavera*, Liu, Fearing, Abbeel, Levine, Finn. Learning to Adapt in Dynamic Environments through Meta-RL. ICLR"19



VelociRoACH Robot

Meta-train on variable terrains Meta-test with slope, missing leg, payload, calibration errors

model-based RL
(no adaptation)

with MAML (ours)

Nagabandi*, Clavera*, Liu, Fearing, Abbeel, Levine, Finn. Learning to Adapt in Dynamic Environments through Meta-RL. ICLR"19



Black-Box Meta-RL Optimization-Based Meta-RL
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+ general & expressive + Inductive bias of optimization built in

+ a variety of design choices in + easy to combine with policy gradients,
architecture & objective model-based methods

- hard to optimize - policy gradients very noisy
—- hard to combine with value-based RL

methods

Both: inherit sample efficiency from outer RL optimizer
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Lecture goals:

N0
N0

NC

Plan for Today

Meta-RL problem statement

Black-box meta-RL methods

Optimization-based meta-RL methods

erstanc
erstanc

erstanc

the
the
the

meta-RL problem statement & set-up
nasics of black-box meta RL algorithms

nasics & challenges of optimization-based meta RL algorithms
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Today: meta-RL basics

Next time

Wednesday: learning to explore via meta-RL

Homework 3 due Wednesday

Reminders

Project milestone due next Wednesday
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