Meta Reinforcement Learning Adaptable Models & Policies

CS 224R

Reminders

Homework 3 due Wednesday

Project milestone due next Wednesday

Plan for Today

Meta-RL problem statement

Black-box meta-RL methods

Optimization-based meta-RL methods

<- comes up in HW4

Next time: Learning to explore. <- part of HW4

- Understand the meta-RL problem statement & set-up
- Lecture goals:
- Understand the basics of black-box meta RL algorithms
- Understand the basics & challenges of optimization-based meta RL algorithms

Problem Settings

Multi-Task Learning

Transfer Learning

Solve multiple tasks $\mathcal{T}_1, \cdots, \mathcal{T}_T$ at once.

$$\min_{\theta} \sum_{i=1}^{T} \mathcal{L}_i(\theta, \mathcal{D}_i)$$

Solve target task \mathcal{T}_b after solving source task \mathcal{T}_a by transferring knowledge learned from \mathcal{T}_a

The Meta-Learning Problem

Given data from $\mathcal{T}_1, ..., \mathcal{T}_n$, quickly solve new task $\mathcal{T}_{\text{test}}$

In all settings: tasks must share structure.

A reinforcement learning task:

action space dynamics
$$\mathcal{F}_i \triangleq \{\mathcal{S}_i, \mathcal{A}_i, p_i(\mathbf{s}_1), p_i(\mathbf{s}' | \mathbf{s}, \mathbf{a}), r_i(\mathbf{s}, \mathbf{a})\}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
 state initial state reward space distribution

Meta-reinforcement learning = meta-learning with RL tasks

The Meta-Learning Problem

Supervised Learning:

Inputs:
$$\mathbf{X}$$
 Outputs: \mathbf{Y} Data: $\{(\mathbf{x},\mathbf{y})_i\}$ $\mathbf{y} = g_{\phi}(\mathbf{x})$

Meta Supervised Learning:

Why is this view useful?

Reduces the meta-learning problem to the design & optimization of f.

Finn. Learning to Learn with Gradients. PhD Thesis. 2018

The Meta Reinforcement Learning Problem

Reinforcement Learning:

Data:
$$\{(\mathbf{x}, \mathbf{y})_i\}$$

 $\{(\mathbf{s}_t, \mathbf{a}_t, r_t, \mathbf{s}_{t+1})\}$

Meta Reinforcement Learning:

Data: $\{\mathcal{D}_i\}$

dataset of datasets collected for each task

Design & optimization of f *and* collecting appropriate data

(learning to explore)

Meta-RL Example: Maze Navigation

Collect small amount of experience in new MDP

Goal:

Learn policy that solves that MDP

Meta-RL Example: Maze Navigation

Meta-Train Time:

Learn how to efficiently explore & solve many MDPs:

Meta-Test Time:

Collect small amount of experience in new MDP

Learn policy that solves that MDP

Key assumption: Meta-training & meta-testing MDPs come from same distribution.

(so that we can expect generalization)

The Meta Reinforcement Learning Problem

Meta Reinforcement Learning:

Note: exploration policy π and adaptation policy $f_{ heta}$ need not be the same.

Plan for Today

Meta-RL problem statement

Black-box meta-RL methods

Optimization-based meta-RL methods

Black-Box Meta-RL: Overview

Black-box network

(LSTM, NTM, Conv, ...)

$$\mathbf{a}_t = f_{ heta}(\mathcal{D}^{\mathrm{tr}}, \mathbf{s}_t)$$

Question: Why don't we need to pass in the actions \mathbf{a}_{t-1} with the support set?

Question: How is this different from simply doing RL with a recurrent policy?

Reward is passed as input (& trained across multiple MDPs)

Hidden state maintained across episodes within a task!

Black-Box Meta-RL: Algorithm

- 1. Sample task \mathcal{T}_i
- 2. Roll-out policy $\pi(a \mid s, \mathcal{D}_i^{tr})$ for N episodes
- 3. Store sequence in replay buffer for task \mathcal{T}_i .
- 4. Update policy to maximize discounted return for all tasks.

Black-Box Meta-RL: Algorithm

Meta-Training

- 1. Sample task \mathcal{T}_i 2. Roll-out policy $\pi(a \mid s, \mathcal{D}_i^{\text{tr}})$ for N episodes (under dynamics $p_i(s'|s,a)$ and reward $r_i(s, a)$
- 3. Store sequence in replay buffer for task \mathcal{T}_i .
- 4. Update policy to maximize discounted return for all tasks.

Meta-Test Time

- 1. Sample new task \mathcal{T}_i
- 2. Roll-out policy $\pi(a \mid s, \mathcal{D}_j^{\mathrm{tr}})$ for up to N episodes

Black-Box Meta-RL: Architectures & Optimizers

RNN architecture TRPO/A3C (on-policy)

Duan, Schulman, Chen, Bartlett, Sutskever, Abbeel. *RL*²: Fast Reinforcement Learning via Slow Reinforcement Learning. 2017

Wang, Kurth-Nelson, Tirumala, Soyer, Leibo, Munos, Blundell, Kumaran, Botvinick. *Learning to Reinforcement Learn*. CogSci 2017

Attention + 1D conv TRPO (on-policy)

Mishra, Rohaninejad, Chen, Abbeel. *A Simple Neural Attentive Meta-Learner*.

ICLR 2018

Feedforward + average SAC (off-policy)

$$(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)_{1} \longrightarrow \phi \longrightarrow \Psi_{\phi}(\mathbf{z}|\mathbf{c}_{1})_{\uparrow} \qquad q_{\phi}(\mathbf{z}|\mathbf{c}) \qquad \qquad Q_{\theta}(\mathbf{s}, \mathbf{a}, \mathbf{z}) \longrightarrow \mathcal{L}_{critic}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

Rakelly, Zhou, Quillen, Finn, Levine. Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables. ICML 2019.

Meta-RL Example #1

From: Mishra, Rohaninejad, Chen, Abbeel. A Simple Neural Attentive Meta-Learner. ICLR 2018

Experiment: Learning to visually navigate a maze

- train on 1000 small mazes
- test on held-out small mazes and large mazes

Meta-RL Example #1

From: Mishra, Rohaninejad, Chen, Abbeel. A Simple Neural Attentive Meta-Learner. ICLR 2018

Experiment: Learning to visually navigate a maze

- train on 1000 small mazes
- test on held-out small mazes and large mazes

Method	Small Maze		Large Maze	
	Episode 1	Episode 2	Episode 1	Episode 2
Random	188.6 ± 3.5	187.7 ± 3.5	$ 420.2 \pm 1.2 $	420.8 ± 1.2
LSTM	52.4 ± 1.3	39.1 ± 0.9	180.1 ± 6.0	150.6 ± 5.9
SNAIL (ours)	50.3 ± 0.3	34.8 ± 0.2	140.5 ± 4.2	$\textbf{105.9} \pm \textbf{2.4}$

Table 5: Average time to find the goal on each episode

Meta-RL Example #2

Rakelly, Zhou, Quillen, Finn, Levine. *Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables*. ICML 2019.

Experiment: Continuous control problems

- different directions, velocities
- different physical dynamics

Meta-RL algos are very efficient at new tasks.

But, what about meta-training efficiency?

Question: Do you expect off-policy meta-RL to be more or less efficient than on-policy meta-RL?

Digression: Connection to Multi-Task Policies

multi-task policy: $\pi_{\theta}(\mathbf{a} \mid \mathbf{s}, \mathbf{z}_i)$

 \mathbf{Z}_i : stack location

 \mathbf{Z}_i : walking direction

Multi-task policy with experience as task identifier.

What about goal-conditioned policies / value functions?

- rewards are a strict generalization of goals
- meta-RL objective is to *adapt* new tasks vs. *generalize* to new goals (k-shot vs. 0-shot)

Black-Box Meta-RL Summary

Black-box network (LSTM, NTM, Conv, ...)

 $\mathbf{a}_t = f(\mathcal{D}_{\text{train}}, \mathbf{s}_t; \theta)$

- + general & expressive
- + a variety of design choices in architecture
- hard to optimize
- ~ inherits sample efficiency from outer RL optimizer

Plan for Today

Meta-RL problem statement Black-box meta-RL methods

Optimization-based meta-RL methods

Optimization-Based Meta-Learning

Key idea: embed optimization inside the inner learning process

Fine-tuning

Universal Language Model Fine-Tuning for Text Classification. Howard, Ruder. '18

Figure 3: Validation error rates for supervised and semi-supervised ULMFiT vs. training from scratch with different numbers of training examples on IMDb, TREC-6, and AG (from left to right).

Fine-tuning less effective with very small datasets.

Optimization-Based Meta-Learning

Meta-learning
$$\min_{\theta} \sum_{\mathrm{task}\ i} \mathcal{L}(\theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}_i^{\mathrm{tr}}), \mathcal{D}_i^{\mathrm{ts}})$$

Key idea: Over many tasks, learn parameter vector θ that transfers via fine-tuning

Optimization-Based Meta-Learning

$$\min_{\theta} \sum_{\text{task } i} \mathcal{L}(\theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}_{i}^{\text{tr}}), \mathcal{D}_{i}^{\text{ts}})$$

heta parameter vector being meta-learned

 ϕ_i^* optimal parameter vector for task i

Model-Agnostic Meta-Learning

Optimization-Based Meta-Learning Meta-RL

k rollouts from π_{θ}

Key idea: embed optimization inside the inner learning process

Question: What should we use for the inner optimization and why?

Policy gradients?

- + gradient-based!
- + on-policy (inefficient)
- low information (esp w/ sparse rewards)

Q-learning?

- dynamic programming

Model-based RL?

+ gradient-based (requires many steps) (model learning=supervised)

+ off-policy (data efficient) + off-policy (data efficient)

MAML with Policy Gradients

MAML:
$$\min_{\theta} \sum_{\text{task } i} \mathcal{L}(\theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}_{i}^{\text{tr}}), \mathcal{D}_{i}^{\text{ts}})$$

Policy Gradient: $\nabla_{\theta} J_i(\theta) = E_{\tau \sim \pi_{\theta}, \mathcal{T}_i} \left| \left(\sum_t \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) \right) \left(\sum_t r_i(\mathbf{s}_t, \mathbf{a}_t) \right) \right|$

Meta-Training

- 1. Sample task \mathcal{T}_i 2. Collect $\mathcal{D}_i^{\mathrm{tr}}$ by rolling out π_{θ}
 - 3. Inner loop adaptation: $\phi_i = \theta + \alpha \nabla_{\theta} J_i(\theta)$
 - 4. Collect $\mathcal{D}_i^{\text{ts}}$ by rolling out π_{ϕ_i}
 - 5. Outer loop update: $\theta \leftarrow \theta + \beta \sum \nabla_{\theta} J_i(\phi_i)$ task i

Meta-Test Time

- 1. Sample new task \mathcal{T}_i
- 2. Collect $\mathcal{D}_i^{\text{tr}}$ by rolling out π_{θ}
- 3. Adapt policy:

$$\phi_j = \theta + \alpha \nabla_{\theta} J_j(\theta)$$

MAML with Policy Gradients

MAML with Policy Gradients

MAML with Model-Based RL

Meta-test time:

- 1. Adapt model $f_{\theta} \to f_{\phi_t}$ to last k time steps
- 2. Plan a_t, \ldots, a_{t+h} using adapted model f_{ϕ_t}

Meta-training:

Nagabandi*, Clavera*, Liu, Fearing, Abbeel, Levine, Finn. Learning to Adapt in Dynamic Environments through Meta-RL. ICLR '19

Dynamic Environments without Adaptation

Model-Based RL Only

Tries to fit single model f(s'|s,a) to varying $p_t(s'|s,a)$.

Nagabandi*, Clavera*, Liu, Fearing, Abbeel, Levine, Finn. Learning to Adapt in Dynamic Environments through Meta-RL. ICLR '19

Dynamic Environments without Adaptation MAML+Model-based RL

Nagabandi*, Clavera*, Liu, Fearing, Abbeel, Levine, Finn. Learning to Adapt in Dynamic Environments through Meta-RL. ICLR'19

VelociRoACH Robot

Meta-train on variable terrains

Meta-test with slope, missing leg, payload, calibration errors

VelociRoACH Robot

Meta-train on variable terrains Meta-test with slope, missing leg, payload, calibration errors

(no adaptation)

Nagabandi*, Clavera*, Liu, Fearing, Abbeel, Levine, Finn. Learning to Adapt in Dynamic Environments through Meta-RL. ICLR '19

Black-Box Meta-RL

- + general & expressive
- + a variety of design choices in architecture & objective
- -- hard to optimize

Optimization-Based Meta-RL

- + inductive bias of optimization built in
- + easy to combine with policy gradients, model-based methods
- -- policy gradients very noisy
- hard to combine with value-based RL methods

Both: inherit sample efficiency from outer RL optimizer

Plan for Today

Meta-RL problem statement

Black-box meta-RL methods

Optimization-based meta-RL methods

- Understand the meta-RL problem statement & set-up

Lecture goals:

- Understand the basics of black-box meta RL algorithms
- Understand the basics & challenges of optimization-based meta RL algorithms

Next time

Today: meta-RL basics

Wednesday: learning to explore via meta-RL

Reminders

Homework 3 due Wednesday

Project milestone due next Wednesday