Meta-Reinforcement Learning:
L earning to Explore

L5224R """f",'.\wm"”n*n

® &

b nurwnmnnuu R
~ 'SECOND LECTURE ON META-RL? |

Reminagers

Homework 3 due tonight
(and HW4 out today)

Project milestone due next Wednesday

Following up on high-res feedback:
- Wanting homeworks to require more conceptual understanding
- Request for summary table of approaches
- Unoffcial lecture notes

Why meta-reinforcement learning?

Why are humans good at RL? Our RL agents start tabula rasa.

People have previous experience. Can we allow RL agents to leverage prior

They have developed representations that experience?
facilitate exploration & learning.
Source: https://i.imgur.com/hJIVIZ5 jpg

https://i.imgur.com/hJIVfZ5.jpg

Should we be using the same exploration
algorithm for:

Learning to navigate an environment

Learning to make recommendations to users
Learning a policy for computer system caching
Learning to physically operate a new tool or machine

This is how we currently approach exploration.

Today’s Lecture

Can we learn exploration strategies based on
experience from other tasks in that domain?

Outline

Brief Recap on Meta-RL

Algorithms for Learning to Explore
End-to-End Optimization of Exploration Strategies

Alternative Decoupled Exploration Strategies

Decoupled but Consistent Exploration & Exploitation

Case Study: Applying Meta-RL to CS Education

A brief recap of meta-reinforcement learning

Collect small amount of Learn policy that
experience in new MDP solves that MIDP

Goal:
Collect D¢y ~ 5P Dy — gtask

diagram adapted from Duan et al. ‘17

A brief recap of meta-reinforcement learning

Meta-Train Time:

Learn how to efficiently
explore & solve many MDPs:

—.
Ay -
- -
. - . -m- - - .-
-~ —

Meta-train zEXP, ztask

Meta-Test Time:

Collect small amount of ~ Learn policy that
experience in new MDP solves that MDP

meta-training
tasks

Collect Dt ~ n°*P Dy — rtask

Key assumption: Meta-training & meta-testing MDPs come from same distribution.

(so that we can expect generalization)

diagram adapted from Duan et al. ‘17

A brief recap of meta-reinforcement learning

Common approach: Implement the learning procedure with a recurrent network.

a as as ay s this just a recurrent policy?
T T T T Hidden state maintained
— > > e T > across episodes within a task!
T T T T Trained across a family of MDPs
5170 S2, 11 S3, 12 St, T't—1

with varying dynamics, rewards.

RL2 with Policy Gradients: VgJ(0) = Ernn, T (Z Vo log we(at\st,Dfr)) (Z ri(st,at))
t i

t

Wang et al. Learning to Reinforcement Learn. 2017; Duan et al. RL2. 2017

A brief recap of meta-reinforcement learning

Examples of meta-RL tasks
Locomotion on different terrains, slopes

avigation through different mazes

1\“
\\\
. T— _/’/ /f
'
4 ~,
'
'
'
'
:’ - o

ulation with different objects, goals Dialog with different users w/
different preferences

Object manip

Train tasks

7. pull lever 8. turn dial 9. push with stick

[

1. tumn on faucet 2. sweep 3. stack 4. unstack 5. turn off faucet 6. push back 46. open box
11. pull handle . : 14. sweep into 16. place onto 18. press hancle
12. basketball 13. pull with stick hole 15. disessemble rut <helf 17. push mug side T

22, press buitton 23. press handle

10. get coffee side
. 26. retrieve plate .
24. pull handle 25. soccer side 27. retrieve plate 48 lock door

21 slid te sid
slide plate side wll

19. hammer 20. slide plate
. . " 36. pick & place w/
33. insert peg side 34. push 35. push with wall wall 49. unlock door

28.close drawer 2- Pre=s button 30. reach 31. pressburentoe w35 reach with wall
top wal
39. pul mug 40. unplug peg 41 close window 42, open window 43. open door 44. close door 45. open drawer 50. pick bi
. pick bin

37. press button 38. pick & place

Outline

Brief Recap on Meta-RL

Algorithms for Learning to Explore
End-to-End Optimization of Exploration Strategies

Alternative Decoupled Exploration Strategies

Decoupled but Consistent Exploration & Exploitation

Case Study: Applying Meta-RL to CS Education

11

How Do We Learn to Explore?

Solution #1: Optimize for Exploration &
Exploitation End-to-End w.r.t. Reward

(Duan et al, 2016, Wang et al,, 2016, Mishra et al,, 2017, Stadie et
al., 2018, Zintgraf et al., 2019, Kamienny et al., 2020)

simple
+ leads to optimal strategy
N principle

- challenging optimization
when exploration is hara

A simple, running example

Hallway 1 lallway 2 lallway N

B | agent , o
| information on Different tasks: navigating to

where to go the ends of different hallways

How Do We Learn to Explore?

Solution #1: Optimize for Exploration & . . o
Exploitation End-to-End w.r.t. Task Reward i e I o, I o, B I -
(Duan et al, 2016, Wang et al., 2016, Mishra et al,, 2017, Stadie et Slo s2,Tr1 ST,LT_I 510 s2,Tr1 ST,[“T_1 Slo
al., 2018, Zintgraf et al.,, 2019, Kamienny et al., 2020) L — J — J
Episode 1 Episode 2

Example episodes during meta-training:
- gets positive reward for current task,

agent goes to the end of the correct hallway but S’Z}r won't be different than for any other task

+/- provides signal on a suboptimal

agent goes to wrong hallway then correct hallway exploration + exploitation strategy

agent looks at the instructions - good exploratory behavior, but won't
get any reward for this behavior

It's hard to learn exploration & exploitation at the same time!

Another Example of a Hard Exploration Meta-RL Problem

Learned cooking tasks in previous kitchens Goal: Quickly learn tasks in a new kitchen.

I . =8
o vt s=a i
. . Ly -
V& s+ YT
- - S | Ll — 2
i i il \
R Vo 1 i |
a
. T A 4 2
d
l i _
LS
—I
=
| 1T
1
-
|
LS

Tm—m
e o -

RS
. ¥ S ¢
- {5

o - \
O e

.. m — '
meta-training eta-testing

Why is End-to-End Training Hard in This Example?

End-to-end approach: optimize exploration and execution episode behaviors end-to-end to
maximize reward of execution

Ingredient not found Cannot learn to cook
/\A (bad exploration) " (bad execution)
—_
‘K/ 1{
Learning to cook Learning to find ingredients Cannot cook Low reward for any
(execution) (exploration) (bad execution) - exploration

Coupling problem: learning exploration and execution depend on each other

—> can lead to poor local optima, poor sample efficiency

Liu, Raghunathan, Liang, Finn. Decoupling Exploration and Exploitation for Meta-Reinforcement Learning without Sacrifices. ICML 2021

Solution #2: Leverage

2a. Use posterior sampling PEARL (Rakelly, Zhou, Quillen, Finn, Levine. ICML "19)

(also called Thompson sampling)

. Learn distribution over latent task variable p(z), g(z | Z+) and corresponding task policies z(a|s, z)

ii. Sample z from current posterior and sample from policy z(a| s, z)

0\ e
z ~ p(z) z ~ qg(2z|c1:10) z ~ q¢(z|c1:30)

When might posterior sampling be bad? Eg. Goals far away & sign on wall that tells you the correct goal.

Solution #2: Leverage

2a. Use posterior sampling PEARL (Rakelly, Zhou, Quillen, Finn, Levine. ICML "19)

(also called Thompson sampling)

. Learn distribution over latent task variable p(z), g(z | Z+) and corresponding task policies z(a|s, z)

ii. Sample z from current posterior and sample from policy z(a| s, z)

2D. Use intrinsic rewards MAME (Gurumurthy, Kumar, Sycara. CoRL "19)

2¢. Task dynamics & reward prediction MetaCURE (Zhang, Wang, Hu, Chen, Fan, Zhang.'20)
. Train model f(s', 7| s, a, Dir3in) i. Collect Dyrain SO that model is accurate.

When might this be bad?

Lots of distractors,
or complex, high-dim state dynamics

Solution #2: Leverage

2a. Use posterior sampling PEARL (Rakelly, Zhou, Quillen, Finn, Levine. ICML "19)

(also called Thompson sampling)

. Learn distribution over latent task variable p(z), g(z | Z+) and corresponding task policies z(a|s, z)

ii. Sample z from current posterior and sample from policy z(a| s, z)

2D. Use intrinsic rewards MAME (Gurumurthy, Kumar, Sycara. CoRL "19)
2¢. Task dynamics & reward prediction MetaCURE (Zhang, Wang, Hu, Chen, Fan, Zhang.'20)
. Train model f(s', 7| s, a, Dir3in) i. Collect Dyrain SO that model is accurate.
+ easy to optimize - suboptimal by arbitrarily large
+ many based on amount In some environments.
principled strategies

Can we avoid the chicken-and-egg problem without sacrificing optimality?

(best of both worlds?)
Yes!

Solution #3

Idea from solution #2b: Train model f(s', r|s,a, D) & collect D¢ so that model is accurate.

Do we have to learn a full dynamics & reward model?

ldea 3.0: Label each training task with a unique ID

Exploration policy: train policy 7°*P(a|s) and task identification model (1 | Dir)

Meta -
training such that D¢, ~ 7°*P allows accurate task prediction from f
Execution policy: train ID-conditioned policy z°*““(a s, u;)
Meta : CXP . . _execC A
testing Explore: 94, ~ (a|s) Infertask: i ~ g(u|<+,) Perform task: 7-~~(a|s, ji)

+ no longer need to model dynamics, rewards ~ — may not generalize well for one-hot u

Solution #3: Decouple by acquiring representation of task relevant information

1) Learn execution & identify key information 2) Learn to explore by recovering that i,

\y /

Information recovery reward

MI(z; 7)

[

| information -
- [

MDP identifier p Bottlenecked Execution | Eyploration
representation policy | policy Exploration episode T
wall color | 2 | /—\

ingredients . CXCC :
decorations |] [
|

&

Liu, Raghunathan, Liang, Finn. Decoupling Exploration and Exploitation for Meta-Reinforcement Learning without Sacrifices. ICML 2021

Solution #3: Decouple by acquiring representation of task relevant information

1) Learn execution & identify key information 2) Learn to explore by recovering that &,

I
I information -
: I
MDP identifier p Bottlenecked Execution | Eyploration
representation policy | policy Exploration episode T
wall color | 2 | /—\
ingredients | () @ > grORCC : er v
decorations | 1 | Information recovery reward
> ! MI(z; 7)
Train z°%%“(a|s, z;) and encoder F(z;| u,) to: Train z°*P such that collected P4, is predictive of z..

max Y Erexec[rs] — Dxr (F(2i]p:)[|V(0,1))

In practice: (1) and (2) can be trained simultaneously.

Liu, Raghunathan, Liang, Finn. Decoupling Exploration and Exploitation for Meta-Reinforcement Learning without Sacrifices. ICML 2021

Solution #3: Decouple by acquiring representation of task relevant information

1) Learn execution & identify key information 2) Learn to explore by recovering that
information -
Train z°%%“(a s, z;) and encoder F(z; | u;) to: Train z°%P such that collected @y, is predictive of z..
Inax Z Lexec T3] — Dk, (F'(2i|p:) [NV (0,1)) ow to formulate the reward function for z%%P?
i

(@) Train model g(z; | Dt,) (b) r, = per-step information gain

r, = prediction error from 7y.,_; — prediction error from 7.,

Decoupled Reward-free ExplorAtion and Execution in Meta-Reinforcement Learning (DREAM)

Liu, Raghunathan, Liang, Finn. Decoupling Exploration and Exploitation for Meta-Reinforcement Learning without Sacrifices. ICML 2021

Aside: How can we bottleneck the information in a neural net's representation?

VO: Add noise the representation.
e~ N0 Z=z+¢ +willdiscardinformation &
- If done at test time, my discard good info

- If done during training, model can increase magnitude of Z

1. Add Gaussian noise during training

Key ideas:
A 2. Prevent the model from increasing magnitude

V1: Variational information bottleneck

Add noise before passing representation Modify loss term:

to next Layer: € ~ ,/V(O,I) Z=17-+c¢€ Ltl’ + HZHZ

-> equivalent to Dy, (F(z \,ul-)H/V(O,l)).

Alemi, Fischer, Dillon, Murphy. Deep Variational Information Bottleneck. |ICLR 2017/.

Solution #3: Decouple by acquiring representation of task relevant information

(Informal) Theoretical Analysis

(1) DREAM objective is consistent with end-to-end optimization. [under mild assumptions]

-> can in principle recover the optimal exploration strategy

(2) Consider a bandit-like setting with |.A|arms.

Sample Complexity

In MDP 1, arm 1 yields reward. In all MDPs, arm O reveals the rewarding arm. z =
E ol | UREAM
i 2 N g | == O(Aog|A)
RLZ requires Q(|A|% log | A|) samples for meta-optimization. = RL?
= (| AP log | A])
DREAM requires O(|A| log |A|) samples for meta-optimization. -)
bt
[assuming Q-learning with uniform outer-loop exploration] " Number of Actions ([A])

Liu, Raghunathan, Liang, Finn. Decoupling Exploration and Exploitation for Meta-Reinforcement Learning without Sacrifices. ICML 2021

Empirical Comparison: Sparse Reward 3D Visual Navigation Problem

e lask:go to the (key / block/ ball), color
specified by the sign

e Agent starts on other side of barrier,
must walk around to read the sign

e Pixels observations (80 x 60 RGB)

e Sparse binary reward

Liu, Raghunathan, Liang, Finn. Explore then Execute: Adapting without Rewards via Factorized Meta-RL. |ICML 2021

Quantitative Comparison

3D Visual Navigation

1.0 4 o o o —
0.8 - ° algorithms (RL2,IMPORT, VARIBAD)
perform poorly due to coupling

v .06
§ - ° Upper-bound on PEARL: optimal
ar policy and Thompson-Sampling exploration,
2 " F————— - does not learn the optimal exploration strategy

0.0 — AN A N e . .

/Y v e DREAM achieves near-optimal reward
0.9 - s [JREAM IMPORT we = PEARL-UDB
m— \ARIBAD == == (Optimal

—U1 1 1 | | | 1 1 1

0 500 1000 1500 2000 2500 3000 3500
Timesteps (1e3)
RL2 (Duan et al.,, 2016), IMPORT (Kamienny et al., 2020), VARIBAD (Zintgraf et al., 2019), PeARL (Rakelly, et. al., 2019), Thompson, 1933

Liu, Raghunathan, Liang, Finn. Explore then Execute: Adapting without Rewards via Factorized Meta-RL. ICML 2021

Qualitative Results for DREAM

Exploration episode

Execution episode
Goal: Go to key

Liu, Raghunathan, Liang, Finn. Explore then Execute: Adapting without Rewards via Factorized Meta-RL. |ICML 2021

How Do We Learn to Explore?

End-to-End

eads to optimal strategy in
orinciple

- challenging optimization when

exploration is hard

+ easy to opti

mize

+ many basec
strategies

- suboptimal by arbitrarily large
amount in some environments.

on principled

Decoupled Exploration & Execution

+ leads to optimal strategy in
orinciple
+ easy to optimize In practice

- requires task identifier

Outline

Brief Primer on Meta-RL

Algorithms for Learning to Explore
End-to-End Optimization of Exploration Strategies

Alternative Decoupled Exploration Strategies

Decoupled but Consistent Exploration & Exploitation

Case Study: Applying Meta-RL to CS Education

31

Problem: Providing Feedback on Interactive Software

Common CS assignment: interactive software

g"«‘g.

SERTRE
AT
gn':': v

axy label: whemGoal-wmoBallLaunch

Exploxation xewaxd: 0.020

Bounce assignment
(Code.org)

Problem: Providing Feedback on Interactive Software

Common CS assignment: interactive software

Motivating and engaging (fun!)
= can enrich learning (pfaffman et al., 2003)

Problem: Providing Feedback on Interactive Software

Common CS assignment: interactive software

Harvard CS30

UC Berkeley CS61B
UCLA CS32
Stanford CST106A
Code.org

Camp K12

Tynker
Google Applied CS Skills

Increasingly found
everywhere

Problem: Providing Feedback on Interactive Software

Providing feedback / grading is hard

Problem: Providing Feedback on Interactive Software

Providing feedback / grading is hard

Score0:0

Stochasticity

Problem: Providing Feedback on Interactive Software

Providing feedback / grading is hard

Score0:0

Stochasticity

Problem: Providing Feedback on Interactive Software

Score2:0 Score 0: 0

Bounce assignment

Stochasticity Student creativity
(Code.org)

Problem: Providing Feedback on Interactive Software

&

3+ min manual grading X 70M+ — 300+ years

per assignment enrolled students of grading work

Problem: Providing Feedback on Interactive Software

Our goal: Automatically provide feedback
Reduce enormous human grading burden

Provide faster and iterative feedback

Setting

Rubric: List of possible errors

moveError

whenWall-newBallError

whenGoal-scoreError

Setting

Training (~3500 labeled programs)

Program M Label y: Subset of rubric items
present in program

moveError

=-remrSort—seoretttror

Setting

Testing

New student program

Setting

Testing

New student program

Goal: Output which bugs are in the program
(i.e., predict the label)

Related Work: Two Paradigms for Automated Feedback

Analyze program behavior

(King et al., 76, Godefroid et al., ‘08, Zheng et al.,
19, Nie et al., 21, Gordillo et al., 21)

Independent of program length

Assumes that the program can
compile and run

We opt for this approach

The Play-to-Grade Paradigm

Agent interacts with program like human

The Play-to-Grade Paradigm

Agent interacts with program like human

The Play-to-Grade Paradigm

Agent interacts with program like human

The Play-to-Grade Paradigm

Agent interacts with program like human

The Play-to-Grade Paradigm

§>§<&\2xx‘§’< (LKA AT |
aa 1 eV _‘(‘\)(Y »,’(,()(A‘ \FEF XA A ‘.:‘».._‘X. NN { N

Score 0.0

Agent interacts with program like human

The Play-to-Grade Paradigm

Agent interacts with program like human Agent outputs feedback

The Play-to-Grade Paradigm

Existing work (Nie et al., ‘21):
Coarse binary feedback

The program is
Incorrect

Agent interacts with program like human Agent outputs feedback

The Play-to-Grade Paradigm

Existing work (Nie et al., 21):

Coarse binary feedback

Not specific enough for
student to learn and

The program is correct mistakes
Incorrect

The ball incorrectly
bounces off the goal

Agent interacts with program like human Agent outputs feedback

What makes providing feedback hard?

Targeted exploration Adaptive exploration

Approach: DREAMGRADER

Exploration policy /T : Feedback classifier (J :
Takes program [V and produces trajectories 7~ Takes trajectories 7T and predicts label Y

whenWall-newBallError

—— whenWall-scoreError

Approach: DREAMGRADER

Exploration policy 7T : Feedback classifier (j :
Takes program [V and produces trajectories 7T~ Takes trajectories ‘T~ and predicts label Y

Maximize probability of correct label

T (7, 9) = Epiu)rmm(u) [9(y | T)]

Approach: DREAMGRADER

Exploration policy 7T : Feedback classifier (j :
Takes program [V and produces trajectories 7T~ Takes trajectories ‘T~ and predicts label Y

Naive approach:
Treat this as end-of-episode reward

T (7, 9) = Epiu)rmm(u) [9(y | T)]

Approach: DREAMGRADER

Score 00
hi

Approach: DREAMGRADER

Score 0 0

|

Approach: DREAMGRADER

Scoréi 0
it il

roach: DREAMGRADER

|

roach: DREAMGRADER

1 : il

Approach: DREAMGRADER

Naive approach

i - 1 } o0 » _R |
Score 0:0 8 [SEord 0Vi0 =, p(u) rom(u) 19y | T)
i . i i End-of-episode rewarc

Approach: DREAMGRADER

PO X XK R X X D Xt A X X X X X X X XL
0030 0 0 \>§§< ‘2 HORPHRPRL A X K K AKX K KK ALY " ®
QI hala' :)‘ N /1 e ¢ e’ 4 e’ X T N a Iv e a ro a c h
Py T & .
V i |

\7(71'7 g) — {",uwp(/.z),fwﬂ(,u) [g(y I T)

End-of-episode rewarc

Score 0: 0 | j-;.:;."f: Score 00

M

1 \
\ ‘l

)

M

i T

Reward given at @but bug

G discovered at .

Approach: DREAMGRADER

Naive approach

Score 0: 0 | | Score 0: 0 | T(m,9) = Epu)rn(n) 19 | T)
| | | i | i ' End-of-episode reward

Reward given at @but bug
D discovered at @

Instead, use DREAM (Liu et al,, 21) tO
provide credit at .

Approach: DREAMGRADER

S
KX KR K ’><3<» ‘2‘ KORPHEPA XX K K AKX K A K A : M
QI R Kk A R XX e] N a IV e a ro a c h

\7(7‘-7 g) o f’uwp(,u),wvw(,u) [g(y l T)

End-of-episode rewarc

Score 0: 0 | j-;.:;."f: Score 00

M

1 \
\ ‘l

)

M

i T

b Reward given at @but bug
discovered at @

Instead, use DREAM (Liu et al,, 21) tO
provide credit at .

Intuition: maximize information gain

g(yIth—I—l)
9(y|T+)

r; = log

Approach: DREAMGRADER

Why does the DREAM meta-RL algorithm apply here?

Few-shot meta-RL:

'

3) Agent uses exploration to
maximize returns on new episode

Approach: DREAMGRADER

Why does the DREAM meta-RL algorithm apply here?

Few-shot meta-RL:

24
1) Agent is given new task

Agent is given new program

Approach: DREAMGRADER

Why does the DREAM meta-RL algorithm apply here?

Few-shot meta-RL:

2) Agent gets to explore for a few
episodes

Exploration policy runs to find bugs

Approach: DREAMGRADER

Why does the DREAM meta-RL algorithm apply here?

Few-shot meta-RL:

o

3) Agent uses exploration to
maximize returns on new episode

Feedback classifier uses exploration
to predict label

Experiments: Questions

Can automated feedback generation handle student creativity?

Experiments: Questions

How feasible is automated feedback generation?

Can automated feedback generation handle student creativity?

Bounce programming assignment from Code.org
Dataset of ~700K real student submissions, released by Nie et al., ‘21

Train systems on 3,500 programs — hold out the rest

Experiments: Questions

How feasible is automated feedback generation?

Humans Naive approach of direct maximization Existing state-of-the-art approach (Nie et al., 21)

100

Feedback Accuracy and F1

—
—
.
-
s -
-
—
-

Accu racy
Metric

B Human
B DREAMGRADER

Naive approach

Nie et al.,

2021

Experiments: How Feasible is Automated Feedback?

Humans are accurate, but infeasible:
Requires ~4 years to grade the dataset

Experiments: How Feasible is Automated Feedback?

Feedback Accuracy and F1

100 5

°.0 DREAMGRADER achieves within 1.5% of
human accuracy

Al

Accuracy F1
Metric

B Human Naive approach
B DREAMGRADER Nie et al., 2021

Experiments: How Feasible is Automated Feedback?

Feedback Accuracy and F1

100 5

Accuracy

B Human

B DREAMGRADER

€1

Metric

F1

Naive approach
Nie et al., 2021

o

Appropriate credit assignment is critical for
learning effective exploration

Experiments: How Feasible is Automated Feedback?

Feedback Accuracy and F1

100 5

80 -

00 -

40-

Percent (%)

20

Accuracy

B Human

B DREAMGRADER

€1

Metric

F1

Naive approach
Nie et al., 2021

Improves on existing methods by 18.8%

Experiments: Learned Exploration Behavior

What happens when...

Undexlying env ID: 2732

axy label: whenwall-illegal-moveRight
Action: None

Exploxation xewaxrd: 0.079

the ball hits the wall?

Main gap with humans
appears in these sorts of
programs with many balls

Experiments: Can We Handle Some Student Creativity?

One type of student creativity in the dataset: ball and paddle speed

Test handling student creativity by evaluating on helc

Both held out

88.0%
38.8%
82.1%
52.8%

out ball and paddle speeds

Neither held out

88.4%
38.6%
85.6%
593.2%

Performance on held out speeds roughly matches speeds seen during training

Bonus Experiment: Beyond Code.org bounce game?

Stanford CS106A: Students program Breakout in homework assignment
Ball “skewering” bug: common mistake, most difficult to detect/grade

Learned exploration policy

Outline

Brief Recap on Meta-RL

Algorithms for Learning to Explore
End-to-End Optimization of Exploration Strategies

Alternative Decoupled Exploration Strategies

Decoupled but Consistent Exploration & Exploitation

Case Study: Applying Meta-RL to CS Education

31

Reminagers

Homework 3 due tonight
(and HW4 out today)

Project milestone due next Wednesday

Next week: Can we make reinforcement learning more autonomous?
Can RL agents discover skills themselves?

Can we do hierarchical RL?

82

